
JBoss Enterprise Application Platform
Continuous Delivery 18

How to Configure Identity Management

For Use with JBoss Enterprise Application Platform Continuous Delivery 18

Last Updated: 2019-12-05

JBoss Enterprise Application Platform Continuous Delivery 18 How to
Configure Identity Management

For Use with JBoss Enterprise Application Platform Continuous Delivery 18

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explores how to use LDAP directories and other identity stores for use with JBoss EAP
management interfaces and security domains. This guide expands on the concepts provided in the
JBoss EAP Security Architecture guide, and should be reviewed after administrators have basic
knowledge of LDAP and a solid understanding of security concepts within JBoss EAP.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. IDENTITY MANAGEMENT OVERVIEW

CHAPTER 2. ELYTRON SUBSYSTEM
2.1. CONFIGURE AUTHENTICATION WITH A FILESYSTEM-BASED IDENTITY STORE
2.2. CONFIGURE AUTHENTICATION WITH A PROPERTIES FILE-BASED IDENTITY STORE
2.3. CONFIGURE AUTHENTICATION WITH A DATABASE-BASED IDENTITY STORE
2.4. CONFIGURE AUTHENTICATION WITH AN LDAP-BASED IDENTITY STORE
2.5. CONFIGURE AUTHENTICATION WITH CERTIFICATES
2.6. CONFIGURE AUTHENTICATION AND AUTHORIZATION USING MULTIPLE IDENTITY STORES

2.6.1. Aggregate Realm in Elytron
2.6.2. Configuring Authentication and Authorization Using an Aggregate Realm
2.6.3. Example Aggregate Realms

2.7. OVERRIDE AN APPLICATION’S AUTHENTICATION CONFIGURATION
2.8. SET UP CACHING FOR SECURITY REALMS
2.9. CONFIGURE APPLICATIONS TO USE CONTAINER-MANAGED SINGLE SIGN-ON

CHAPTER 3. LEGACY SECURITY SUBSYSTEM
3.1. CONFIGURE A SECURITY DOMAIN TO USE LDAP

3.1.1. LdapExtended Login Module
3.1.1.1. Configure a Security Domain to use the LdapExtended Login Module

3.1.1.1.1. Configure a Security Domain to use the LdapExtended Login Module for Active Directory
3.2. CONFIGURE A SECURITY DOMAIN TO USE A DATABASE

3.2.1. Database Login Module
3.2.1.1. Configure a Security Domain to use the Database Login Module

3.3. CONFIGURE A SECURITY DOMAIN TO USE A PROPERTIES FILE
3.3.1. UsersRoles Login Module

3.3.1.1. Configure a Security Domain to use the UsersRoles Login Module
3.4. CONFIGURE A SECURITY DOMAIN TO USE CERTIFICATE-BASED AUTHENTICATION

3.4.1. Creating a Security Domain with Certificate-Based Authentication
3.4.2. Configure an Application to use a Security Domain with Certificate-Based Authentication
3.4.3. Configure the Client

3.5. CONFIGURE CACHING FOR A SECURITY DOMAIN
3.5.1. Setting the Cache Type for a Security Domain
3.5.2. Listing and Flushing Principals
3.5.3. Disabling Caching for a Security Domain

CHAPTER 4. APPLICATION CONFIGURATION
4.1. CONFIGURE WEB APPLICATIONS TO USE ELYTRON OR LEGACY SECURITY FOR AUTHENTICATION

Silent BASIC Authentication
Using Elytron and Legacy Security Subsystems in Parallel

4.2. CONFIGURE CLIENT AUTHENTICATION WITH ELYTRON CLIENT
4.2.1. The Configuration File Approach
4.2.2. The Programmatic Approach
4.2.3. The Default Configuration Approach
4.2.4. Using Elytron Client with Clients Deployed to JBoss EAP
4.2.5. Configuring a JMX Client Using the wildfly-config.xml File
4.2.6. Using the ElytronAuthenticator to Propagate Identities

4.3. CONFIGURING TRUSTED SECURITY DOMAIN OUTFLOWS
Importing a Security Identity

4

5

6
6
7
8
9
11

13
13
14
15
15
16
18

21
21
21
21
23
24
24
25
25
25
26
26
27
28
29
29
29
30
30

32

32
33
33
34
35
37
39
40
41
41

42
42

Table of Contents

1

. .

. .

. .

. .

Outflow

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP
5.1. USING ELYTRON

5.1.1. Using Elytron for Two-way SSL/TLS for the Outbound LDAP Connection
5.2. USING LEGACY CORE MANAGEMENT AUTHENTICATION

5.2.1. Using Two-way SSL/TLS for the Outbound LDAP Connection
5.3. LDAP AND RBAC

5.3.1. Using LDAP and RBAC Independently
5.3.2. Combining LDAP and RBAC for Authorization

5.3.2.1. Using group-search
5.3.2.2. Using username-to-dn
5.3.2.3. Mapping LDAP Group Information to RBAC Roles

5.4. ENABLING CACHING
5.4.1. Cache Configuration
5.4.2. Example

5.4.2.1. Reading the Current Cache Configuration
5.4.2.2. Enabling a Cache
5.4.2.3. Inspecting an Existing Cache
5.4.2.4. Testing an Existing Cache’s Contents
5.4.2.5. Flushing a Cache
5.4.2.6. Removing a Cache

CHAPTER 6. CONFIGURE A SECURITY DOMAIN TO USE A SECURITY MAPPING

CHAPTER 7. STANDALONE SERVER VS. MANAGED DOMAIN CONSIDERATIONS

APPENDIX A. REFERENCE MATERIAL
A.1. EXAMPLE WILDFLY-CONFIG.XML
A.2. REFERENCE FOR SINGLE SIGN-ON ATTRIBUTES

A.2.1. Single Sign-on
A.3. PASSWORD MAPPERS

43

44
44
45
45
50
51
51
51
52
55
58
61
61

62
64
65
65
65
66
66

67

68

69
69
70
70
71

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

2

Table of Contents

3

PREFACE
This document is intended for use with the JBoss Enterprise Application Platform continuous delivery
release 18, which is a Technology Preview release available in the cloud only.

Some features described in this document might not work or might not be available on Red Hat
OpenShift Online and Red Hat OpenShift Container Platform. For specific details about the feature
differences in the JBoss EAP CD release, see the Release Limitations section in the JBoss EAP
Continuous Delivery 18 Release Notes.

IMPORTANT

This continuous delivery release for JBoss EAP is provided as Technology Preview only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

4

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/jboss_eap_continuous_delivery_18_release_notes/#cd_release_limitations
https://access.redhat.com/support/offerings/techpreview

CHAPTER 1. IDENTITY MANAGEMENT OVERVIEW
The basic identity management concepts for securing applications with various identity stores are
covered in the Red Hat JBoss Enterprise Application Platform (JBoss EAP) Security Architecture guide.
This guide shows you how to configure various identity stores, such as a filesystem or LDAP, to secure
applications. In some cases you can also use certain identity stores, such as LDAP, as an authorization
authority. Various role and access information about principals can be stored in an LDAP directory which
can then be used directly by JBoss EAP or mapped to existing JBoss EAP roles.

NOTE

Using identity stores backed by external datastores, such as databases or LDAP
directories, can have a performance impact on authentication and authorization due to
the data access and transport between the external datastore and the JBoss EAP
instance.

CHAPTER 1. IDENTITY MANAGEMENT OVERVIEW

5

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/security_architecture/

CHAPTER 2. ELYTRON SUBSYSTEM

2.1. CONFIGURE AUTHENTICATION WITH A FILESYSTEM-BASED
IDENTITY STORE

1. Configure a filesystem-realm in JBoss EAP:

IMPORTANT

filesystem-realm is provided as Technology Preview only. Technology Preview
features are not supported with Red Hat production service level agreements
(SLAs), might not be functionally complete, and Red Hat does not recommend to
use them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback
during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

/subsystem=elytron/filesystem-realm=exampleFsRealm:add(path=fs-realm-users,relative-
to=jboss.server.config.dir)

If your directory is located outside of jboss.server.config.dir, then you need to change the
path and relative-to values appropriately.

2. Add a user:
When using the filesystem-realm, you can add users using the management CLI.

/subsystem=elytron/filesystem-realm=exampleFsRealm:add-identity(identity=user1)
/subsystem=elytron/filesystem-realm=exampleFsRealm:set-password(identity=user1, clear=
{password="password123"})
/subsystem=elytron/filesystem-realm=exampleFsRealm:add-identity-attribute(identity=user1,
name=Roles, value=["Admin","Guest"])

3. Add a simple-role-decoder:

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

This simple-role-decoder decodes a principal’s roles from the Roles attribute. You can change
this value if your roles are in a different attribute.

4. Configure a security-domain:

/subsystem=elytron/security-domain=exampleFsSD:add(realms=
[{realm=exampleFsRealm,role-decoder=from-roles-attribute}],default-
realm=exampleFsRealm,permission-mapper=default-permission-mapper)

5. Configure an application-security-domain in the undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(security-
domain=exampleFsSD)

NOTE

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

6

https://access.redhat.com/support/offerings/techpreview

NOTE

An application-security-domain in the undertow subsystem can be configured
using the management console by navigating to Configuration → Subsystems
→ Web (Undertow) → Application Security Domain.

6. Configure your application’s web.xml and jboss-web.xml:
Your application’s web.xml and jboss-web.xml must be updated to use the application-
security-domain you configured in JBoss EAP. An example of this is available in Configure Web
Applications to Use Elytron or Legacy Security for Authentication.

Your application is now using a file system-based identity store for authentication.

2.2. CONFIGURE AUTHENTICATION WITH A PROPERTIES FILE-BASED
IDENTITY STORE

1. Create properties files:
You must create two properties files: one that maps users to passwords and another that maps
users to roles. Usually, these files are located in the jboss.server.config.dir directory and follow
the naming convention *-users.properties and *-roles.properties, but other locations and
names can be used. The *-users.properties file must also contain a reference to the
properties-realm, which you will create in the next step:
#$REALM_NAME=YOUR_PROPERTIES_REALM_NAME$

Example user to password file: example-users.properties

#$REALM_NAME=examplePropRealm$
user1=password123
user2=password123

Example user to roles file: example-roles.properties

user1=Admin
user2=Guest

2. Configure a properties-realm in JBoss EAP:

/subsystem=elytron/properties-realm=examplePropRealm:add(groups-
attribute=groups,groups-properties={path=example-roles.properties,relative-
to=jboss.server.config.dir},users-properties={path=example-users.properties,relative-
to=jboss.server.config.dir,plain-text=true})

The name of the properties-realm is examplePropRealm, which is used in the previous step in
the example-users.properties file. Also, if your properties files are located outside of
jboss.server.config.dir, then you must change the path and relative-to values appropriately.

3. Configure a security-domain:

/subsystem=elytron/security-domain=exampleSD:add(realms=
[{realm=examplePropRealm,role-decoder=groups-to-roles}],default-
realm=examplePropRealm,permission-mapper=default-permission-mapper)

4. Configure an application-security-domain in the undertow subsystem:

CHAPTER 2. ELYTRON SUBSYSTEM

7

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(security-
domain=exampleSD)

NOTE

An application-security-domain in the undertow subsystem can be configured
using the management console by navigating to Configuration → Subsystems
→ Web (Undertow) → Application Security Domain.

5. Configure your application’s web.xml and jboss-web.xml:
Your application’s web.xml and jboss-web.xml must be updated to use the application-
security-domain you configured in JBoss EAP. An example of this is available in Configure Web
Applications to Use Elytron or Legacy Security for Authentication.

Your application is now using a properties file-based identity store for authentication.

IMPORTANT

The properties files are only read when the server starts. Any users added after server
startup, either manually or by using an add-user script, requires a server reload. This
reload is accomplished by running the reload command from the management CLI.

reload

2.3. CONFIGURE AUTHENTICATION WITH A DATABASE-BASED
IDENTITY STORE

1. Determine your database format for usernames, passwords, and roles:
To set up authentication using a database for an identity store, you need to determine how your
usernames, passwords, and roles are stored in that database. In this example, we are using a
single table with the following sample data:

username password roles

user1 password123 Admin

user2 password123 Guest

2. Configure a datasource:
To connect to a database from JBoss EAP, you must have the appropriate database driver
deployed, as well as a datasource configured. This example shows deploying the driver for
PostgreSQL and configuring a datasource in JBoss EAP:

deploy /path/to/postgresql-9.4.1210.jar

data-source add --name=examplePostgresDS --jndi-name=java:jboss/examplePostgresDS --
driver-name=postgresql-9.4.1210.jar --connection-
url=jdbc:postgresql://localhost:5432/postgresdb --user-name=postgresAdmin --
password=mysecretpassword

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

8

3. Configure a jdbc-realm in JBoss EAP:

/subsystem=elytron/jdbc-realm=exampleDbRealm:add(principal-query=[{sql="SELECT
password,roles FROM eap_users WHERE username=?",data-
source=examplePostgresDS,clear-password-mapper={password-index=1},attribute-
mapping=[{index=2,to=groups}]}])

NOTE

The above example shows how to obtain passwords and roles from a single
principal-query. You can also create additional principal-query with attribute-
mapping attributes if you require multiple queries to obtain roles or additional
authentication or authorization information.

For a list of supported password mappers, see Password Mappers.

4. Configure a security-domain:

/subsystem=elytron/security-domain=exampleDbSD:add(realms=
[{realm=exampleDbRealm,role-decoder=groups-to-roles}],default-
realm=exampleDbRealm,permission-mapper=default-permission-mapper)

5. Configure an application-security-domain in the undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(security-
domain=exampleDbSD)

NOTE

An application-security-domain in the undertow subsystem can be configured
using the management console by navigating to Configuration → Subsystems
→ Web (Undertow) → Application Security Domain.

6. Configure your application’s web.xml and jboss-web.xml:
Your application’s web.xml and jboss-web.xml must be updated to use the application-
security-domain you configured in JBoss EAP. An example of this is available in Configure Web
Applications to Use Elytron or Legacy Security for Authentication.

2.4. CONFIGURE AUTHENTICATION WITH AN LDAP-BASED IDENTITY
STORE

1. Determine your LDAP format for usernames, passwords, and roles:
To set up authentication using an LDAP server for an identity store, you need to determine how
your usernames, passwords, and roles are stored. In this example, we are using the following
structure:

dn: dc=wildfly,dc=org
dc: wildfly
objectClass: top
objectClass: domain

dn: ou=Users,dc=wildfly,dc=org

CHAPTER 2. ELYTRON SUBSYSTEM

9

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_identity_management/#password-mappers

objectClass: organizationalUnit
objectClass: top
ou: Users

dn: uid=jsmith,ou=Users,dc=wildfly,dc=org
objectClass: top
objectClass: person
objectClass: inetOrgPerson
cn: John Smith
sn: smith
uid: jsmith
userPassword: password123

dn: ou=Roles,dc=wildfly,dc=org
objectclass: top
objectclass: organizationalUnit
ou: Roles

dn: cn=Admin,ou=Roles,dc=wildfly,dc=org
objectClass: top
objectClass: groupOfNames
cn: Admin
member: uid=jsmith,ou=Users,dc=wildfly,dc=org

2. Configure a dir-context:
To connect to the LDAP server from JBoss EAP, you need to configure a dir-context that
provides the URL as well as the principal used to connect to the server.

/subsystem=elytron/dir-
context=exampleDC:add(url="ldap://127.0.0.1:10389",principal="uid=admin,ou=system",credent
ial-reference={clear-text="secret"})

NOTE

It is not possible to use a JMX ObjectName to decrypt the LDAP credentials.
Instead, credentials can be secured by using a Credential Store as discussed in
How to Configure Server Security for JBoss EAP.

3. Configure an ldap-realm in JBoss EAP:

/subsystem=elytron/ldap-realm=exampleLR:add(dir-context=exampleDC,identity-mapping=
{search-base-dn="ou=Users,dc=wildfly,dc=org",rdn-identifier="uid",user-password-mapper=
{from="userPassword"},attribute-mapping=[{filter-base-
dn="ou=Roles,dc=wildfly,dc=org",filter="(&(objectClass=groupOfNames)(member=
{0}))",from="cn",to="Roles"}]})

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

10

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#credential_store

WARNING

If any referenced LDAP servers contain a loop in referrals, it can result in a
java.lang.OutOfMemoryError error on the JBoss EAP server.

4. Add a simple-role-decoder:

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

5. Configure a security-domain:

/subsystem=elytron/security-domain=exampleLdapSD:add(realms=[{realm=exampleLR,role-
decoder=from-roles-attribute}],default-realm=exampleLR,permission-mapper=default-
permission-mapper)

6. Configure an application-security-domain in the undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(security-
domain=exampleLdapSD)

NOTE

An application-security-domain in the undertow subsystem can be configured
using the management console by navigating to Configuration → Subsystems
→ Web (Undertow) → Application Security Domain.

7. Configure your application’s web.xml and jboss-web.xml:
Your application’s web.xml and jboss-web.xml must be updated to use the application-
security-domain you configured in JBoss EAP. An example of this is available in Configure Web
Applications to Use Elytron or Legacy Security for Authentication.

IMPORTANT

In cases where the elytron subsystem uses an LDAP server to perform authentication,
JBoss EAP will return a 500, or internal server error, error code if that LDAP server is
unreachable. This behavior differs from previous versions of JBoss EAP using the legacy
security subsystem, which returned a 401, or unauthorized, error code under the same
conditions.

2.5. CONFIGURE AUTHENTICATION WITH CERTIFICATES

IMPORTANT

Before you can set up certificate-based authentication, you must have two-way SSL
configured. More details on configuring two-way SSL can be found in the Enable Two-
way SSL/TLS for Applications using the Elytron Subsystem section of the How to
Configure Server Security guide.

CHAPTER 2. ELYTRON SUBSYSTEM

11

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#elytron_two-way_ssl_apps

1. Configure a key-store-realm.

/subsystem=elytron/key-store-realm=ksRealm:add(key-store=twoWayTS)

You must configure this realm with a truststore that contains the client’s certificate. The
authentication process uses the same certificate presented by the client during the two-way
SSL handshake.

2. Create a decoder.
You need to create a x500-attribute-principal-decoder to decode the principal you get from
your certificate. The below example will decode the principal based on the first CN value.

/subsystem=elytron/x500-attribute-principal-
decoder=CNDecoder:add(oid="2.5.4.3",maximum-segments=1)

For example, if the full DN was CN=client,CN=client-
certificate,DC=example,DC=jboss,DC=org, CNDecoder would decode the principal as client.
This decoded principal is used as the alias value to lookup a certificate in the truststore
configured in ksRealm.

IMPORTANT

The decoded principal MUST be the alias value you set in your server’s truststore
for the client’s certificate.

Optionally, you can configure an evidence decoder using a subject alternative name
extension to use a subject alternative name as the principal. For more information, see
Configuring Evidence Decoder for X.509 Certificate with Subject Alternative Name
Extension in the How to Configure Server Security guide.

3. Add a constant-role-mapper for assigning roles.
This is example uses a constant-role-mapper to assign roles to a principal from ksRealm, but
you can also use other approaches.

/subsystem=elytron/constant-role-mapper=constantClientCertRole:add(roles=[Admin,Guest])

4. Configure a security-domain.

/subsystem=elytron/security-domain=exampleCertSD:add(realms=[{realm=ksRealm}],default-
realm=ksRealm,permission-mapper=default-permission-mapper,principal-
decoder=CNDecoder,role-mapper=constantClientCertRole)

5. Configure an application-security-domain in the undertow subsystem.

/subsystem=undertow/application-security-domain=exampleApplicationDomain:add(security-
domain=exampleCertSD)

NOTE

An application-security-domain in the undertow subsystem can be configured
using the management console by navigating to Configuration → Subsystems
→ Web (Undertow) → Application Security Domain.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

12

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#configuring-evidence-decoder-for-x-509-certificate-with-subject-alternative-name-extension

6. Update server-ssl-context.

/subsystem=elytron/server-ssl-context=twoWaySSC:write-attribute(name=security-
domain,value=exampleCertSD)
/subsystem=elytron/server-ssl-context=twoWaySSC:write-attribute(name=authentication-
optional, value=true)
reload

7. Configure your application’s web.xml and jboss-web.xml.
Your application’s web.xml and jboss-web.xml must be updated to use the application-
security-domain you configured in JBoss EAP. An example of this is available in Configure Web
Applications to Use Elytron or Legacy Security for Authentication.

In addition, you need to update your web.xml to use CLIENT-CERT as its authentication
method.

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>exampleApplicationDomain</realm-name>
</login-config>

2.6. CONFIGURE AUTHENTICATION AND AUTHORIZATION USING
MULTIPLE IDENTITY STORES

If you store attributes of an identity across different identity stores, then use an aggregate-realm to
load the identity attributes into a single security realm for authentication and authorization.

2.6.1. Aggregate Realm in Elytron

With an aggregate-realm, you can use one security realm for authentication and another security realm,
or an aggregation of multiple security realms, for authorization in Elytron. For example, you can
configure an aggregate realm to use a properties realm for authentication and a JDBC realm for
authorization.

In an aggregate realm configured to aggregate multiple authorization realms, an identity is created as
follows:

Attribute values from each security realm configured for authorization are loaded.

If an attribute is defined in more than one authorization realm, the value of the first occurrence
of the attribute is used.

The following example illustrates how an identity is created when multiple authorization realms contain
definitions for the same identity attribute.

Example

Aggregate realm configuration:

authentication-realm=properties-realm,
authorization-realms=[jdbc-realm,ldap-realm]

Attribute values obtained from the JDBC realm:

CHAPTER 2. ELYTRON SUBSYSTEM

13

e-mail: user@example.com
groups: Supervisor, User

Attribute values obtained from the ldap realm:

e-mail: administrator@example.com
phone: 0000 0000 0000

Resulting identity obtained from the aggregate realm:

e-mail: user@example.com
groups: Supervisor, User
phone: 0000 0000 0000

In the example, the attribute e-mail is defined in both the authorization realms. The value defined in
JDBC realm gets used for the attribute e-mail in the resulting aggregate realm because the aggregate
realm was configured to aggregate the authorization realms as: authorization-realms=[jdbc-
realm,ldap-realm].

2.6.2. Configuring Authentication and Authorization Using an Aggregate Realm

To configure authentication and authorization using an aggregate realm, create an aggregate realm, and
configure a security domain and an application security domain to use the aggregate realm.

Prerequisites

The security realms to be aggregated are configured.
For information about configuring security realms, see Elytron Subsystem in the How to
Configure Identity Management guide.

A role decoder to be used in the security domain is configured.
For information about role decoders, see Create an Elytron Role Decoder in the How to
Configure Server Security guide.

Procedure

1. Create an aggregate realm:

To create an aggregate realm with one authorization realm:

/subsystem=elytron/aggregate-realm=exampleAggregateRealm:add(authentication-
realm=__SECURITY_REALM_FOR_AUTHENTICATION__, authorization-
realm=__SECURITY_REALM_FOR_AUTHORIZATION__)

To create an aggregate realm with multiple authorization realms:

/subsystem=elytron/aggregate-realm=exampleAggregateRealm:add(authentication-
realm=__SECURITY_REALM_FOR_AUTHENTICATION__, authorization-realms=
[__SECURITY_REALM_FOR_AUTHORIZATION_1__,__SECURITY_REALM_FOR_AU
THORIZATION_2__,...,__SECURITY_REALM_FOR_AUTHORIZATION_N__])

2. Configure a security-domain:

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

14

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_identity_management/#elytron_secure_apps
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#create-an-elytron-role-decoder

/subsystem=elytron/security-domain=exampleAggregateRealmSD:add(realms=
[{realm=exampleAggregateRealm,role-decoder=__ROLE-DECODER__}],default-
realm=exampleAggregateRealm,permission-mapper=default-permission-mapper)

3. Configure an application-security-domain in the undertow subsystem:

/subsystem=undertow/application-security-
domain=exampleAggregareRealmApplicationDomain:add(security-
domain=exampleAggregateRealmSD)

4. Configure your application’s web.xml and jboss-web.xml:
Your application’s web.xml and jboss-web.xml must be updated to use the application-
security-domain you configured in JBoss EAP. An example of this is available in Configure Web
Applications to Use Elytron or Legacy Security for Authentication.

2.6.3. Example Aggregate Realms

Example aggregate realm with a single authorizarion realm

In this example, a properties-realm is used for authentication and a jdbc-realm is used for authorization.

You must preconfigure the following realms:

properties-realm named examplPropertiesRealm

jdbc-realm named exampleJdbcRealm

Issuing the following command creates an aggregate realm:

/subsystem=elytron/aggregate-realm:exampleSimpleAggregateRealm:add(authentication-
realm=examplPropertiesRealm,authorization-realm=exampleJdbcRealm)

Example aggregate realm with two authorization realms

In this example, properties-realm is used for authentication and an aggregation of ldap-realm and jdbc-
realm is used for authorization.

You must preconfigure the following realms:

properties-realm named examplPropertiesRealm

jdbc-realm named exampleJdbcRealm

ldap-realm named exampleLdapRealm

Issuing the following command creates an aggregate realm:

/subsystem=elytron/aggregate-realm:exampleSimpleAggregateRealm:add(authentication-
realm=examplPropertiesRealm,authorization-realms=[exampleJdbcRealm,exampleLdapRealm])

2.7. OVERRIDE AN APPLICATION’S AUTHENTICATION
CONFIGURATION

You can override the authentication configuration of an application with one configured in JBoss EAP.

CHAPTER 2. ELYTRON SUBSYSTEM

15

You can override the authentication configuration of an application with one configured in JBoss EAP.
To do this, use the override-deployment-configuration property in the application-security-domain
section of the undertow subsystem:

/subsystem=undertow/application-security-domain=exampleApplicationDomain:write-
attribute(name=override-deployment-config,value=true)

NOTE

An application-security-domain in the undertow subsystem can be configured using
the management console by navigating to Configuration → Subsystems → Web
(Undertow) → Application Security Domain.

For example, an application is configured to use FORM authentication with the
exampleApplicationDomain in its jboss-web.xml.

Example jboss-web.xml

<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>exampleApplicationDomain</realm-name>
</login-config>

By enabling override-deployment-configuration, you can create a new http-authentication-factory
that specifies a different authentication mechanism, such as BASIC or DIGEST.

Example http-authentication-factory

/subsystem=elytron/http-authentication-factory=exampleHttpAuth:read-resource()
{
 "outcome" => "success",
 "result" => {
 "http-server-mechanism-factory" => "global",
 "mechanism-configurations" => [{
 "mechanism-name" => "BASIC",
 "mechanism-realm-configurations" => [{"realm-name" => "exampleApplicationDomain"}]
 }],
 "security-domain" => "exampleSD"
 }
}

This will override the authentication mechanism defined in the application’s jboss-web.xml and attempt
to authenticate a user using BASIC instead of FORM.

2.8. SET UP CACHING FOR SECURITY REALMS

Elytron provides a caching-realm which allows you to cache the results of a credential lookup from a
security realm. For example, you could use this to configure a cache for credentials coming from LDAP
or a database to increase performance for frequently queried users.

The caching-realm caches the PasswordCredential credential using a LRU or Least Recently Used
caching strategy, in which the least accessed entries are discarded when maximum number of entries is
reached.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

16

You can use a caching-realm with the following security realms:

filesystem-realm

jdbc-realm

ldap-realm

a custom security realm

IMPORTANT

filesystem-realm is provided as Technology Preview only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs), might not
be functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

If you make changes to your credential source outside of JBoss EAP, those changes are only
propagated to a JBoss EAP caching realm if the underlying security realm supports listening. In
particular, an ldap-realm supports listening, however filtered attributes, such as roles, inside the ldap-
realm do not.

To ensure that your caching realm has a correct cache of user data, it is recommended that you modify
your user attributes through the caching realm rather than at your credential source. Alternatively, you
can clear the cache.

IMPORTANT

Making user changes through a caching realm is provided as Technology Preview only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

To configure and use a caching-realm:

1. Create an existing security realm.
You need an existing security realm to use with a caching-realm. For example, you could create
a filesystem-realm similar to the steps in Configure Authentication with a Filesystem-Based
Identity Store.

Example filesystem-realm

/subsystem=elytron/filesystem-realm=exampleFsRealm:add(path=fs-realm-users, relative-
to=jboss.server.config.dir)

/subsystem=elytron/filesystem-realm=exampleFsRealm:add-identity(identity=user1)

CHAPTER 2. ELYTRON SUBSYSTEM

17

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview

/subsystem=elytron/filesystem-realm=exampleFsRealm:set-password(identity=user1, clear=
{password="password123"})

/subsystem=elytron/filesystem-realm=exampleFsRealm:add-identity-
attribute(identity=user1,name=Roles,value=["Admin","Guest"])

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

2. Create a caching-realm.
Once you have an existing realm you want to cache, create a caching-realm that references it.

Example caching-realm that Uses exampleFsRealm

/subsystem=elytron/caching-realm=exampleCacheRealm:add(realm=exampleFsRealm)

3. Use the caching-realm.
After you create the caching-realm, you can then use it in your security configuration just as you
would any other security realm. For example, you could use it in the same place you would use a
filesystem-realm in Configure Authentication with a Filesystem-Based Identity Store .

Example Configuration Using the caching-realm

/subsystem=elytron/security-domain=exampleFsSD:add(realms=
[{realm=exampleCacheRealm, role-decoder=from-roles-attribute}], default-
realm=exampleCacheRealm, permission-mapper=default-permission-mapper)

/subsystem=elytron/http-authentication-factory=example-fs-http-auth:add(http-server-
mechanism-factory=global, security-domain=exampleFsSD, mechanism-configurations=
[{mechanism-name=BASIC, mechanism-realm-configurations=[{realm-
name=exampleApplicationDomain}]}])

You can control the cache size as well as item expiration by using maximum-entries and maximum-age
attributes of the caching-realm. For more details on those attributes, see the Elytron Subsystem
Components Reference section in How to Configure Server Security .

Clear a caching-realm Cache

You can clear an existing cache by using the clear-cache command. Clearing a cache forces it to
repopulate using the latest data from the security realm.

/subsystem=elytron/caching-realm=exampleCacheRealm:clear-cache

2.9. CONFIGURE APPLICATIONS TO USE CONTAINER-MANAGED
SINGLE SIGN-ON

You can configure JBoss EAP to use container-managed single sign-on for applications using the
Elytron FORM authentication method. This allows users to authenticate once and access other
resources secured by the FORM authentication method without having to reauthenticate.

The related single sign-on session is invalidated when:

there are no active local sessions left.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

18

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#elytron_subsystem_components_reference

logging out from an application.

IMPORTANT

You can use single sign-on across applications deployed on different JBoss EAP
instances as long as these instances are in a cluster.

1. Create a key-store.
A key-store is necessary in order to configure a secure communication channel between the
different servers participating in the SSO. This channel is used to exchange messages about
events that occur when single sign-on sessions are created or destroyed, during log in and log
out respectively.

To create a key-store in the elytron subsystem, first create a Java KeyStore as follows:

keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore
keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

Once the keystore.jks file is created, execute the following management CLI command to
create a key-store definition in Elytron:

/subsystem=elytron/key-store=example-keystore:add(path=keystore.jks, relative-
to=jboss.server.config.dir, credential-reference={clear-text=secret}, type=JKS)

2. Add the security realm.
Create a FileSystem realm, an identity store where users are stored in the local file system,
using the following management CLI command:

/subsystem=elytron/filesystem-realm=example-realm:add(path=/tmp/example-realm)

3. Use the following management CLI command to create a security-domain:

/subsystem=elytron/security-domain=example-domain:add(default-realm=example-
realm,permission-mapper=default-permission-mapper,realms=[{realm=example-realm,role-
decoder=groups-to-roles}]

NOTE

Applications using SSO should use HTTP FORM authentication as they usually
need to provide a login page for the users.

4. Create an application security domain in the undertow subsystem.

NOTE

If you already have a application-security-domain defined in the undertow
subsystem and just want to use it to enable single sign-on to your applications,
you can skip this step.

/subsystem=undertow/application-security-domain=other:add(security-domain=example-
domain)

CHAPTER 2. ELYTRON SUBSYSTEM

19

NOTE

By default, if your application does not define any specific security-domain in the
jboss-web.xml file, the application server will choose one with a name other.

5. Update the undertow subsystem to enable single sign-on and use the keystore.
Single sign-on is enabled to a specific application-security-domain definition in the undertow
subsystem. It is important that the servers you are using to deploy the applications are using the
same configuration.

To enable single sign-on, just change an existing application-security-domain in the undertow
subsystem as follows:

/subsystem=undertow/application-security-domain=other/setting=single-sign-on:add(key-
store=example-keystore, key-alias=localhost, domain=localhost, credential-reference={clear-
text=secret})

NOTE

An application-security-domain in the undertow subsystem can be configured
using the management console by navigating to Configuration → Subsystems
→ Web (Undertow) → Application Security Domain.

For more information on the SSO attributes and their definitions, see Reference for Single
Sign-on Attributes.

6. Configure your application’s web.xml and jboss-web.xml files.
Your application’s web.xml and jboss-web.xml must be updated to use the application-
security-domain you configured in JBoss EAP. An example of this is available in Configure Web
Applications to Use Elytron or Legacy Security for Authentication.

JBoss EAP provides out-of-the-box support for clustered and non-clustered SSO using the undertow
and infinispan subsystems.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

20

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/security_architecture/#legacy_sso

CHAPTER 3. LEGACY SECURITY SUBSYSTEM

3.1. CONFIGURE A SECURITY DOMAIN TO USE LDAP

Security domains can be configured to use an LDAP server for authentication and authorization by using
a login module. The basics of security domains and login modules are covered in the JBoss EAP Security
Architecture guide. LdapExtended is the preferred login module for integrating with LDAP servers
(including Active Directory), but there are several other LDAP login modules that can be used as well.
Specifically, the Ldap, AdvancedLdap, and AdvancedAdLdap login modules can also be used to
configure a security domain to use LDAP. This section uses the LdapExtended login module to illustrate
how to create a security domain that uses LDAP for authentication and authorization, but the other
LDAP login modules can be used as well. For more details on the other LDAP login modules, see the
JBoss EAP Login Module Reference.

IMPORTANT

In cases where the legacy security subsystem uses an LDAP server to perform
authentication, JBoss EAP will return a 500, or internal server error, error code if that
LDAP server is unreachable. This behavior differs from previous versions of JBoss EAP
which returned a 401, or unauthorized, error code under the same conditions.

3.1.1. LdapExtended Login Module

LdapExtended (org.jboss.security.auth.spi.LdapExtLoginModule) is a login module implementation
that uses searches to locate the bind user and associated roles on an LDAP server. The roles query
recursively follows DNs to navigate a hierarchical role structure. For the vast majority of cases when
using LDAP with security domains, the LdapExtended login module should be used, especially with
LDAP implementations that are not Active Directory. For a full list of configuration options for the
LdapExtended login module, see the LdapExtended login module section in the JBoss EAP Login
Module Reference.

The authentication happens as follows:

1. An initial bind to the LDAP server is done using the bindDN and bindCredential options. The
bindDN is a LDAP user with the ability to search both the baseCtxDN and rolesCtxDN trees
for the user and roles. The user DN to authenticate against is queried using the filter specified
by the baseFilter attribute.

2. The resulting user DN is authenticated by binding to the LDAP server using the user DN as the
InitialLdapContext environment Context.SECURITY_PRINCIPAL. The
Context.SECURITY_CREDENTIALS property is set to the String password obtained by the
callback handler.

3.1.1.1. Configure a Security Domain to use the LdapExtended Login Module

Example Data (LDIF format)

dn: uid=jduke,ou=Users,dc=jboss,dc=org
objectClass: inetOrgPerson
objectClass: person
objectClass: top
cn: Java Duke
sn: duke
uid: jduke

CHAPTER 3. LEGACY SECURITY SUBSYSTEM

21

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/security_architecture/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/#ldapextended_login_module

userPassword: theduke
=============================
dn: uid=hnelson,ou=Users,dc=jboss,dc=org
objectClass: inetOrgPerson
objectClass: person
objectClass: top
cn: Horatio Nelson
sn: Nelson
uid: hnelson
userPassword: secret
=============================
dn: ou=groups,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: groups
=============================
dn: uid=ldap,ou=Users,dc=jboss,dc=org
objectClass: inetOrgPerson
objectClass: person
objectClass: top
cn: LDAP
sn: Service
uid: ldap
userPassword: randall
=============================
dn: ou=Users,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Users
=============================
dn: dc=jboss,dc=org
objectclass: top
objectclass: domain
dc: jboss
=============================
dn: uid=GroupTwo,ou=groups,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
objectClass: uidObject
cn: GroupTwo
member: uid=jduke,ou=Users,dc=jboss,dc=org
uid: GroupTwo
=============================
dn: uid=GroupThree,ou=groups,dc=jboss,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: GroupThree
uid: GroupThree
uniqueMember: uid=GroupOne,ou=groups,dc=jboss,dc=org
=============================
dn: uid=HTTP,ou=Users,dc=jboss,dc=org
objectClass: inetOrgPerson
objectClass: person
objectClass: top
cn: HTTP

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

22

sn: Service
uid: HTTP
userPassword: httppwd
=============================
dn: uid=GroupOne,ou=groups,dc=jboss,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: GroupOne
uid: GroupOne
uniqueMember: uid=jduke,ou=Users,dc=jboss,dc=org
uniqueMember: uid=hnelson,ou=Users,dc=jboss,dc=org

CLI Commands for Adding the LdapExtended Login Module

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide .

3.1.1.1.1. Configure a Security Domain to use the LdapExtended Login Module for Active Directory

For Microsoft Active Directory, the LdapExtended login module can be used.

The example below represents the configuration for a default Active Directory configuration. Some
Active Directory configurations may require searching against the Global Catalog on port 3268 instead
of the usual port 389. This is most likely when the Active Directory forest includes multiple domains.

Example Configuration for the LdapExtended Login Module for a Default AD Configuration

/subsystem=security/security-domain=AD_Default:add(cache-type=default)

/subsystem=security/security-domain=AD_Default/authentication=classic:add

/subsystem=security/security-domain=AD_Default/authentication=classic/login-
module=LdapExtended:add(code=LdapExtended,flag=required,module-options=[
("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"),("bindDN"=>"JBOSSsearchuser"),

/subsystem=security/security-domain=testLdapExtendedExample:add(cache-type=default)

/subsystem=security/security-domain=testLdapExtendedExample/authentication=classic:add

/subsystem=security/security-domain=testLdapExtendedExample/authentication=classic/login-
module=LdapExtended:add(code=LdapExtended, flag=required, module-options=[
("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"),
("java.naming.provider.url"=>"ldap://localhost:10389"),
("java.naming.security.authentication"=>"simple"),
("bindDN"=>"uid=ldap,ou=Users,dc=jboss,dc=org"), ("bindCredential"=>"randall"),
("baseCtxDN"=>"ou=Users,dc=jboss,dc=org"), ("baseFilter"=>"(uid={0})"),
("rolesCtxDN"=>"ou=groups,dc=jboss,dc=org"), ("roleFilter"=>"(uniqueMember={1})"),
("roleAttributeID"=>"uid")])

reload

CHAPTER 3. LEGACY SECURITY SUBSYSTEM

23

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/management_cli_guide/

("bindCredential"=>"password"), ("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), ("baseFilter"=>"
(sAMAccountName={0})"), ("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), ("roleFilter"=>"
(sAMAccountName={0})"), ("roleAttributeID"=>"memberOf"), ("roleAttributeIsDN"=>"true"),
("roleNameAttributeID"=>"cn"), ("searchScope"=>"ONELEVEL_SCOPE"),
("allowEmptyPasswords"=>"false")])

reload

The example below implements a recursive role search within Active Directory. The key difference
between this example and the default Active Directory example is that the role search has been
replaced to search the member attribute using the DN of the user. The login module then uses the DN
of the role to find groups of which the group is a member.

Example Configuration for the LdapExtended Login Module for a Default AD Configuration
with Recursive Search

/subsystem=security/security-domain=AD_Recursive:add(cache-type=default)

/subsystem=security/security-domain=AD_Recursive/authentication=classic:add

/subsystem=security/security-domain=AD_Recursive/authentication=classic/login-
module=LdapExtended:add(code=LdapExtended,flag=required,module-options=
[("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), ("java.naming.referral"=>"follow"),
("bindDN"=>"JBOSSsearchuser"), ("bindCredential"=>"password"),
("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), ("baseFilter"=>"(sAMAccountName={0})"),
("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), ("roleFilter"=>"(member={1})"),
("roleAttributeID"=>"cn"), ("roleAttributeIsDN"=>"false"), ("roleRecursion"=>"2"),
("searchScope"=>"ONELEVEL_SCOPE"), ("allowEmptyPasswords"=>"false")])

reload

3.2. CONFIGURE A SECURITY DOMAIN TO USE A DATABASE

Similar to LDAP, security domains can be configured to use a database for authentication and
authorization by using a login module.

3.2.1. Database Login Module

The Database login module is a Java Database Connectivity-based (JDBC) login module that supports
authentication and role mapping. This login module is used if username, password, and role information
are stored in a relational database.

This works by providing a reference to logical tables containing principals and roles in the expected
format. For example:

The Principals table associates the user PrincipalID with the valid password, and the Roles table
associates the user PrincipalID with its role sets. The roles used for user permissions must be contained
in rows with a RoleGroup column value of Roles.

The tables are logical in that users can specify the SQL query that the login module uses. The only
requirement is that the java.sql.ResultSet has the same logical structure as the Principals and Roles

Table Principals(PrincipalID text, Password text) Table Roles(PrincipalID text, Role text, RoleGroup
text)

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

24

tables described previously. The actual names of the tables and columns are not relevant as the results
are accessed based on the column index.

To clarify this concept, consider a database with two tables, Principals and Roles, as already declared.
The following statements populate the tables with the following data:

PrincipalID java with a password of echoman in the Principals table

PrincipalID java with a role named Echo in the RolesRoleGroup in the Roles table

PrincipalID java with a role named caller-java in the CallerPrincipalRoleGroup in the Roles
table

For a full list of configuration options for the Database login module, see the Database login module
section in the JBoss EAP Login Module Reference.

3.2.1.1. Configure a Security Domain to use the Database Login Module

Before configuring a security domain to use the Database login module, a datasource must be properly
configured.

For more information on creating and configuring datasources in JBoss EAP, see the Datasource
Management section of the JBoss EAP Configuration Guide.

Once a datasource has been properly configured, a security domain can be configured to use the
Database login module. The below example assumes a datasource named MyDatabaseDS has been
created and properly configured with a database that is constructed with the following:

CLI Commands for Adding the Database Login Module

3.3. CONFIGURE A SECURITY DOMAIN TO USE A PROPERTIES FILE

Security domains can also be configured to use a filesystem as an identity store for authentication and
authorization by using a login module.

3.3.1. UsersRoles Login Module

UsersRoles is a simple login module that supports multiple users and user roles loaded from Java
properties files. The primary purpose of this login module is to easily test the security settings of
multiple users and roles using properties files deployed with the application. The default username-to-

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), role VARCHAR(32))

/subsystem=security/security-domain=testDB:add

/subsystem=security/security-domain=testDB/authentication=classic:add

/subsystem=security/security-domain=testDB/authentication=classic/login-
module=Database:add(code=Database,flag=required,module-options=
[("dsJndiName"=>"java:/MyDatabaseDS"),("principalsQuery"=>"select passwd from Users where
username=?"),("rolesQuery"=>"select role, 'Roles' from UserRoles where username=?")])

reload

CHAPTER 3. LEGACY SECURITY SUBSYSTEM

25

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/#database_login_module
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/configuration_guide/#datasource_management

password mapping filename is users.properties and the default username-to-roles mapping filename is
roles.properties.

NOTE

This login module supports password stacking, password hashing, and unauthenticated
identity.

The properties files are loaded during initialization using the initialize method thread context class
loader. This means that these files can be placed on the classpath of the Java EE deployment (for
example, into the WEB-INF/classes folder in the WAR archive), or into any directory on the server
classpath.

For a full list of configuration options for the UsersRoles login module, see the UsersRoles login module
section in the JBoss EAP Login Module Reference.

3.3.1.1. Configure a Security Domain to use the UsersRoles Login Module

The below example assumes the following files have been created and are available on the application’s
classpath:

sampleapp-users.properties

sampleapp-roles.properties

CLI Commands for Adding the UserRoles Login Module

3.4. CONFIGURE A SECURITY DOMAIN TO USE CERTIFICATE-BASED
AUTHENTICATION

JBoss EAP provides you with the ability to use certificate-based authentication with security domains to
secure web applications or EJBs.

IMPORTANT

/subsystem=security/security-domain=sampleapp:add

/subsystem=security/security-domain=sampleapp/authentication=classic:add

/subsystem=security/security-domain=sampleapp/authentication=classic/login-
module=UsersRoles:add(code=UsersRoles,flag=required,module-options=
[("usersProperties"=>"sampleapp-users.properties"),("rolesProperties"=>"sampleapp-
roles.properties")])

reload

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

26

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/#userroles_login_module

IMPORTANT

Before you can configure certificate-based authentication, you need to have Two-Way
SSL/TLS for Applications enabled and configured, which requires X509 certificates
configured for both the JBoss EAP instance as well as any clients accessing the web
application or EJB secured by the security domain.

Once the certificates, truststores, and two-way SSL/TLS are configured, you then can
proceed with configuring a security domain that uses certificate-based authentication,
configuring an application to use that security domain, and configuring your client to use
the client certificate.

3.4.1. Creating a Security Domain with Certificate-Based Authentication

To create a security domain that uses certificate-based authentication, you need to specify a truststore
as well as a Certificate login module or one of its subclasses.

The truststore must contain any trusted client certificates used for authentication, or it must contain the
certificate of the certificate authority used to sign the client’s certificate. The login module is used to
authenticate the certificate presented by the client using the configured truststore. The security domain
as a whole also must provide a way to map a role to the principal once it is authenticated. The Certificate
login module itself will not map any role information to the principal, but it may be combined with
another login module to do so. Alternatively, two subclasses of the Certificate login module,
CertificateRoles and DatabaseCertificate, do provide a way to map roles to a principal after it is
authenticated. The below example shows how to configure a security domain with certificate-based
authentication using the CertificateRoles login module.

WARNING

When performing authentication, the security domain will use the same certificate
presented by the client when establishing two-way SSL/TLS. As a result, the client
must use the same certificate for BOTH two-way SSL/TLS and the certificate-
based authentication with the application or EJB.

Example Security Domain with Certificate-Based Authentication

/subsystem=security/security-domain=cert-roles-domain:add

/subsystem=security/security-domain=cert-roles-domain/jsse=classic:add(truststore=
{password=secret, url="/path/to/server.truststore.jks"}, keystore={password=secret,
url="/path/to/server.keystore.jks"}, client-auth=true)

/subsystem=security/security-domain=cert-roles-domain/authentication=classic:add

/subsystem=security/security-domain=cert-roles-domain/authentication=classic/login-
module=CertificateRoles:add(code=CertificateRoles, flag=required, module-options=[
securityDomain="cert-roles-domain", rolesProperties="${jboss.server.config.dir}/cert-
roles.properties",password-stacking="useFirstPass",
verifier="org.jboss.security.auth.certs.AnyCertVerifier"])

NOTE

CHAPTER 3. LEGACY SECURITY SUBSYSTEM

27

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#application_two-way_ssl
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/#certificate_based_login_modules
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/#certificateroles_login_module
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/#databasecertificate_login_module

NOTE

The above example uses the CertificateRoles login module to handle authentication and
map roles to authenticated principals. It does so by referencing a properties file using the
rolesProperties attribute. This file lists usernames and roles using the following format:

user1=roleA
user2=roleB,roleC
user3=

Since usernames are presented as the DN from the provided certificate, for example
CN=valid-client, OU=JBoss, O=Red Hat, L=Raleigh, ST=NC, C=US, you have to
escape special characters such as = and spaces when using a properties file:

Example Roles Properties File

CN\=valid-client,\ OU\=JBoss,\ O\=Red\ Hat,\ L\=Raleigh,\ ST\=NC,\ C\=US=Admin

To view, the DN of certificate:

$ keytool -printcert -file valid-client.crt
Owner: CN=valid-client, OU=JBoss, O=Red Hat, L=Raleigh, ST=NC, C=US
...

3.4.2. Configure an Application to use a Security Domain with Certificate-Based
Authentication

Similar to configuring an application to use a security domain with other forms of authentication, you
need to configure both the jboss-web.xml and web.xml files appropriately.

For jboss-web.xml, add a reference to the security domain you configured for certificate-based
authentication.

Example jboss-web.xml

For web.xml, set the <auth-method> attribute in <login-config> to CLIENT-CERT. You also need
define <security-constraint> as well as <security-roles>.

Example web.xml

<jboss-web>
 <security-domain>cert-roles-domain</security-domain>
</jboss-web>

<web-app>
 <!-- URL for secured portion of application-->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secure</web-resource-name>
 <url-pattern>/secure/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>All</role-name>

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

28

3.4.3. Configure the Client

For a client to authenticate against an application secured with certificate-based authentication, the
client needs access to a client certificate that is contained in the JBoss EAP instance’s truststore. For
example, if accessing the application using a browser, the client will need to import the trusted certificate
into the browser’s truststore.

3.5. CONFIGURE CACHING FOR A SECURITY DOMAIN

You can specify a cache for a security domain to speed up authentication checks. By default, a security
domain uses a simple map as the cache. This default cache is a Least Recently Used (LRU) cache with a
maximum of 1000 entries. Alternatively, you can set a security domain to use an Infinispan cache, or
disable caching altogether.

3.5.1. Setting the Cache Type for a Security Domain

Prerequisites

If you are configuring a security domain to use an Infinispan cache, you must first create an
Infinispan cache container named security that contains a default cache that the security
domain will use.

IMPORTANT

You can only define one Infinispan cache configuration for use with security
domains. Although you can have multiple security domains that use an Infinispan
cache, each security domain creates its own cache instance from the one
Infinispan cache configuration.

See the JBoss EAP Configuration Guide for more information on creating a cache container.

You can use either the management console or management CLI to set a security domain’s cache type.

To use the management console:

1. Navigate to Configuration → Subsystems → Security (Legacy).

2. Select the security domain from the list and click View.

 </auth-constraint>
 </security-constraint>

 <!-- Security roles referenced by this web application -->
 <security-role>
 <description>The role that is required to log in to the application</description>
 <role-name>All</role-name>
 </security-role>

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>cert-roles-domain</realm-name>
 </login-config>
</web-app>

CHAPTER 3. LEGACY SECURITY SUBSYSTEM

29

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/configuration_guide/#configure_cache_containers

3. Click Edit, and for the Cache Type field, select either default or infinspan.

4. Click Save.

To use the management CLI, use the following command:

/subsystem=security/security-domain=SECURITY_DOMAIN_NAME:write-
attribute(name=cache-type,value=CACHE_TYPE)

For example, to set the other security domain to use an Infinispan cache:

/subsystem=security/security-domain=other:write-attribute(name=cache-
type,value=infinispan)

3.5.2. Listing and Flushing Principals

Listing Principals in the Cache

You can see the principals that are stored in a security domain’s cache using the following management
CLI command:

/subsystem=security/security-domain=SECURITY_DOMAIN_NAME:list-cached-principals

Flushing Principals from the Cache

If required, you can flush principals from a security domain’s cache.

To flush a specific principal, use the following management CLI command:

/subsystem=security/security-domain=SECURITY_DOMAIN_NAME:flush-
cache(principal=USERNAME)

To flush all principals from the cache, use the following management CLI command:

/subsystem=security/security-domain=SECURITY_DOMAIN_NAME:flush-cache

3.5.3. Disabling Caching for a Security Domain

You can use either the management console or management CLI to disable caching for a security
domain.

To use the management console:

1. Navigate to Configuration → Subsystems → Security (Legacy).

2. Select the security domain from the list and click View.

3. Click Edit and select the blank value for the Cache Type.

4. Click Save.

To use the management CLI, use the following command:

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

30

/subsystem=security/security-domain=SECURITY_DOMAIN_NAME:undefine-
attribute(name=cache-type)

CHAPTER 3. LEGACY SECURITY SUBSYSTEM

31

CHAPTER 4. APPLICATION CONFIGURATION

4.1. CONFIGURE WEB APPLICATIONS TO USE ELYTRON OR LEGACY
SECURITY FOR AUTHENTICATION

After you have configured the elytron or legacy security subsystem for authentication, you need to
configure your application to use it.

1. Configure your application’s web.xml.
Your application’s web.xml needs to be configured to use the appropriate authentication
method. When using the elytron subsystem, this is defined in the http-authentication-factory
you created. When using the legacy security subsystem, this depends on your login module and
the type of authentication you want to configure.

Example web.xml with BASIC Authentication

2. Configure your application to use a security domain.
You can configure your application’s jboss-web.xml to specify the security domain you want to
use for authentication. When using the elytron subsystem, this is defined when you created the
application-security-domain. When using the legacy security subsystem, this is the name of
the legacy security domain.

Example jboss-web.xml

Using jboss-web.xml allows you to configure the security domain for a single application only.
Alternatively, you can specify a default security domain for all applications using the undertow
subsystem. This allows you to omit using jboss-web.xml to configure a security domain for an
individual application.

<web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secure</web-resource-name>
 <url-pattern>/secure/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
 </security-constraint>
 <security-role>
 <description>The role that is required to log in to /secure/*</description>
 <role-name>Admin</role-name>
 </security-role>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>exampleApplicationDomain</realm-name>
 </login-config>
</web-app>

<jboss-web>
 <security-domain>exampleApplicationDomain</security-domain>
</jboss-web>

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

32

/subsystem=undertow:write-attribute(name=default-security-domain,
value="exampleApplicationDomain")

IMPORTANT

Setting default-security-domain in the undertow subsystem will apply to ALL
applications. If default-security-domain is set and an application specifies a
security domain in a jboss-web.xml file, the configuration in jboss-web.xml will
override the default-security-domain in the undertow subsystem.

NOTE

The security domain for EJBs is defined in the EJB configuration, either in the
ejb3 subsystem, the descriptor for EJBs in the jboss-ejb3.xml file, or by using
the @SecurityDomain annotation.

For more information, see EJB Application Security in the Developing EJB
Applications guide.

Silent BASIC Authentication
You can configure elytron to perform a silent BASIC authentication. When the silent authentication is
enabled, a user is not prompted to log in for accessing the web application. An alternative
authentication mechanism is used instead. If the user’s request contains an Authorization header, then
the BASIC authentication mechanism is used.

To enable the silent BASIC authentication, set the value of auth-method attribute as the following:

<auth-method>BASIC?silent=true</auth-method>

Using Elytron and Legacy Security Subsystems in Parallel
You can define authentication in both the elytron and legacy security subsystems and use them in
parallel. If you use both jboss-web.xml and default-security-domain in the undertow subsystem,
JBoss EAP will first try to match the configured security domain in the elytron subsystem. If a match is
not found, then JBoss EAP will attempt to match the security domain with one configured in the legacy
security subsystem. If the elytron and legacy security subsystem each have a security domain with the
same name, the elytron security domain is used.

NOTE

CHAPTER 4. APPLICATION CONFIGURATION

33

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/developing_ejb_applications/#ejb_application_security

NOTE

If you have a web servlet defined using one security domain and you are calling EJB from
another EAR module, which uses EJB specific security domain, one of the following might
happen:

If the WAR and the EJB are mapped to different Elytron security domains, you
need to configure the outflow or the trusted security domains so that their
identities propagate from one deployment domain to the next one. Unless this is
done, once the call reaches the EJB, the identity becomes anonymous. For more
information on how to configure security identities for authentication, see
Configuring Trusted Security Domain Outflows .

If the WAR and the EJB references different security domain names but they are
mapped to the same Elytron security domain, their identity will propagate
without requiring any additional steps.

When migrating, it is best to migrate the entire application. Migrating the EJB and WAR
separately and using both elytron and legacy security subsystems in parallel is not
suggested. For more information on how to migrate your application to use Elytron, see
Migrating to Elytron in JBoss EAP 7.1 in the JBoss EAP Migration Guide.

4.2. CONFIGURE CLIENT AUTHENTICATION WITH ELYTRON CLIENT

Clients connecting to JBoss EAP, such as EJBs, can authenticate using Elytron Client. Elytron Client is a
client-side framework that enables remote clients to authenticate using Elytron. Elytron Client has the
following components:

Authentication Configuration

The authentication configuration contains authentication information such as usernames, passwords,
allowed SASL mechanisms, as well as which security realm to use during digest authentication. The
connection information specified in the authentication configuration overrides any values that are
specified in the PROVIDER_URL of the initial context.

MatchRule

A rule used for deciding which authentication configuration to use.

Authentication Context

A set of rules and authentication configurations to use with a client for establishing a connection.

When a connection is established, the client makes use of an authentication context. This authentication
context contains rules to choose which authentication configuration to use for each outbound
connection. For example, you could have rules that use one authentication configuration when
connecting to server1 and another authentication configuration when connecting with server2. The
authentication context is comprised of a set of authentication configurations and a set of rules that
define how they are selected when establishing a connection. An authentication context can also
reference ssl-context and can be matched with rules.

To create a client that uses security information when establishing a connection:

Create one or more authentication configurations.

Create an authentication context by creating rule and authentication configuration pairs.

Create a runnable for establishing your connection.

Use your authentication context to run your runnable.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

34

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/migration_guide/#migrating_to_elytron

When you establish your connection, Elytron Client will use the set of rules provided by the
authentication context to match the correct authentication configuration to use during authentication.

You can use one of the following approaches to use security information when establishing a client
connection.

IMPORTANT

When using Elytron Client to make EJB calls, any hard-coded programmatic
authentication information, such as setting Context.SECURITY_PRINCIPAL in the
javax.naming.InitialContext, will override the Elytron Client configuration.

4.2.1. The Configuration File Approach

The configuration file approach involves creating an XML file with your authentication configuration,
authentication context, and match rules.

Example: custom-config.xml

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <authentication-rules>
 <rule use-configuration="monitor">
 <match-host name="127.0.0.1" />
 </rule>
 <rule use-configuration="administrator">
 <match-host name="localhost" />
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="monitor">
 <sasl-mechanism-selector selector="DIGEST-MD5" />
 <providers>
 <use-service-loader />
 </providers>
 <set-user-name name="monitor" />
 <credentials>
 <clear-password password="password1!" />
 </credentials>
 <set-mechanism-realm name="ManagementRealm" />
 </configuration>

 <configuration name="administrator">
 <sasl-mechanism-selector selector="DIGEST-MD5" />
 <providers>
 <use-service-loader />
 </providers>
 <set-user-name name="administrator" />
 <credentials>
 <clear-password password="password1!" />
 </credentials>
 <set-mechanism-realm name="ManagementRealm" />
 </configuration>

CHAPTER 4. APPLICATION CONFIGURATION

35

You can then reference that file in your client’s code by setting a system property when running your
client.

$ java -Dwildfly.config.url=/path/to/custom-config.xml ...

IMPORTANT

If you use the programmatic approach, it will override any provided configuration files
even if the wildfly.config.url system property is set.

When creating rules, you can look for matches on various parameters, such as hostname, port, protocol,
or user-name. A full list of options for MatchRule are available in the Javadocs. Rules are evaluated in
the order in which they are configured.

When no match settings are included in a rule, then the whole rule matches and the authentication
configuration is chosen. If more than one match setting is included in a rule, then all must match for the
authentication configuration to be chosen.

Table 4.1. Common Rules

Attribute Description

match-local-security-domain Takes a single name attribute specifying the local security
domain to match against.

match-host Takes a single name attribute specifying the hostname to
match against. For example, the host 127.0.0.1 would match on
http://127.0.0.1:9990/my/path.

match-no-user Matches against URIs with no user.

match-path Takes a single name attribute specifying the path to match
against. For example, the path /my/path/ would match on
http://127.0.0.1:9990/my/path.

match-port Takes a single name attribute specifying the port to match
against. For example, the port 9990 would match on
http://127.0.0.1:9990/my/path.

match-protocol Takes a single name attribute specifying the protocol to match
against. For example, the protocol http would match on
http://127.0.0.1:9990/my/path.

match-urn Takes a single name attribute specifying the URN to match
against.

 </authentication-configurations>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

36

http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path
http://127.0.0.1:9990/my/path

match-user Takes a single name attribute specifying the user to match
against.

Attribute Description

An example wildfly-config.xml file can be found in Example wildfly-config.xml. For more information
about how to configure the wildfly-config.xml file, see Client Configuration Using the wildfly-
config.xml File in the Development Guide for JBoss EAP.

4.2.2. The Programmatic Approach

The programmatic approach configures all Elytron Client configuration in the client’s code:

When adding configuration details to AuthenticationConfiguration and AuthenticationContext, each
method call returns a new instance of that object. For example, if you wanted separate configurations
when connecting over different hostnames, you could do the following:

//create your authentication configuration
AuthenticationConfiguration adminConfig =
 AuthenticationConfiguration.empty()
 .useProviders(() -> new Provider[] { new WildFlyElytronProvider() })
 .setSaslMechanismSelector(SaslMechanismSelector.NONE.addMechanism("DIGEST-MD5"))
 .useRealm("ManagementRealm")
 .useName("administrator")
 .usePassword("password1!");

//create your authentication context
AuthenticationContext context = AuthenticationContext.empty();
context = context.with(MatchRule.ALL.matchHost("127.0.0.1"), adminConfig);

//create your runnable for establishing a connection
Runnable runnable =
 new Runnable() {
 public void run() {
 try {
 //Establish your connection and do some work
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };

//use your authentication context to run your client
context.run(runnable);

//create your authentication configuration
AuthenticationConfiguration commonConfig =
 AuthenticationConfiguration.empty()
 .useProviders(() -> new Provider[] { new WildFlyElytronProvider() })
 .setSaslMechanismSelector(SaslMechanismSelector.NONE.addMechanism("DIGEST-MD5"))
 .useRealm("ManagementRealm");

CHAPTER 4. APPLICATION CONFIGURATION

37

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/development_guide/#client_configuration_using_the_wildfly_config_file

Table 4.2. Common Rules

Rule Description

matchLocalSecurityDomain(String name) This is the same as match-domain in the configuration file
approach.

matchNoUser() This is the same as match-no-user in the configuration file
approach.

matchPath(String pathSpec) This is the same as match-path in the configuration file
approach.

matchPort(int port) This is the same as match-port in the configuration file
approach.

matchProtocol(String protoName) This is the same as match-port in the configuration file
approach.

matchPurpose(String purpose) Create a new rule which is the same as this rule, but also matches
the given purpose name.

matchUrnName(String name) This is the same as match-urn in the configuration file
approach.

matchUser(String userSpec) This is the same as match-userinfo in the configuration file
approach.

Also, instead of starting with an empty authentication configuration, you can start with the currently
configured one by using captureCurrent().

Using captureCurrent() will capture any previously established authentication context and use it as your

AuthenticationConfiguration administrator =
 commonConfig
 .useName("administrator")
 .usePassword("password1!");

AuthenticationConfiguration monitor =
 commonConfig
 .useName("monitor")
 .usePassword("password1!");

//create your authentication context
AuthenticationContext context = AuthenticationContext.empty();
context = context.with(MatchRule.ALL.matchHost("127.0.0.1"), administrator);
context = context.with(MatchRule.ALL.matchHost("localhost"), monitor);

//create your authentication configuration
AuthenticationConfiguration commonConfig = AuthenticationConfiguration.captureCurrent();

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

38

Using captureCurrent() will capture any previously established authentication context and use it as your
new base configuration. An authentication context is established once it has been activated by calling
run(). If captureCurrent() is called and no context is currently active, it will try and use the default
authentication if available. You can find more details about this in the following sections:

The Configuration File Approach

The Default Configuration Approach

Using Elytron Client with Clients Deployed to JBoss EAP

AuthenticationConfiguration.empty() should only be used as a base to build a configuration on top of,
and should not be used on its own. It provides a configuration that uses the JVM-wide registered
providers and enables anonymous authentication.

When specifying the providers on top of the AuthenticationConfiguration.empty() configuration, you
can specify a custom list, but most users should use WildFlyElytronProvider() providers.

When creating an authentication context, using the context.with(…) will create a new context that
merges the rules and authentication configuration from the current context with the provided rule and
authentication configuration. The provided rule and authentication configuration will appear after the
ones in the current context.

4.2.3. The Default Configuration Approach

The default configuration approach relies completely on the configuration provided by Elytron Client:

To provide a default configuration, Elytron Client tries to auto-discover a wildfly-config.xml file on the
filesystem. It looks in the following locations:

The location specified by the wildfly.config.url system property set outside of the client code.

The classpath root directory.

The META-INF directory on the classpath.

The current user’s home directory.

The current working directory.

You can use the following example as the basic configuration for your client wildfly-config.xml file.

//create your runnable for establishing a connection
Runnable runnable =
 new Runnable() {
 public void run() {
 try {
 //Establish your connection and do some work
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };

// run runnable directly
runnable.run();

CHAPTER 4. APPLICATION CONFIGURATION

39

Basic wildfly-config.xml

NOTE

The ANONYMOUS mechanism does not support authorization as a non-anonymous
user. This means that set-authorization-name does not work with set-anonymous in
the Elytron client configuration file. Instead, if you configure the set-authorization-name,
you must also specify a set-user-name for the authorized identity.

4.2.4. Using Elytron Client with Clients Deployed to JBoss EAP

Clients deployed to JBoss EAP can also make use of Elytron Client. The AuthenticationContext is
automatically parsed and created from the default-authentication-context setting in the JBoss EAP
configuration. If the default-authentication-context is not configured, but you have a wildfly-
config.xml file included with your deployment or set using the wildfly.config.url system property, the
AuthenticationContext is automatically parsed and created from that file.

Example: Set the Default Authentication Context

/subsystem=elytron/authentication-context=AUTH_CONTEXT:add
/subsystem=elytron:write-attribute(name=default-authentication-context,value=AUTH_CONTEXT)

To load a configuration file outside of the deployment, you can use the
parseAuthenticationClientConfiguration(URI) method. This method returns an
AuthenticationContext that you can then use in your client code using the programmatic approach.

Additionally, clients will also automatically parse and create an AuthenticationContext from the client
configuration provided by the elytron subsystem. The client configuration in the elytron subsystem can
also take advantage of other components defined in the elytron subsystem, such as credential stores. If
the client configuration is provided by both the deployment and the elytron subsystem, the elytron
subsystem’s configuration is used.

NOTE

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <authentication-rules>
 <rule use-configuration="default" />
 </authentication-rules>
 <authentication-configurations>
 <configuration name="default">
 <sasl-mechanism-selector selector="#ALL" />
 <set-mechanism-properties>
 <property key="wildfly.sasl.local-user.quiet-auth" value="true" />
 </set-mechanism-properties>
 <providers>
 <use-service-loader/>
 </providers>
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

40

NOTE

The AuthenticationContext from the elytron subsystem can only be used when this
authentication-context is set as the default for the elytron subsystem.

4.2.5. Configuring a JMX Client Using the wildfly-config.xml File

Starting in JBoss EAP 7.1, JMX clients, including JConsole, can be configured using the wildfly-
config.xml file. You specify the file path to the configuration file using the -Dwildfly.config.url system
property when starting the JMX client.

-Dwildfly.config.url=path/to/wildfly-config.xml

NOTE

When using JConsole, the -Dwildfly.config.url system property must be prefixed with -J,
for example:

-J-Dwildfly.config.url=path/to/wildfly-config.xml

For more information, see Client Configuration Using the wildfly-config.xml File in the JBoss EAP
Development Guide.

4.2.6. Using the ElytronAuthenticator to Propagate Identities

WARNING

Using the ElytronAuthenticator in JBoss EAP is not supported or recommended
due to known credential limitations in Java 8. Be aware of the following limitations
when using this class to propagate identities.

Security identity propagation does not work for calls to protected servlets
due to Java 8 design limitations.

Do not use the ElytronAuthenticator on the server, for example, in EJBs.

Credentials caching can impact its use in a standalone client JVM.

JBoss EAP 7.1 introduced the ElytronAuthenticator class, which uses the current security context to
perform the authentication. The org.wildfly.security.auth.util.ElytronAuthenticator class is an
implementation of java.net.Authenticator.

It has one constructor, ElytronAuthenticator(), that constructs a new instance.

It has one method, getPasswordAuthentication(), that returns the PasswordAuthentication
instance.

The following is an example of client code that creates and uses the ElytronAuthenticator class to

CHAPTER 4. APPLICATION CONFIGURATION

41

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/development_guide/#client_configuration_using_the_wildfly_config_file
http://wildfly-security.github.io/wildfly-elytron/1.6.x/api-javadoc/org/wildfly/security/auth/util/ElytronAuthenticator.html
https://docs.oracle.com/javase/8/docs/api/java/net/Authenticator.html
https://docs.oracle.com/javase/8/docs/api/java/net/PasswordAuthentication.html

The following is an example of client code that creates and uses the ElytronAuthenticator class to
propagate an identity to the server.

Example: Code Using the ElytronAuthenticator

4.3. CONFIGURING TRUSTED SECURITY DOMAIN OUTFLOWS

For any security invocation, a security identity is established for the security domain. As the invocation is
handled, the SecurityIdentity is associated with the current thread. For subsequent calls to
getCurrentSecurityIdentity() on the same security domain, the associated identity is returned.

Within the application server, there can be multiple SecurityDomain instances for a single invocation or
thread. Each SecurityDomain instance can be associated with a different SecurityIdentity. The correct
security identity is returned when you call that security domain’s getCurrentSecurityIdentity() method.
Deployments can invoke other deployments during request handling. Each deployment is associated
with a single security domain. If the invoked deployments use the same security domain, then the notion
of a single security domain with a current security identity remains. However, each deployment can
reference its own security domain.

It is possible to import a security identity that is associated with a security domain into another security
domain, as described in the next section.

Importing a Security Identity
To import a security identity from a security domain into another security domain to obtain a security
identity for this domain, there are predominantly three processing flows.

Same Security Domain

A security domain can always import its own security identities. In this case, the security domain
always trusts itself.

Common Security Realm

During the import process, the security domain takes the principal from the security identity being
imported, passes it through its configured principal transformers and realm mappers, and maps it to
an identity within that security domain. If the same security realm is used within the security domain
as was used in the security domain that created the identity, both are backed by the same underlying
identity and the import is accepted.

Trusted Security Domain

If the identity is successfully mapped but there is no common security realm, the security domain

// Create the authentication configuration
AuthenticationConfiguration httpConfig = AuthenticationConfiguration.empty().useName("bob");

// Create the authentication context
AuthenticationContext context = AuthenticationContext.captureCurrent().with(MatchRule.ALL,
httpConfig.usePassword(createPassword(httpConfig, "secret")));

String response = context.run((PrivilegedExceptionAction<String>) () -> {
 Authenticator.setDefault(new ElytronAuthenticator());
 HttpURLConnection connection = HttpURLConnection.class.cast(new URL("http://localhost:" +
SERVER_PORT).openConnection());
 try (InputStream inputStream = connection.getInputStream()) {
 return new BufferedReader(new InputStreamReader(inputStream)).lines().findFirst().orElse(null);
 }
});

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

42

If the identity is successfully mapped but there is no common security realm, the security domain
handling the import is tested to see if it trusts the original security domain. If it does, the import is
accepted.

NOTE

The identity must exist in the security domain handling the import. The security identity is
never trusted in its entirety.

Outflow
A security domain can be configured to automatically outflow its security identities to a different
security domain.

In the security domain, if the security identity is established and used for the current invocation, the list
of outflow security domains is iterated and the security identity is imported for each of them.

This model is more appropriate where multiple invocations to a deployment using a different security
domain are likely to occur, for example, when a web application calls five different EJBs using a common
security domain.

CHAPTER 4. APPLICATION CONFIGURATION

43

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES
WITH LDAP

The management interfaces can authenticate against an LDAP server (including Microsoft Active
Directory). This is accomplished by using an LDAP authenticator. An LDAP authenticator operates by
first establishing a connection (using an outbound LDAP connection) to the remote directory server. It
then performs a search using the username which the user passed to the authentication system, to find
the fully-qualified distinguished name (DN) of the LDAP record. If successful, a new connection is
established, using the DN of the user as the credential, and password supplied by the user. If this second
connection and authentication to the LDAP server is successful, the DN is verified to be valid and
authentication has succeeded.

NOTE

Securing the management interfaces with LDAP changes the authentication from digest
to BASIC/Plain, which by default, will cause usernames and passwords to be sent
unencrypted over the network. SSL/TLS can be enabled on the outbound connection to
encrypt this traffic and avoid sending this information in the clear.

IMPORTANT

In cases where a legacy security realm uses an LDAP server to perform authentication,
such as securing the management interfaces using LDAP, JBoss EAP will return a 500, or
internal server error, error code if that LDAP server is unreachable. This behavior differs
from previous versions of JBoss EAP which returned a 401, or unauthorized, error code
under the same conditions.

5.1. USING ELYTRON

You can secure the management interfaces using LDAP with the elytron subsystem in the same way as
using any identity store. Information on using identity stores for security with the elytron subsystem can
be found in the Secure the Management Interfaces with a New Identity Store section of How to
Configure Server Security. For example, to secure the management console with LDAP:

NOTE

If the JBoss EAP server does not have permissions to read the password, such as when an
Active Directory LDAP server is used, it is necessary to set direct-verification to true on
the defined LDAP realm. This attribute allows verification to be directly performed on the
LDAP server instead of the JBoss EAP server.

Example LDAP Identity Store

/subsystem=elytron/dir-
context=exampleDC:add(url="ldap://127.0.0.1:10389",principal="uid=admin,ou=system",credential-
reference={clear-text="secret"})

/subsystem=elytron/ldap-realm=exampleLR:add(dir-context=exampleDC,identity-mapping={search-
base-dn="ou=Users,dc=wildfly,dc=org",rdn-identifier="uid",user-password-mapper=
{from="userPassword"},attribute-mapping=[{filter-base-dn="ou=Roles,dc=wildfly,dc=org",filter="(&
(objectClass=groupOfNames)(member={0}))",from="cn",to="Roles"}]})

/subsystem=elytron/simple-role-decoder=from-roles-attribute:add(attribute=Roles)

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

44

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#elytron_secure_mgmt_new_identity_store

/subsystem=elytron/security-domain=exampleLdapSD:add(realms=[{realm=exampleLR,role-
decoder=from-roles-attribute}],default-realm=exampleLR,permission-mapper=default-permission-
mapper)

/subsystem=elytron/http-authentication-factory=example-ldap-http-auth:add(http-server-mechanism-
factory=global,security-domain=exampleLdapSD,mechanism-configurations=[{mechanism-
name=BASIC,mechanism-realm-configurations=[{realm-name=exampleApplicationDomain}]}])

/core-service=management/management-interface=http-interface:write-attribute(name=http-
authentication-factory, value=example-ldap-http-auth)

reload

5.1.1. Using Elytron for Two-way SSL/TLS for the Outbound LDAP Connection

When using LDAP to secure the management interfaces, you can configure the outbound LDAP
connection to use two-way SSL/TLS. To do this, create an ssl-context and add it to the dir-context
used by your ldap-realm. Creating a two-way SSL/TLS ssl-context is covered in the Enable Two-way
SSL/TLS for Applications using the Elytron Subsystem section of How to Configure Server Security .

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 or TLSv1.2 in all affected packages.

5.2. USING LEGACY CORE MANAGEMENT AUTHENTICATION

To use an LDAP directory server as the authentication source for the management interfaces using the
legacy security subsystem, the following steps must be performed:

1. Create an outbound connection to the LDAP server.
The purpose of creating an outbound LDAP connection is to allow the security realm (and the
JBoss EAP instance) to establish a connection to the LDAP server. This is similar to the case of
creating a datasource for use with the Database login module in a security domain.

The LDAP outbound connection allows the following attributes:

Attribute Required Description

url yes The URL address of the directory
server.

search-dn no The fully distinguished name (DN) of
the user authorized to perform
searches.

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

45

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#elytron_two-way_ssl_apps

search-credential no The password of the user authorized
to perform searches. The attributes
supported by this element are:

store - Reference to the
credential store to obtain the
search credential from.

alias - The alias of the credential
in the referenced store.

type - The fully qualified class
name of the credential type to
obtain from the credential store.

clear-text - Instead of
referencing a credential store,
this attribute can be used to
specify a clear text password.

initial-context-factory no The initial context factory to use when
establishing the connection. Defaults
to
com.sun.jndi.ldap.LdapCtxFacto
ry.

security-realm no The security realm to reference to
obtain a configured SSLContext to
use when establishing the connection.

Attribute Required Description

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

46

referrals no Specifies the behavior when
encountering a referral when doing a
search. Valid options are IGNORE,
FOLLOW, and THROW.

IGNORE: The default option.
Ignores the referral.

FOLLOW: When referrals are
encountered during a search, the
DirContext being used will
attempt to follow that referral.
This assumes the same
connection settings can be used
to connect to the second server
and the name used in the referral
is reachable.

THROW: The DirContext will
throw an exception,
LdapReferralException, to
indicate that a referral is required.
The security realm will handle and
attempt to identify an alternative
connection to use for the referral.

always-send-client-cert no By default the server’s client
certificate is not sent while verifying
the users credential. If this is set to
true it will always be sent.

handles-referrals-for no Specifies the referrals a connection
can handle. If specifying list of URIs,
they should be separated by spaces.
This enables a connection with
connection properties to be defined
and used when different credentials
are needed to follow a referral. This is
useful in situations where different
credentials are needed to
authenticate against the second
server, or for situations where the
server returns a name in the referral
that is not reachable from the JBoss
EAP installation and an alternative
address can be substituted.

Attribute Required Description

NOTE

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

47

NOTE

search-dn and search-credential are different from the username and password
provided by the user. The information provided here is specifically for
establishing an initial connection between the JBoss EAP instance and the LDAP
server. This connection allows JBoss EAP to perform a subsequent search for the
DN of the user trying to authenticate. The DN of the user, which is a result of the
search, that is trying to authenticate and the password they provided are used to
establish a separate second connection for completing the authentication
process.

Given the following example LDAP server, below are the management CLI commands for
configuring an outbound LDAP connection:

Table 5.1. Example LDAP Server

Attribute Value

url 127.0.0.1:389

search-credential myPass

search-dn cn=search,dc=acme,dc=com

CLI for Adding the Outbound Connection

/core-service=management/ldap-connection=ldap-connection/:add(search-
credential=myPass,url=ldap://127.0.0.1:389,search-dn="cn=search,dc=acme,dc=com")

reload

NOTE

This creates an unencrypted connection between the JBoss EAP instance and
the LDAP server. For more details on setting up an encrypted connection using
SSL/TLS, see Using SSL/TLS for the Outbound LDAP Connection .

2. Create a new LDAP-enabled security realm.
Once the outbound LDAP connection has been created, a new LDAP-enabled security realm
must be created to use it.

The LDAP security realm has the following configuration attributes:

Attribute Description

connection The name of the connection defined in
outbound-connections to use to connect to the
LDAP directory.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

48

base-dn The DN of the context to begin searching for the
user.

recursive Whether the search should be recursive
throughout the LDAP directory tree, or only
search the specified context. Defaults to false.

user-dn The attribute of the user that holds the DN. This
is subsequently used to test authentication as
the user can complete. Defaults to dn.

allow-empty-passwords This attribute determines whether an empty
password is accepted. The default value is false.

username-attribute The name of the attribute to search for the user.
This filter performs a simple search where the
user name entered by the user matches the
specified attribute.

advanced-filter The fully defined filter used to search for a user
based on the supplied user ID. This attribute
contains a filter query in standard LDAP syntax.
The filter must contain a variable in the following
format: {0}. This is later replaced with the user
name supplied by the user. More details and
advanced-filter examples can be found in the
Combining LDAP and RBAC for Authorization
section.

Attribute Description

WARNING

It is important to ensure that empty LDAP passwords are not allowed since
it is a serious security concern. Unless this behavior is specifically desired in
the environment, ensure empty passwords are not allowed and allow-
empty-passwords remains false.

Below are the management CLI commands for configuring an LDAP-enabled security realm
using the ldap-connection outbound LDAP connection.

/core-service=management/security-realm=ldap-security-realm:add

/core-service=management/security-realm=ldap-security-
realm/authentication=ldap:add(connection="ldap-connection", base-

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

49

3. Reference the new security realm in the management interface. Once a security realm has been
created and is using the outbound LDAP connection, that new security realm must be
referenced by the management interfaces.

NOTE

The management CLI commands shown assume that you are running a JBoss
EAP standalone server. For more details on using the management CLI for a
JBoss EAP managed domain, see the JBoss EAP Management CLI Guide .

5.2.1. Using Two-way SSL/TLS for the Outbound LDAP Connection

Follow these steps to create an outbound LDAP connection secured by SSL/TLS:

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 or TLSv1.2 in all affected packages.

1. Configure a security realm for the outbound LDAP connection to use.
The security realm must contain a keystore configured with the key that the JBoss EAP server
will use to decrypt/encrypt communications between itself and the LDAP server. This keystore
will also allow the JBoss EAP instance to verify itself against the LDAP server. The security
realm must also contain a truststore that contains the LDAP server’s certificate, or the
certificate of the certificate authority used to sign the LDAP server’s certificate. See Setting up
Two-Way SSL/TLS for the Management Interfaces in the JBoss EAP How to Configure Server
Security guide for instructions on configuring keystores and truststores and creating a security
realm that uses them.

2. Create an outbound LDAP connection with the SSL/TLS URL and security realm.
Similar to the process defined in Using Legacy Core Management Authentication , an outbound
LDAP connection should be created, but using the SSL/TLS URL for the LDAP server and the
SSL/TLS security realm.

Once the outbound LDAP connection and SSL/TLS security realm for the LDAP server have
been created, the outbound LDAP connection needs to be updated with that information.

Example CLI for Adding the Outbound Connection with an SSL/TLS URL

dn="cn=users,dc=acme,dc=com",username-attribute="sambaAccountName")

reload

/core-service=management/management-interface=http-interface/:write-
attribute(name=security-realm,value="ldap-security-realm")

/core-service=management/ldap-connection=ldap-connection/:add(search-
credential=myPass, url=ldaps://LDAP_HOST:LDAP_PORT, search-
dn="cn=search,dc=acme,dc=com")

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

50

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/management_cli_guide/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#mgmt-interface-two-way-ssl-legacy

Adding the security realm with the SSL/TLS certificates

3. Create a new security realm that uses the outbound LDAP connection for use by the
management interfaces.
Follow the steps Create a new LDAP-Enabled Security Realm and Reference the new security
realm in the Management Interface from the procedure in Using Legacy Core Management
Authentication.

NOTE

The management CLI commands shown assume that you are running a JBoss
EAP standalone server. For more details on using the management CLI for a
JBoss EAP managed domain, see the JBoss EAP Management CLI Guide .

5.3. LDAP AND RBAC

RBAC (Role-Based Access Control) is a mechanism for specifying a set of permissions (roles) for
management users. This allows users to be granted different management responsibilities without
giving them full, unrestricted access. For more details on RBAC, see the Role-Based Access Control
section of the JBoss EAP Security Architecture guide.

RBAC is used only for authorization, with authentication being handled separately. Since LDAP can be
used for authentication as well as authorization, JBoss EAP can be configured in the following ways:

Use RBAC for authorization only, and use LDAP, or another mechanism, only for authentication.

Use RBAC combined with LDAP for making authorization decisions in the management
interfaces.

5.3.1. Using LDAP and RBAC Independently

JBoss EAP allows for authentication and authorization to be configured independently in security
realms. This enables LDAP to be configured as an authentication mechanism and RBAC to be
configured as an authorization mechanism. If configured in this manner, when a user attempts to access
a management interface, they will first be authenticated using the configured LDAP server. If successful,
the user’s role, and configured permissions of that role, will be determined using only RBAC,
independently of any group information found in the LDAP server.

For more details on using just RBAC as an authorization mechanism for the management interfaces, see
How to Configure Server Security for JBoss EAP. For more details on configuring LDAP for
authentication with the management interfaces, see the previous section.

5.3.2. Combining LDAP and RBAC for Authorization

Users who have authenticated using an LDAP server or using a properties file can be members of user
groups. A user group is simply an arbitrary label that can be assigned to one or more users. RBAC can be
configured to use this group information to automatically assign a role to a user or exclude a user from a
role.

An LDAP directory contains entries for user accounts and groups, cross referenced by attributes.

/core-service=management/ldap-connection=ldap-connection:write-attribute(name=security-
realm,value="CertificateRealm")

reload

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

51

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/management_cli_guide/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/security_architecture/#rbac
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#role_based_access_control

An LDAP directory contains entries for user accounts and groups, cross referenced by attributes.
Depending on the LDAP server configuration, a user entity can map the groups the user belongs to
through memberOf attributes; a group entity can map which users belong to it through uniqueMember
attributes; or a combination of the two. Once a user is successfully authenticated to the LDAP server, a
group search is performed to load that user’s group information. Depending on the directory server in
use, group searches can be performed using their SN, which is usually the username used in
authentication, or by using the DN of the user’s entry in the directory. Group searches (group-search)
as well as mapping between a username and a distinguished name (username-to-dn) are configured
when setting up LDAP as an authorization mechanism in a security realm.

Once a user’s group membership information is determined from the LDAP server, a mapping within the
RBAC configuration is used to determine what roles a user has. This mapping is configured to explicitly
include or exclude groups as well as individual users.

NOTE

The authentication step of a user connecting to the server always happens first. Once the
user is successfully authenticated the server loads the user’s groups. The authentication
step and the authorization step each require a connection to the LDAP server. The
security realm optimizes this process by reusing the authentication connection for the
group loading step.

5.3.2.1. Using group-search

There are two different styles that can be used when searching for group membership information:
Principal to Group and Group to Principal. Principal to Group has the user’s entry containing references
to the groups it is a member of, using the memberOf attribute. Group to Principal has the group’s entry
contain the references to the users who are members of it, using the uniqueMember attribute.

NOTE

JBoss EAP supports both Principal to Group as well as Group to Principal searches, but
Principal to Group is recommended over Group to Principal. If Principal to Group is used,
group information can be loaded directly by reading attributes of known distinguished
names without having to perform any searches. Group to Principal requires extensive
searches to identify the all groups that reference a user.

Both Principal to Group and Group to Principal use group-search which contains the following
attributes:

Attribute Description

group-name This attribute is used to specify the form that should
be used for the group name returned as the list of
groups of which the user is a member. This can either
be the simple form of the group name or the group’s
distinguished name. If the distinguished name is
required this attribute can be set to
DISTINGUISHED_NAME. Defaults to SIMPLE.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

52

iterative This attribute is used to indicate if, after identifying
the groups a user is a member of, it should also
iteratively search based on the groups to identify
which groups the groups are a member of. If iterative
searching is enabled, it keeps going until either it
reaches a group that is not a member if any other
groups or a cycle is detected. Defaults to false.

group-dn-attribute On an entry for a group which attribute is its
distinguished name. Defaults to dn.

group-name-attribute On an entry for a group which attribute is its simple
name. Defaults to uid.

Attribute Description

NOTE

Cyclic group membership is not a problem. A record of each search is kept to prevent
groups that have already been searched from being searched again.

IMPORTANT

For iterative searching to work, the group entries need to look the same as user entries.
The same approach used to identify the groups a user is a member of is then used to
identify the groups of which the group is a member. This would not be possible if, for
group to group membership, the name of the attribute used for the cross reference
changes, or if the direction of the reference changes.

Principal to Group (memberOf) for Group Search

Consider an example where a user TestUserOne who is a member of GroupOne, and GroupOne is in
turn a member of GroupFive. The group membership would be shown by the use of a memberOf
attribute at the member level. This means, TestUserOne would have a memberOf attribute set to the
dn of GroupOne. GroupOne in turn would have a memberOf attribute set to the dn of GroupFive.

To use this type of searching, the principal-to-group element is added to the group-search element:

Principal to Group, memberOf, Configuration

/core-service=management/security-realm=ldap-security-realm:add

batch

/core-service=management/security-realm=ldap-security-
realm/authorization=ldap:add(connection=ldap-connection)

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/group-
search=principal-to-group:add(group-attribute="memberOf",iterative=true,group-dn-attribute="dn",
group-name="SIMPLE",group-name-attribute="cn")

run-batch

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

53

IMPORTANT

The above example assumes you already have ldap-connection defined. You also need
to configure the authentication mechanism which is covered earlier in this section .

Notice that the group-attribute attribute is used with the group-search=principal-to-group. For
reference:

Table 5.2. principal-to-group

Attribute Description

group-attribute The name of the attribute on the user entry that
matches the distinguished name of the group the
user is a member of. Defaults to memberOf.

prefer-original-connection This value is used to indicate which group
information to prefer when following a referral. Each
time a principal is loaded, attributes from each of
their group memberships are subsequently loaded.
Each time attributes are loaded, either the original
connection or connection from the last referral can
be used. Defaults to true.

Group to Principal, uniqueMember, Group Search

Consider the same example as Principal to Group where a user TestUserOne who is a member of
GroupOne, and GroupOne is in turn a member of GroupFive. However, in this case the group
membership would be shown by the use of the uniqueMember attribute set at the group level. This
means that GroupFive would have a uniqueMember set to the dn of GroupOne. GroupOne in turn
would have a uniqueMember set to the dn of TestUserOne.

To use this type of searching, the group-to-principal element is added to the group-search element:

Group to Principal, uniqueMember, Configuration

/core-service=management/security-realm=ldap-security-realm:add

batch

/core-service=management/security-realm=ldap-security-
realm/authorization=ldap:add(connection=ldap-connection)

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/group-
search=group-to-principal:add(iterative=true, group-dn-attribute="dn", group-name="SIMPLE", group-
name-attribute="uid", base-dn="ou=groups,dc=group-to-principal,dc=example,dc=org", principal-
attribute="uniqueMember", search-by="DISTINGUISHED_NAME")

run-batch

IMPORTANT

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

54

IMPORTANT

The above example assumes you already have ldap-connection defined. You also need
to configure the authentication mechanism which is covered earlier in this section .

Notice that the principal-attribute attribute is used with group-search=group-to-principal. group-to-
principal is used to define how searches for groups that reference the user entry will be performed, and
principal-attribute is used to define the group entry that references the principal.

For reference:

Table 5.3. group-to-principal

Attribute Description

base-dn The distinguished name of the context to use to
begin the search.

recursive Whether sub-contexts also be searched. Defaults to
false.

search-by The form of the role name used in searches. Valid
values are SIMPLE and DISTINGUISHED_NAME.
Defaults to DISTINGUISHED_NAME.

prefer-original-connection This value is used to indicate which group
information to prefer when following a referral. Each
time a principal is loaded, attributes from each of
their group memberships are subsequently loaded.
Each time attributes are loaded, either the original
connection or connection from the last referral can
be used.

Table 5.4. membership-filter

Attribute Description

principal-attribute The name of the attribute on the group entry that
references the user entry. Defaults to member.

5.3.2.2. Using username-to-dn

It is possible to define rules within the authorization section to convert a user’s simple user name to their
distinguished name. The username-to-dn element specifies how to map the user name to the
distinguished name of their entry in the LDAP directory. This element is optional and only required when
both of the following are true:

The authentication and authorization steps are against different LDAP servers.

The group search uses the distinguished name.

NOTE

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

55

NOTE

This could also be applicable in instances where the security realm supports both LDAP
and Kerberos authentication and a conversion is needed for Kerberos, if LDAP
authentication has been performed the DN discovered during authentication can be
used.

It contains the following attributes:

Table 5.5. username-to-dn

Attribute Description

force The result of a user name to distinguished name
mapping search during authentication is cached and
reused during the authorization query when the force
attribute is set to false. When force is true, the
search is performed again during authorization while
loading groups. This is typically done when different
servers perform authentication and authorization.

username-to-dn can be configured with one of the following:

username-is-dn

This specifies that the user name entered by the remote user is the user’s distinguished name.

username-is-dn Example

/core-service=management/security-realm=ldap-security-realm:add

batch

/core-service=management/security-realm=ldap-security-
realm/authorization=ldap:add(connection=ldap-connection)

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/group-
search=group-to-principal:add(iterative=true, group-dn-attribute="dn", group-name="SIMPLE",
group-name-attribute="uid", base-dn="ou=groups,dc=group-to-principal,dc=example,dc=org",
principal-attribute="uniqueMember", search-by="DISTINGUISHED_NAME")

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/username-to-
dn=username-is-dn:add(force=false)

run-batch

This defines a 1:1 mapping and there is no additional configuration.

username-filter

A specified attribute is searched for a match against the supplied user name.

username-filter Example

/core-service=management/security-realm=ldap-security-realm:add

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

56

batch

/core-service=management/security-realm=ldap-security-
realm/authorization=ldap:add(connection=ldap-connection)

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/group-
search=group-to-principal:add(iterative=true, group-dn-attribute="dn", group-name="SIMPLE",
group-name-attribute="uid", base-dn="ou=groups,dc=group-to-principal,dc=example,dc=org",
principal-attribute="uniqueMember", search-by="DISTINGUISHED_NAME")

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/username-to-
dn=username-filter:add(force=false, base-dn="dc=people,dc=harold,dc=example,dc=com",
recursive="false", attribute="sn", user-dn-attribute="dn")

run-batch

Attribute Description

base-dn The distinguished name of the context to begin the
search.

recursive Whether the search will extend to sub contexts.
Defaults to false.

attribute The attribute of the user’s entry to try and match
against the supplied user name. Defaults to uid.

user-dn-attribute The attribute to read to obtain the user’s
distinguished name. Defaults to dn.

advanced-filter

This option uses a custom filter to locate the user’s distinguished name.

advanced-filter Example

/core-service=management/security-realm=ldap-security-realm:add

batch

/core-service=management/security-realm=ldap-security-
realm/authorization=ldap:add(connection=ldap-connection)

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/group-
search=group-to-principal:add(iterative=true, group-dn-attribute="dn", group-name="SIMPLE",
group-name-attribute="uid", base-dn="ou=groups,dc=group-to-principal,dc=example,dc=org",
principal-attribute="uniqueMember", search-by="DISTINGUISHED_NAME")

/core-service=management/security-realm=ldap-security-realm/authorization=ldap/username-to-
dn=advanced-filter:add(force=true, base-dn="dc=people,dc=harold,dc=example,dc=com",

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

57

recursive="false", user-dn-attribute="dn",filter="sAMAccountName={0}")

run-batch

For the attributes that match those in the username-filter example, the meaning and default values
are the same. There is one additional attribute:

Attribute Description

filter Custom filter used to search for a user’s entry
where the user name will be substituted in the {0}
placeholder.

IMPORTANT

This must remain valid after the filter is defined so if any special characters are used
(such as &) ensure the proper form is used. For example & for the & character.

5.3.2.3. Mapping LDAP Group Information to RBAC Roles

Once the connection to the LDAP server has been created and the group searching has been properly
configured, a mapping needs to be created between the LDAP groups and RBAC roles. This mapping
can be both inclusive as well as exclusive, and enables users to be automatically assigned one or more
roles based on their group membership.

WARNING

If RBAC is not already configured, pay close attention when doing so, especially if
switching to a newly-created LDAP-enabled realm. Enabling RBAC without having
users and roles properly configured could result in administrators being unable to
login to the JBoss EAP management interfaces.

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide .

Ensure RBAC is Enabled and Configured

Before mappings between LDAP and RBAC Roles can be used, RBAC must enabled and initially
configured.

It should yield the following result:

/core-service=management/access=authorization:read-attribute(name=provider)

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

58

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/management_cli_guide/

For more information on enabling and configuring RBAC, see Enabling Role-Based Access Control in
How to Configure Server Security for JBoss EAP.

Verify Existing List of Roles

Use the read-children-names operation to get a complete list of the configured roles:

Which should yield a list of roles:

In addition, all existing mappings for a role can be checked:

Configure a Role-Mapping entry

If a role does not already have a Role-Mapping entry, one needs to be created. For instance:

{ "outcome" => "success", "result" => "rbac" }

/core-service=management/access=authorization:read-children-names(child-type=role-mapping)

{
 "outcome" => "success",
 "result" =>
 ["Administrator", "Deployer", "Maintainer", "Monitor", "Operator", "SuperUser"]
}

/core-service=management/access=authorization/role-mapping=Administrator:read-
resource(recursive=true)

{
 "outcome" => "success",
 "result" =>
 {
 "include-all" => false,
 "exclude" => undefined,
 "include" => {
 "user-theboss" => {
 "name" => "theboss",
 "realm" => undefined,
 "type" => "USER"
 },
 "user-harold" => {
 "name" => "harold",
 "realm" => undefined,
 "type" => "USER"
 },
 "group-SysOps" => {
 "name" => "SysOps",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

59

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/how_to_configure_server_security/#enabling_role_based_access_control

To add a role mapping:

To verify:

Add Groups to the Role for Inclusion and Exclusion

Groups can be added for inclusion or exclusion from a role.

NOTE

The exclusion mapping takes precedence or the inclusion mapping.

To add a group for inclusion:

To add a group for exclusion:

To check the result:

/core-service=management/access=authorization/role-mapping=Auditor:read-resource()

{
 "outcome" => "failed",
 "failure-description" => "WFLYCTL0216: Management resource '[(\"core-service\" =>
\"management\"), (\"access\" => \"authorization\"), (\"role-mapping\" => \"Auditor\")]' not found"
}

/core-service=management/access=authorization/role-mapping=Auditor:add()

{
 "outcome" => "success"
}

/core-service=management/access=authorization/role-mapping=Auditor:read-resource()

{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => undefined,
 "include" => undefined
 }
}

/core-service=management/access=authorization/role-mapping=Auditor/include=group-
GroupToInclude:add(name=GroupToInclude, type=GROUP)

/core-service=management/access=authorization/role-mapping=Auditor/exclude=group-
GroupToExclude:add(name=GroupToExclude, type=GROUP)

/core-service=management/access=authorization/role-mapping=Auditor:read-
resource(recursive=true)

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

60

Removing a Group from exclusion or inclusion in an RBAC Roles Groups

To remove a group from inclusion:

To remove a group from exclusion:

5.4. ENABLING CACHING

Security Realms also offer the ability to cache the results of LDAP queries for both authentication as
well as group loading. This enables the results of different queries to be reused across multiple searches
by different users in certain circumstances, for example iteratively querying the group membership
information of groups. There are three different caches available, each of which are configured
separately and operate independently:

authentication

group-to-principal

username-to-dn

5.4.1. Cache Configuration

Even though the caches are independent of one another, all three are configured in the same manner.
Each cache offers the following configuration options:

{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => {
 "group-GroupToExclude" => {
 "name" => "GroupToExclude",
 "realm" => undefined,
 "type" => "GROUP"
 }
 },
 "include" => {
 "group-GroupToInclude" => {
 "name" => "GroupToInclude",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}

/core-service=management/access=authorization/role-mapping=Auditor/include=group-
GroupToInclude:remove

/core-service=management/access=authorization/role-mapping=Auditor/exclude=group-
GroupToExclude:remove

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

61

Attribute Description

type This defines the eviction strategy that the cache will
adhere to. Options are by-access-time and by-
search-time. by-access-time evicts items from the
cache after a certain period of time has elapsed since
their last access. by-search-time evicts items based
on how long they have been in the cache regardless
of their last access.

eviction-time This defines the time (in seconds) used for evictions
depending on the strategy.

cache-failures This is a boolean that enables/disables the caching of
failed searches. This has the potential for preventing
an LDAP server from being repeatedly accessed by
the same failed search, but it also has the potential to
fill up the cache with searches for users that do not
exist. This setting is particularly important for the
authentication cache.

max-cache-size This defines maximum size (number of items) of the
cache, which in-turn dictates when items will begin
getting evicted. Old items are evicted from the cache
to make room for new authentication and searches as
needed, meaning max-cache-size will not prevent
new authentication attempts or searches from
occurring.

5.4.2. Example

NOTE

This example assumes a security realm, named LDAPRealm, has been created. It
connects to an existing LDAP server and is configured for authentication and
authorization. The commands to display the current configuration are detailed in Reading
the Current Cache Configuration. More details on creating a security realm that uses
LDAP can be found in Using Legacy Core Management Authentication .

Example Base Configuration

"core-service" : {
 "management" : {
 "security-realm" : {
 "LDAPRealm" : {
 "authentication" : {
 "ldap" : {
 "allow-empty-passwords" : false,
 "base-dn" : "...",
 "connection" : "MyLdapConnection",
 "recursive" : false,

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

62

In all areas where "cache" : null appear, a cache may be configured:

Authentication

During authentication, the user’s distinguished name is discovered using this definition and an
attempt to connect to the LDAP server and verify their identity is made using these credentials.

A group-search definition

There is the group search definition. In this case it is an iterative search because iterative is set to
true in the sample configuration above. First, a search will be performed to find all groups the user is
a direct member of. After that, a search will be performed for each of those groups to identify if they
have membership to other groups. This process continues until either a cyclic reference is detected
or the final groups are not members of any further groups.

A username-to-dn definition in group search

Group searching relies on the availability of the user’s distinguished name. This section is not used in
all situations, but it can be used as a second attempt to discover a user’s distinguished name. This can
be useful, or even required, when a second form of authentication is supported, for example local
authentication.

 "user-dn" : "dn",
 "username-attribute" : "uid",
 "cache" : null
 }
 },
 "authorization" : {
 "ldap" : {
 "connection" : "MyLdapConnection",
 "group-search" : {
 "group-to-principal" : {
 "base-dn" : "...",
 "group-dn-attribute" : "dn",
 "group-name" : "SIMPLE",
 "group-name-attribute" : "uid",
 "iterative" : true,
 "principal-attribute" : "uniqueMember",
 "search-by" : "DISTINGUISHED_NAME",
 "cache" : null
 }
 },
 "username-to-dn" : {
 "username-filter" : {
 "attribute" : "uid",
 "base-dn" : "...",
 "force" : false,
 "recursive" : false,
 "user-dn-attribute" : "dn",
 "cache" : null
 }
 }
 }
 },
 }
 }
 }
}

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

63

5.4.2.1. Reading the Current Cache Configuration

NOTE

The CLI commands used in this and subsequent sections use LDAPRealm for the name
of the security realm. This should be substituted for the name of the actual realm being
configured.

CLI Command to Read the Current Cache Configuration

Output

/core-service=management/security-realm=LDAPRealm:read-resource(recursive=true)

{
 "outcome" => "success",
 "result" => {
 "map-groups-to-roles" => true,
 "authentication" => {
 "ldap" => {
 "advanced-filter" => undefined,
 "allow-empty-passwords" => false,
 "base-dn" => "dc=example,dc=com",
 "connection" => "ldapConnection",
 "recursive" => true,
 "user-dn" => "dn",
 "username-attribute" => "uid",
 "cache" => undefined
 }
 },
 "authorization" => {
 "ldap" => {
 "connection" => "ldapConnection",
 "group-search" => {
 "principal-to-group" => {
 "group-attribute" => "description",
 "group-dn-attribute" => "dn",
 "group-name" => "SIMPLE",
 "group-name-attribute" => "cn",
 "iterative" => false,
 "prefer-original-connection" => true,
 "skip-missing-groups" => false,
 "cache" => undefined
 }
 },
 "username-to-dn" => {
 "username-filter" => {
 "attribute" => "uid",
 "base-dn" => "ou=Users,dc=jboss,dc=org",
 "force" => true,
 "recursive" => false,
 "user-dn-attribute" => "dn",
 "cache" => undefined
 }

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

64

5.4.2.2. Enabling a Cache

NOTE

The management CLI commands used in this and subsequent sections configure the
cache in the authentication section of the security realm, in other words
authentication=ldap/. Caches in the authorization section can also be configured in a
similar manner by updating the path of the command.

Management CLI Command for Enabling a Cache

/core-service=management/security-realm=LDAPRealm/authentication=ldap/cache=by-access-
time:add(eviction-time=300, cache-failures=true, max-cache-size=100)

This commands adds a by-access-time cache for authentication with an eviction time of 300 seconds
(5 minutes) and a maximum cache size of 100 items. In addition, failed searches will be cached.
Alternatively, a by-search-time cache could also be configured:

/core-service=management/security-realm=LDAPRealm/authentication=ldap/cache=by-search-
time:add(eviction-time=300, cache-failures=true, max-cache-size=100)

5.4.2.3. Inspecting an Existing Cache

Management CLI Command for Inspecting an Existing Cache

/core-service=management/security-realm=LDAPRealm/authentication=ldap/cache=by-access-
time:read-resource(include-runtime=true)

{
 "outcome" => "success",
 "result" => {
 "cache-failures" => true,
 "cache-size" => 1,
 "eviction-time" => 300,
 "max-cache-size" => 100
 }
}

The include-runtime attribute adds cache-size, which displays the current number of items in the
cache. It is 1 in the above output.

5.4.2.4. Testing an Existing Cache’s Contents

Management CLI Command for Testing an Existing Cache’s Contents

 }
 }
 },
 "plug-in" => undefined,
 "server-identity" => undefined
 }
 }

CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP

65

/core-service=management/security-realm=LDAPRealm/authentication=ldap/cache=by-access-
time:contains(name=TestUserOne)

{
 "outcome" => "success",
 "result" => true
}

This shows that an entry for TestUserOne exists the in the cache.

5.4.2.5. Flushing a Cache

You can flushing a single item from a cache, or flush the entire cache.

Management CLI Command for Flushing a Single Item

/core-service=management/security-realm=LDAPRealm/authentication=ldap/cache=by-access-
time:flush-cache(name=TestUserOne)

Management CLI Command for Flushing an Entire Cache

/core-service=management/security-realm=LDAPRealm/authentication=ldap/cache=by-access-
time:flush-cache()

5.4.2.6. Removing a Cache

Management CLI Command for Removing a Cache

/core-service=management/security-realm=LDAPRealm/authentication=ldap/cache=by-access-
time:remove()

reload

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

66

CHAPTER 6. CONFIGURE A SECURITY DOMAIN TO USE A
SECURITY MAPPING

Adding a security mapping to a security domain allows for authentication and authorization information
to be combined after the authentication or authorization happens, but before the information is passed
to the application. For more information on security mapping, see the Security Mapping section of the
JBoss EAP Security Architecture guide.

To add a security mapping to an existing security domain, a code, type, and relevant module options
must be configured. The code field is the short name, for example SimpleRoles, PropertiesRoles,
DatabaseRoles, or class name of the security mapping module. The type field refers to the type of
mapping this module performs, and the allowed values are principal, role, attribute, or credential. For a
full list of the available security mapping modules and their module options, see the Security Mapping
Modules section of the JBoss EAP Login Module Reference.

Example: Management CLI Commands for Adding a SimpleRoles Security Mapping to an
Existing Security Domain

/subsystem=security/security-domain=sampleapp/mapping=classic:add

/subsystem=security/security-domain=sampleapp/mapping=classic/mapping-
module=SimpleRoles:add(code=SimpleRoles,type=role,module-options=[("user1"=>"specialRole")])

reload

CHAPTER 6. CONFIGURE A SECURITY DOMAIN TO USE A SECURITY MAPPING

67

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/security_architecture/#security_mapping
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/login_module_reference/#security_mapping_modules

CHAPTER 7. STANDALONE SERVER VS. MANAGED DOMAIN
CONSIDERATIONS

Setting up identity management with an LDAP server, including Microsoft Active Directory, is essentially
the same regardless or whether it is used in a standalone server or a managed domain. In general, this
also applies to setting up most identity stores with both security realms and security domains. Just as
with any other configuration setting, the standalone configuration resides in the standalone.xml file and
the configuration for a managed domain resides in the domain.xml and host.xml files.

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

68

APPENDIX A. REFERENCE MATERIAL

A.1. EXAMPLE WILDFLY-CONFIG.XML

The wildlfly-config.xml file is one way for clients to use Elytron Client, which allows clients to use
security information when making connections to JBoss EAP. For more details on using Elytron Client,
see Configure Client Authentication with Elytron Client .

Example: custom-config.xml

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <authentication-rules>
 <rule use-configuration="monitor">
 <match-host name="127.0.0.1" />
 </rule>
 <rule use-configuration="administrator">
 <match-host name="localhost" />
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="monitor">
 <sasl-mechanism-selector selector="DIGEST-MD5" />
 <providers>
 <use-service-loader />
 </providers>
 <set-user-name name="monitor" />
 <credentials>
 <clear-password password="password1!" />
 </credentials>
 <set-mechanism-realm name="ManagementRealm" />
 </configuration>

 <configuration name="administrator">
 <sasl-mechanism-selector selector="DIGEST-MD5" />
 <providers>
 <use-service-loader />
 </providers>
 <set-user-name name="administrator" />
 <credentials>
 <clear-password password="password1!" />
 </credentials>
 <set-mechanism-realm name="ManagementRealm" />
 </configuration>
 </authentication-configurations>

 <net-authenticator/>

 <!-- This decides which SSL context configuration to use -->
 <ssl-context-rules>
 <rule use-ssl-context="mycorp-client">
 <match-host name="mycorp.com"/>
 </rule>
 </ssl-context-rules>
 <ssl-contexts>

APPENDIX A. REFERENCE MATERIAL

69

For more information about how to configure clients using the wildfly-config.xml file, see Client
Configuration Using the wildfly-config.xml File in the Development Guide for JBoss EAP.

A.2. REFERENCE FOR SINGLE SIGN-ON ATTRIBUTES

An SSO authentication mechanism configuration.

This is the reference for the setting=single-sign-on resource of the application-security-domain in
the undertow subsystem.

A.2.1. Single Sign-on

Table A.1. single-sign-on Attributes

Attribute Description

domain The cookie domain to be used.

path The cookie path.

http-only For setting cookie’s httpOnly attribute.

secure For setting cookie’s secure attribute.

cookie-name The name of the cookie.

key-store The reference to keystore containing a private key entry.

key-alias The alias of the private key entry used for signing and verifying
back-channel logout connection.

 <default-ssl-context name="mycorp-context"/>
 <ssl-context name="mycorp-context">
 <key-store-ssl-certificate key-store-name="store1" alias="mycorp-client-certificate"/>
 <!-- This is an OpenSSL-style cipher suite selection string; this example is the expanded form of
DEFAULT to illustrate the format -->
 <cipher-suite selector="ALL:!EXPORT:!LOW:!aNULL:!eNULL:!SSLv2"/>
 <protocol names="TLSv1.2"/>
 </ssl-context>
 </ssl-contexts>
 </authentication-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

70

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/18/html-single/development_guide/#client_configuration_using_the_wildfly_config_file

credential-reference The credential reference to decrypt the private key entry.

credential-reference has the following attributes:

store : The name of the credential store holding the
alias to credential.

alias : The alias which denotes stored secret or
credential in the store.

type : The type of credential this reference is denoting.

clear-text : The secret specified using clear text.
Checks the credential store way of supplying credential
or secrets to services.

client-ssl-context The reference to the SSL context used to secure back-channel
logout connection.

Attribute Description

A.3. PASSWORD MAPPERS

A password mapper constructs a password from multiple fields in a database using one of the following
algorithm types:

Clear text

Simple digest

Salted simple digest

bcrypt

SCRAM

Modular crypt

A password mapper has the following attributes:

NOTE

The index of the first column is 1 for all the mappers.

Table A.2. password mapper attributes

Mapper name Attributes Encryption method

clear-password-
mapper password-index

The index of the column containing the clear
text password.

No encryption.

APPENDIX A. REFERENCE MATERIAL

71

simple-digest
password-index
The index of the column containing the
password hash.

algorithm
The hashing algorithm used. The following
values are supported:

simple-digest-md2

simple-digest-md5

simple-digest-sha-1

simple-digest-sha-256

simple-digest-sha-384

simple-digest-sha-512

hash-encoding
Specify the representation hash. Permitted
values:

base64 (default)

hex

A simple hashing
mechanism is used.

Mapper name Attributes Encryption method

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

72

salted-simple-digest
password-index
The index of the column containing the
password hash.

algorithm
The hashing algorithm used. The following
values are supported:

password-salt-digest-md5

password-salt-digest-sha-1

password-salt-digest-sha-256

password-salt-digest-sha-384

password-salt-digest-sha-512

salt-password-digest-md5

salt-password-digest-sha-1

salt-password-digest-sha-256

salt-password-digest-sha-384

salt-password-digest-sha-512

salt-index
Index of the column containing the salt used
for hashing.

hash-encoding
Specify the representation for the hash.
Permitted values:

base64 (default)

hex

salt-encoding
Specify the representation for the salt.
Permitted values:

base64 (default)

hex

A simple hashing
mechanism is used with
a salt.

Mapper name Attributes Encryption method

APPENDIX A. REFERENCE MATERIAL

73

bcrypt-password-
mapper password-index

The index of the column containing the
password hash.

salt-index
Index of the column containing the salt used
for hashing.

iteration-count-index
Index of the column containing the number
of iterations used.

hash-encoding
Specify the representation for the hash.
Permitted values:

base64 (default)

hex

salt-encoding
Specify the representation for the salt.
Permitted values:

base64 (default)

hex

Blowfish algorithm used
for hashing.

Mapper name Attributes Encryption method

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

74

scram-mapper
password-index
The index of the column containing the
password hash.

algorithm
The hashing algorithm used. The following
values are supported:

scram-sha-1

scram-sha-256

scram-sha-384

scram-sha-512

salt-index
Index of the column containing the salt is
used for hashing.

iteration-count-index
Index of the column containing the number
of iterations used.

hash-encoding
Specify the representation for the hash.
Permitted values:

base64 (default)

hex

salt-encoding
Specify the representation for the salt.
Permitted values:

base64 (default)

hex

Salted Challenge
Response
Authentication
mechanism is used for
hashing.

modular-crypt-
mapper password-index

The index of the column containing the
encrypted password.

The modular-crypt
encoding allows for
multiple pieces of
information to be
encoded in single string
such as the password
type, the hash or digest,
the salt, and the
iteration count.

Mapper name Attributes Encryption method

APPENDIX A. REFERENCE MATERIAL

75

Revised on 2019-12-05 13:42:08 UTC

JBoss Enterprise Application Platform Continuous Delivery 18 How to Configure Identity Management

76

	Table of Contents
	PREFACE
	CHAPTER 1. IDENTITY MANAGEMENT OVERVIEW
	CHAPTER 2. ELYTRON SUBSYSTEM
	2.1. CONFIGURE AUTHENTICATION WITH A FILESYSTEM-BASED IDENTITY STORE
	2.2. CONFIGURE AUTHENTICATION WITH A PROPERTIES FILE-BASED IDENTITY STORE
	2.3. CONFIGURE AUTHENTICATION WITH A DATABASE-BASED IDENTITY STORE
	2.4. CONFIGURE AUTHENTICATION WITH AN LDAP-BASED IDENTITY STORE
	2.5. CONFIGURE AUTHENTICATION WITH CERTIFICATES
	2.6. CONFIGURE AUTHENTICATION AND AUTHORIZATION USING MULTIPLE IDENTITY STORES
	2.6.1. Aggregate Realm in Elytron
	2.6.2. Configuring Authentication and Authorization Using an Aggregate Realm
	2.6.3. Example Aggregate Realms

	2.7. OVERRIDE AN APPLICATION’S AUTHENTICATION CONFIGURATION
	2.8. SET UP CACHING FOR SECURITY REALMS
	2.9. CONFIGURE APPLICATIONS TO USE CONTAINER-MANAGED SINGLE SIGN-ON

	CHAPTER 3. LEGACY SECURITY SUBSYSTEM
	3.1. CONFIGURE A SECURITY DOMAIN TO USE LDAP
	3.1.1. LdapExtended Login Module
	3.1.1.1. Configure a Security Domain to use the LdapExtended Login Module

	3.2. CONFIGURE A SECURITY DOMAIN TO USE A DATABASE
	3.2.1. Database Login Module
	3.2.1.1. Configure a Security Domain to use the Database Login Module

	3.3. CONFIGURE A SECURITY DOMAIN TO USE A PROPERTIES FILE
	3.3.1. UsersRoles Login Module
	3.3.1.1. Configure a Security Domain to use the UsersRoles Login Module

	3.4. CONFIGURE A SECURITY DOMAIN TO USE CERTIFICATE-BASED AUTHENTICATION
	3.4.1. Creating a Security Domain with Certificate-Based Authentication
	3.4.2. Configure an Application to use a Security Domain with Certificate-Based Authentication
	3.4.3. Configure the Client

	3.5. CONFIGURE CACHING FOR A SECURITY DOMAIN
	3.5.1. Setting the Cache Type for a Security Domain
	3.5.2. Listing and Flushing Principals
	3.5.3. Disabling Caching for a Security Domain

	CHAPTER 4. APPLICATION CONFIGURATION
	4.1. CONFIGURE WEB APPLICATIONS TO USE ELYTRON OR LEGACY SECURITY FOR AUTHENTICATION
	Silent BASIC Authentication
	Using Elytron and Legacy Security Subsystems in Parallel

	4.2. CONFIGURE CLIENT AUTHENTICATION WITH ELYTRON CLIENT
	4.2.1. The Configuration File Approach
	4.2.2. The Programmatic Approach
	4.2.3. The Default Configuration Approach
	4.2.4. Using Elytron Client with Clients Deployed to JBoss EAP
	4.2.5. Configuring a JMX Client Using the wildfly-config.xml File
	4.2.6. Using the ElytronAuthenticator to Propagate Identities

	4.3. CONFIGURING TRUSTED SECURITY DOMAIN OUTFLOWS
	Importing a Security Identity
	Outflow

	CHAPTER 5. SECURING THE MANAGEMENT INTERFACES WITH LDAP
	5.1. USING ELYTRON
	5.1.1. Using Elytron for Two-way SSL/TLS for the Outbound LDAP Connection

	5.2. USING LEGACY CORE MANAGEMENT AUTHENTICATION
	5.2.1. Using Two-way SSL/TLS for the Outbound LDAP Connection

	5.3. LDAP AND RBAC
	5.3.1. Using LDAP and RBAC Independently
	5.3.2. Combining LDAP and RBAC for Authorization
	5.3.2.1. Using group-search
	5.3.2.2. Using username-to-dn
	5.3.2.3. Mapping LDAP Group Information to RBAC Roles

	5.4. ENABLING CACHING
	5.4.1. Cache Configuration
	5.4.2. Example
	5.4.2.1. Reading the Current Cache Configuration
	5.4.2.2. Enabling a Cache
	5.4.2.3. Inspecting an Existing Cache
	5.4.2.4. Testing an Existing Cache’s Contents
	5.4.2.5. Flushing a Cache
	5.4.2.6. Removing a Cache

	CHAPTER 6. CONFIGURE A SECURITY DOMAIN TO USE A SECURITY MAPPING
	CHAPTER 7. STANDALONE SERVER VS. MANAGED DOMAIN CONSIDERATIONS
	APPENDIX A. REFERENCE MATERIAL
	A.1. EXAMPLE WILDFLY-CONFIG.XML
	A.2. REFERENCE FOR SINGLE SIGN-ON ATTRIBUTES
	A.2.1. Single Sign-on

	A.3. PASSWORD MAPPERS

