
Red Hat JBoss Data Grid 7.1

Data Grid for OpenShift

Using Data Grid for OpenShift

Last Updated: 2018-06-05

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

Using Data Grid for OpenShift

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Data Grid for OpenShift image

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION

CHAPTER 2. BEFORE YOU BEGIN
2.1. FUNCTIONALITY DIFFERENCES FOR JDG FOR OPENSHIFT IMAGES
2.2. INITIAL SETUP
2.3. FORMING A CLUSTER USING THE JDG FOR OPENSHIFT IMAGES
2.4. ROLLING UPGRADES

2.4.1. Rolling Upgrades Using Hot Rod
2.4.2. Rolling Upgrades Using REST

2.5. ENDPOINTS
2.6. CONFIGURING CACHES

2.6.1. Preserving Existing Content of the JBoss Data Grid Data Directory Across JDG for OpenShift Pod
Restarts

2.7. DATASOURCES
2.7.1. JNDI Mappings for Datasources
2.7.2. Database Drivers
2.7.3. Examples

2.7.3.1. Single Mapping
2.7.3.2. Multiple Mappings

2.7.4. Environment Variables
2.8. SECURITY DOMAINS
2.9. MANAGING JDG FOR OPENSHIFT IMAGES

CHAPTER 3. GET STARTED
3.1. USING THE JDG FOR OPENSHIFT IMAGE SOURCE-TO-IMAGE (S2I) PROCESS

3.1.1. Using a Different JDK Version in the JDG for OpenShift image
3.2. USING A MODIFIED JDG FOR OPENSHIFT IMAGE
3.3. BINARY BUILDS

CHAPTER 4. TUTORIALS
4.1. EXAMPLE WORKFLOW: DEPLOYING BINARY BUILD OF EAP 6.4 / EAP 7.0 INFINISPAN APPLICATION
TOGETHER WITH JDG FOR OPENSHIFT IMAGE

4.1.1. Prerequisite
4.1.2. Deploy JBoss Data Grid 7.1 server
4.1.3. Deploy binary build of EAP 6.4 / EAP 7.0 CarMart application

4.2. EXAMPLE WORKFLOW: PERFORMING JDG ROLLING UPGRADE FROM JDG 6.5 FOR OPENSHIFT IMAGE TO
JDG 7.1 FOR OPENSHIFT IMAGE USING THE REST CONNECTOR

4.2.1. Start / Deploy the Source Cluster
4.2.2. Deploy the Target Cluster
4.2.3. Configure REST Store for Caches on the Target Cluster
4.2.4. Do Not Dump the Key Set During REST Rolling Upgrades
4.2.5. Synchronize Cache Data Using the REST Connector
4.2.6. Use the Synchronized Data from the JBoss Data Grid 7.1 (Target) cluster
4.2.7. Disable the RestCacheStore on the Target Cluster

CHAPTER 5. REFERENCE
5.1. ARTIFACT REPOSITORY MIRRORS
5.2. INFORMATION ENVIRONMENT VARIABLES
5.3. CONFIGURATION ENVIRONMENT VARIABLES
5.4. CACHE ENVIRONMENT VARIABLES
5.5. DATASOURCE ENVIRONMENT VARIABLES
5.6. SECURITY ENVIRONMENT VARIABLES
5.7. EXPOSED PORTS

4

5
5
5
5
6
6
6
6
7

7
7
8
8
8
8
8
9
9
9

10
10
10
11
11

12

12
12
12
13

16
17
19

20
22
22
22
23

24
24
24
25
28
31
33
34

Table of Contents

1

5.8. TROUBLESHOOTING 34

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
Red Hat JBoss Data Grid (JDG) is available as a containerized image that is designed for use with
OpenShift. This image provides an in-memory distributed database so that developers can quickly
access large amounts of data in a hybrid environment.

IMPORTANT

There are significant differences in supported configurations and functionality in the
Data Grid for OpenShift image compared to the full release of JBoss Data Grid.

This topic details the differences between the JDG for OpenShift image and the full release of JBoss
Data Grid, and provides instructions specific to running and configuring the JDG for OpenShift image.
Documentation for other JBoss Data Grid functionality not specific to the JDG for OpenShift image
can be found in the JBoss Data Grid documentation on the Red Hat Customer Portal .

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

4

https://access.redhat.com/documentation/en/red-hat-jboss-data-grid/

CHAPTER 2. BEFORE YOU BEGIN

2.1. FUNCTIONALITY DIFFERENCES FOR JDG FOR OPENSHIFT IMAGES

There are several major functionality differences in the JDG for OpenShift image:

The JBoss Data Grid Management Console is not available to manage JDG for OpenShift
images.

The JBoss Data Grid Management CLI is only bound locally. This means that you can only
access the Management CLI of a container from within the pod.

Library mode is not supported.

Only JDBC is supported for a backing cache-store. Support for remote cache stores are
present only for data migration purposes.

2.2. INITIAL SETUP

The Tutorials in this guide follow on from and assume an OpenShift instance similar to that created in
the OpenShift Primer.

2.3. FORMING A CLUSTER USING THE JDG FOR OPENSHIFT IMAGES

Clustering is achieved through one of two discovery mechanisms: Kubernetes or DNS. This is
accomplished by configuring the JGroups protocol stack in clustered-openshift.xml with either the
<openshift.KUBE_PING/> or <openshift.DNS_PING/> elements. By default KUBE_PING is the pre-
configured and supported protocol.

For KUBE_PING to work the following steps must be taken:

1. The OPENSHIFT_KUBE_PING_NAMESPACE environment variable must be set (as seen in the
Configuration Environment Variables). If this variable is not set, then the server will act as if it is
a single-node cluster, or a cluster that consists of only one node.

2. The OPENSHIFT_KUBE_PING_LABELS environment variable must be set (as seen in the
Configuration Environment Variables). If this variable is not set, then pods outside the
application (but in the same namespace) will attempt to join.

3. Authorization must be granted to the service account the pod is running under to be allowed
to Kubernetes' REST api. This is done on the command line:

Example 2.1. Policy commands

Using the default service account in the myproject namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project
-q):default -n $(oc project -q)

Using the eap-service-account in the myproject namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project
-q):eap-service-account -n $(oc project -q)

CHAPTER 2. BEFORE YOU BEGIN

5

https://access.redhat.com/documentation/en/red-hat-xpaas/0/openshift-primer/openshift-primer

Once the above is configured images will automatically join the cluster as they are deployed; however,
removing images from an active cluster, and therefore shrinking the cluster, is not supported.

2.4. ROLLING UPGRADES

In Red Hat JBoss Data Grid, rolling upgrades permit a cluster to be upgraded from one version to a new
version without experiencing any downtime.

IMPORTANT

When performing a rolling upgrade it is recommended to not update any cache entries in
the source cluster, as this may lead to data inconsistency.

2.4.1. Rolling Upgrades Using Hot Rod

IMPORTANT

Rolling upgrades on Red Hat JBoss Data Grid running in remote client-server mode,
using the Hot Rod connector, are working consistently (allow seamless data migration
with no downtime) from version 6.6.2 through 7.1 . See:

JDG-845 - Rolling Upgrade fixes

JBoss Data Grid 7.0.1 Resolved Issues

for details.

Rolling upgrades on Red Hat JBoss Data Grid from version 6.1 through 6.6.1, using the
Hot Rod connector, are not working correctly yet. See:

JDG-831 - Rolling Upgrade from 6.1 to 7 not working

JBoss Data Grid 7.1 Known Issues

for details.

This is a known issue in Red Hat JBoss Data Grid 7.1, and no workaround exists at this
time.

Since JBoss Data Grid 6.5 for OpenShift image is based on version 6.5 of Red Hat JBoss
Data Grid, rolling upgrades from JBoss Data Grid 6.5 for OpenShift to JBoss Data Grid
7.1 for OpenShift, using the Hot Rod connector, are not possible without a data loss.

2.4.2. Rolling Upgrades Using REST

See Example Workflow: Performing JDG rolling upgrade from JDG 6.5 for OpenShift image to JDG 7.1
for OpenShift image using the REST connector for an end-to-end example of performing JDG rolling
upgrade using the REST connector.

2.5. ENDPOINTS

Clients can access JBoss Data Grid via REST, HotRod, and memcached endpoints defined as usual in
the cache’s configuration.

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

6

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/7.1/html-single/Administration_and_Configuration_Guide/index.html#rolling_upgrades-1
https://issues.jboss.org/browse/JDG-845
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/7.0/html-single/7.0.1_Release_Notes/index.html#Resolved_Issues
https://issues.jboss.org/browse/JDG-831
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.1/html-single/7.1_release_notes/#known_issues_2

If a client attempts to access a cache via HotRod and is in the same project it will be able to receive the
full cluster view and make use of consistent hashing; however, if it is in another project then the client
will unable to receive the cluster view. Additionally, if the client is located outside of the project that
contains the HotRod cache there will be additional latency due to extra network hops being required to
access the cache.

IMPORTANT

Only caches with an exposed REST endpoint will be accessible outside of OpenShift.

2.6. CONFIGURING CACHES

A list of caches may be defined by the CACHE_NAMES environment variable. By default the following
caches are created:

default

memcached

Each cache’s behavior may be controlled through the use of cache-specific environment variables, with
each environment variable expecting the cache’s name as the prefix. For instance, consider the default
cache, any configuration applied to this cache must begin with the DEFAULT_ prefix. To define the
number of cache entry owners for each entry in this cache the DEFAULT_CACHE_OWNERS
environment variable would be used.

A full list of these is found at Cache Environment Variables .

2.6.1. Preserving Existing Content of the JBoss Data Grid Data Directory Across
JDG for OpenShift Pod Restarts

The JBoss Data Grid server uses specified data directory for persistent data file storage (contains for
example ___protobuf_metadata.dat and ___script_cache.dat files, or global state
persistence configuration). When running on OpenShift, the data directory of the JBoss Data Grid
server does not point to a persistent storage medium by default. This means the existing content of the
data directory is deleted each time the JDG for OpenShift pod (the underlying JBoss Data Grid server)
is restarted. To enable storing of data directory content to a persistent storage, deploy the JDG for
OpenShift image using the datagrid71-partition application template with DATAGRID_SPLIT
parameter set to true (default setting).

NOTE

Successful deployment of a JDG for OpenShift image using the datagrid71-partition
template requires the ${APPLICATION_NAME}-datagrid-claim persistent volume claim
to be available, and the ${APPLICATION_NAME}-datagrid-pvol persistent volume to be
mounted at /opt/datagrid/standalone/partitioned_data path. See Persistent Storage
Examples for guidance on how to deploy persistent volumes using different available
plug-ins, and persistent volume claims.

2.7. DATASOURCES

Datasources are automatically created based on the value of some environment variables.

The most important variable is the DB_SERVICE_PREFIX_MAPPING which defines JNDI mappings for
datasources. It must be set to a comma-separated list of <name><database_type>=<PREFIX> triplet,

CHAPTER 2. BEFORE YOU BEGIN

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#persistent-volume-claims
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#persistent-storage-examples

where *name is used as the pool-name in the datasource, database_type determines which database
driver to use, and PREFIX is the prefix used in the names of environment variables, which are used to
configure the datasource.

2.7.1. JNDI Mappings for Datasources

For each <name>-database_type>=PREFIX triplet in the DB_SERVICE_PREFIX_MAPPING
environment variable, a separate datasource will be created by the launch script, which is executed
when running the image.

The <database_type> will determine the driver for the datasource. Currently, only postgresql and
mysql are supported.

The <name> parameter can be chosen on your own. Do not use any special characters.

NOTE

The first part (before the equal sign) of the DB_SERVICE_PREFIX_MAPPING should be
lowercase.

2.7.2. Database Drivers

The JDG for OpenShift image contains Java drivers for MySQL, PostgreSQL, and MongoDB databases
deployed. Datasources are generated only for MySQL and PostGreSQL databases .

NOTE

For MongoDB databases there are no JNDI mappings created because this is not a SQL
database.

2.7.3. Examples

The following examples demonstrate how datasources may be defined using the
DB_SERVICE_PREFIX_MAPPING environment variable.

2.7.3.1. Single Mapping

Consider the value test-postgresql=TEST.

This will create a datasource named java:jboss/datasources/test_postgresql. Additionally, all of the
required settings, such as username and password, will be expected to be provided as environment
variables with the TEST_ prefix, such as TEST_USERNAME and TEST_PASSWORD.

2.7.3.2. Multiple Mappings

Multiple database mappings may also be specified; for instance, considering the following value for the
DB_SERVICE_PREFIX_MAPPING environment variable: cloud-postgresql=CLOUD,test-
mysql=TEST_MYSQL.

NOTE

Multiple datasource mappings should be separated with commas, as seen in the above
example.

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

8

This will create two datasources:

1. java:jboss/datasources/test_mysql

2. java:jboss/datasources/cloud_postgresql

MySQL datasource configuration, such as the username and password, will be expected with the
TEST_MYSQL prefix, for example TEST_MYSQL_USERNAME. Similarly the PostgreSQL datasource will
expect to have environment variables defined with the CLOUD_ prefix, such as CLOUD_USERNAME.

2.7.4. Environment Variables

A full list of datasource environment variables may be found at Datasource Environment Variables .

2.8. SECURITY DOMAINS

To configure a new Security Domain the SECDOMAIN_NAME environment variable must be defined,
which will result in the creation of a security domain named after the passed in value. This domain may
be configured through the use of the Security Environment Variables .

2.9. MANAGING JDG FOR OPENSHIFT IMAGES

A major difference in managing an JDG for OpenShift image is that there is no Management Console
exposed for the JBoss Data Grid installation inside the image. Because images are intended to be
immutable, with modifications being written to a non-persistent file system, the Management Console
is not exposed.

However, the JBoss Data Grid Management CLI (JDG_HOME/bin/cli.sh) is still accessible from within
the container for troubleshooting purposes.

1. First open a remote shell session to the running pod:

$ oc rsh <pod_name>

2. Then run the following from the remote shell session to launch the JBoss Data Grid
Management CLI:

$ /opt/datagrid/bin/cli.sh

WARNING

Any configuration changes made using the JBoss Data Grid Management CLI on a
running container will be lost when the container restarts.

Making configuration changes to the JBoss Data Grid instance inside the JDG for OpenShift image is
different from the process you may be used to for a regular release of JBoss Data Grid.

CHAPTER 2. BEFORE YOU BEGIN

9

CHAPTER 3. GET STARTED
The Red Hat JBoss Data Grid images were automatically created during the installation of OpenShift
along with the other default image streams and templates.

You can make changes to the JBoss Data Grid configuration in the image using either the S2I
templates, or by using a modified JDG for OpenShift image.

3.1. USING THE JDG FOR OPENSHIFT IMAGE SOURCE-TO-IMAGE (S2I)
PROCESS

The recommended method to run and configure the OpenShift JDG for OpenShift image is to use the
OpenShift S2I process together with the application template parameters and environment variables.

The S2I process for the JDG for OpenShift image works as follows:

1. If there is a pom.xml file in the source repository, a Maven build is triggered with the contents
of $MAVEN_ARGS environment variable.

2. By default the package goal is used with the openshift profile, including the system
properties for skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo.redhatga).

3. The results of a successful Maven build are copied to JDG_HOME/standalone/deployments.
This includes all JAR, WAR, and EAR files from the directory within the source repository
specified by $ARTIFACT_DIR environment variable. The default value of $ARTIFACT_DIR is
the target directory.

Any JAR, WAR, and EAR in the deployments source repository directory are copied to the
JDG_HOME/standalone/deployments directory.

All files in the configuration source repository directory are copied to
JDG_HOME/standalone/configuration.

NOTE

If you want to use a custom JBoss Data Grid configuration file, it should be
named clustered-openshift.xml.

4. All files in the modules source repository directory are copied to JDG_HOME/modules.

Refer to the Artifact Repository Mirrors section for additional guidance on how to instruct the S2I
process to utilize the custom Maven artifacts repository mirror.

3.1.1. Using a Different JDK Version in the JDG for OpenShift image

The JDG for OpenShift image may come with multiple versions of OpenJDK installed, but only one is
the default. For example, the JDG for OpenShift image comes with OpenJDK 1.7 and 1.8 installed, but
OpenJDK 1.8 is the default.

If you want the JDG for OpenShift image to use a different JDK version than the default, you must:

Ensure that your pom.xml specifies to build your code using the intended JDK version.

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

10

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/installation-and-configuration#install-config-imagestreams-templates

In the S2I application template, configure the image’s JAVA_HOME environment variable to
point to the intended JDK version. For example:

{
 "name": "JAVA_HOME",
 "value": "/usr/lib/jvm/java-1.7.0"
}

3.2. USING A MODIFIED JDG FOR OPENSHIFT IMAGE

An alternative method is to make changes to the image, and then use that modified image in
OpenShift.

The JBoss Data Grid configuration file that OpenShift uses inside the JDG for OpenShift image is
JDG_HOME/standalone/configuration/clustered-openshift.xml, and the JBoss Data Grid startup
script is JDG_HOME/bin/openshift-launch.sh.

You can run the JDG for OpenShift image in Docker, make the required configuration changes using
the JBoss Data Grid Management CLI (JDG_HOME/bin/jboss-cli.sh), and then commit the changed
container as a new image. You can then use that modified image in OpenShift.

IMPORTANT

It is recommended that you do not replace the OpenShift placeholders in the JDG for
OpenShift image configuration file, as they are used to automatically configure services
(such as messaging, datastores, HTTPS) during a container’s deployment. These
configuration values are intended to be set using environment variables.

NOTE

Ensure that you follow the guidelines for creating images.

3.3. BINARY BUILDS

To deploy existing applications on OpenShift, you can use the binary source capability.

See Example Workflow: Deploying binary build of EAP 6.4 / EAP 7.0 Infinispan application together
with JDG for OpenShift image for an end-to-end example of a binary build.

CHAPTER 3. GET STARTED

11

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/creating-images#guidelines
https://docs.openshift.com/container-platform/latest/dev_guide/builds/build_inputs.html#binary-source

CHAPTER 4. TUTORIALS

4.1. EXAMPLE WORKFLOW: DEPLOYING BINARY BUILD OF EAP 6.4 /
EAP 7.0 INFINISPAN APPLICATION TOGETHER WITH JDG FOR
OPENSHIFT IMAGE

The following example uses CarMart quickstart to deploy EAP 6.4 / EAP 7.0 Infinispan application,
accessing a remote JBoss Data Grid server running in the same OpenShift project.

4.1.1. Prerequisite

1. Create a new project.

$ oc new-project jdg-bin-demo

NOTE

For brevity this example will not configure clustering. See dedicated section if
data replication across the cluster is desired.

4.1.2. Deploy JBoss Data Grid 7.1 server

2. Identify the image stream for the JBoss Data Grid 7.1 image.

$ oc get is -n openshift | grep grid | cut -d ' ' -f 1
jboss-datagrid71-openshift

3. Deploy the server. Also specify the following:

a. carcache as the name of application,

b. A Hot Rod based connector, and

c. carcache as the name of the Infinispan cache to configure.

$ oc new-app --name=carcache \
--image-stream=jboss-datagrid71-openshift \
-e INFINISPAN_CONNECTORS=hotrod \
-e CACHE_NAMES=carcache
--> Found image d83b4b2 (3 months old) in image stream
"openshift/jboss-datagrid71-openshift" under tag "latest" for
"jboss-datagrid71-openshift"

 JBoss Data Grid 7.1

 Provides a scalable in-memory distributed database designed
for fast access to large volumes of data.

 Tags: datagrid, java, jboss, xpaas

 * This image will be deployed in deployment config "carcache"
 * Ports 11211/tcp, 11222/tcp, 8080/tcp, 8443/tcp, 8778/tcp
will be load balanced by service "carcache"

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

12

https://github.com/jboss-openshift/openshift-quickstarts/tree/master/datagrid/carmart

 * Other containers can access this service through the
hostname "carcache"

--> Creating resources ...
 deploymentconfig "carcache" created
 service "carcache" created
--> Success
 Run 'oc status' to view your app.

4.1.3. Deploy binary build of EAP 6.4 / EAP 7.0 CarMart application

4. Clone the source code.

$ git clone https://github.com/jboss-openshift/openshift-
quickstarts.git

5. Configure the Red Hat JBoss Middleware Maven repository .

6. Build the datagrid/carmart application.

$ cd openshift-quickstarts/datagrid/carmart/

$ mvn clean package
[INFO] Scanning for projects...
[INFO]
[INFO] --

[INFO] Building JBoss JDG Quickstart: carmart 1.2.0.Final
[INFO] --

...
[INFO] Building war: /tmp/openshift-
quickstarts/datagrid/carmart/target/jboss-carmart.war
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 3.360 s
[INFO] Finished at: 2017-06-27T19:11:46+02:00
[INFO] Final Memory: 34M/310M
[INFO] --

7. Prepare the directory structure on the local file system.
Application archives in the deployments/ subdirectory of the main binary build directory are
copied directly to the standard deployments folder of the image being built on OpenShift. For
the application to deploy, the directory hierarchy containing the web application data must be
correctly structured.

Create main directory for the binary build on the local file system and deployments/
subdirectory within it. Copy the previously built WAR archive for the carmart quickstart to the
deployments/ subdirectory:

CHAPTER 4. TUTORIALS

13

https://github.com/jboss-openshift/openshift-quickstarts.git
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/maven-repository

$ ls
pom.xml README.md README-openshift.md README-tomcat.md src
target

$ mkdir -p jdg-binary-demo/deployments

$ cp target/jboss-carmart.war jdg-binary-demo/deployments/

NOTE

Location of the standard deployments directory depends on the underlying base
image, that was used to deploy the application. See the following table:

Table 4.1. Standard Location of the Deployments Directory

Name of the Underlying Base Image(s) Standard Location of the Deployments
Directory

EAP for OpenShift 6.4 and 7.0 $JBOSS_HOME/standalone/deploymen
ts

Java S2I for OpenShift /deployments

JWS for OpenShift $JWS_HOME/webapps

8. Identify the image stream for EAP 6.4 / EAP 7.0 image.

$ oc get is -n openshift | grep eap | cut -d ' ' -f 1
jboss-eap64-openshift
jboss-eap70-openshift

9. Create new binary build, specifying image stream and application name.

$ oc new-build --binary=true \
--image-stream=jboss-eap64-openshift \
--name=eap-app
--> Found image 8fbf0f7 (2 months old) in image stream
"openshift/jboss-eap64-openshift" under tag "latest" for "jboss-
eap64-openshift"

 JBoss EAP 6.4

 Platform for building and running JavaEE applications on JBoss
EAP 6.4

 Tags: builder, javaee, eap, eap6

 * A source build using binary input will be created
 * The resulting image will be pushed to image stream "eap-
app:latest"
 * A binary build was created, use 'start-build --from-dir' to

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

14

trigger a new build

--> Creating resources with label build=eap-app ...
 imagestream "eap-app" created
 buildconfig "eap-app" created
--> Success

NOTE

Specify jboss-eap70-openshift as the image stream name in the
aforementioned command to use EAP 7.0 image for the application.

10. Start the binary build. Instruct oc executable to use main directory of the binary build we
created in previous step as the directory containing binary input for the OpenShift build.

$ oc start-build eap-app --from-dir=jdg-binary-demo/ --follow
Uploading directory "jdg-binary-demo" as binary input for the build
...
build "eap-app-1" started
Receiving source from STDIN as archive ...
Copying all war artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all ear artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all rar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all jar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all war artifacts from /home/jboss/source/deployments
directory into /opt/eap/standalone/deployments for later
deployment...
'/home/jboss/source/deployments/jboss-carmart.war' ->
'/opt/eap/standalone/deployments/jboss-carmart.war'
Copying all ear artifacts from /home/jboss/source/deployments
directory into /opt/eap/standalone/deployments for later
deployment...
Copying all rar artifacts from /home/jboss/source/deployments
directory into /opt/eap/standalone/deployments for later
deployment...
Copying all jar artifacts from /home/jboss/source/deployments
directory into /opt/eap/standalone/deployments for later
deployment...
Pushing image 172.30.82.129:5000/jdg-bin-demo/eap-app:latest ...
Pushed 0/7 layers, 1% complete
Pushed 1/7 layers, 17% complete
Pushed 2/7 layers, 31% complete
Pushed 3/7 layers, 46% complete
Pushed 4/7 layers, 81% complete
Pushed 5/7 layers, 84% complete
Pushed 6/7 layers, 99% complete
Pushed 7/7 layers, 100% complete
Push successful

11. Create a new OpenShift application based on the build.

CHAPTER 4. TUTORIALS

15

$ oc new-app eap-app
--> Found image ee25340 (3 minutes old) in image stream "jdg-bin-
demo/eap-app" under tag "latest" for "eap-app"

 jdg-bin-demo/eap-app-1:4bab3f63

 Platform for building and running JavaEE applications on JBoss
EAP 6.4

 Tags: builder, javaee, eap, eap6

 * This image will be deployed in deployment config "eap-app"
 * Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by
service "eap-app"
 * Other containers can access this service through the
hostname "eap-app"

--> Creating resources ...
 deploymentconfig "eap-app" created
 service "eap-app" created
--> Success
 Run 'oc status' to view your app.

12. Expose the service as route.

$ oc get svc -o name
service/carcache
service/eap-app

$ oc get route
No resources found.

$ oc expose svc/eap-app
route "eap-app" exposed

$ oc get route
NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
eap-app eap-app-jdg-bin-demo.openshift.example.com
eap-app 8080-tcp None

13. Access the application.
Access the CarMart application in your browser using the URL http://eap-app-jdg-bin-
demo.openshift.example.com/jboss-carmart. You can view / remove existing cars (Home
tab), or add a new car (New car tab).

4.2. EXAMPLE WORKFLOW: PERFORMING JDG ROLLING UPGRADE
FROM JDG 6.5 FOR OPENSHIFT IMAGE TO JDG 7.1 FOR OPENSHIFT
IMAGE USING THE REST CONNECTOR

The following example details the procedure to perform a rolling upgrade from JBoss Data Grid 6.5 for
OpenShift image to JBoss Data Grid 7.1 for OpenShift image, using the REST connector.

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

16

IMPORTANT

When performing a rolling upgrade it is recommended to not update any cache entries in
the source cluster, as this may lead to data inconsistency.

4.2.1. Start / Deploy the Source Cluster

A rolling upgrade to succeed, it assumes the Source Cluster with properties similar to the ones below:

The name of the source JBoss Data Grid 6.5 cluster is jdg65-cluster and it has been deployed
using the datagrid65-basic template or similar.

The name of the replicated cache to synchronize its content during rolling upgrade is
clustercache.

The REST Infinispan connector has been configured for the application.

The service name of the REST connector endpoint on JBoss Data Grid 6.5 cluster is jdg65-
cluster.

The clustercache replicated cache has been previously populated with some content to
synchronize.

to be up and running.

NOTE

For demonstration purposes source JBoss Data Grid 6.5 for OpenShift cluster with
aforementioned properties can be deployed running e.g. the following steps:

1. Create a dedicated OpenShift project.

$ oc new-project jdg-rest-rolling-upgrade-demo

2. Deploy source JBoss Data Grid 6.5 cluster with the REST connector enabled,
utilizing replicated cache named clustercache.

$ oc new-app --template=datagrid65-basic \
-p APPLICATION_NAME=jdg65-cluster \
-p INFINISPAN_CONNECTORS=rest \
-p CACHE_NAMES=clustercache \
-e CLUSTERCACHE_CACHE_TYPE=replicated
--> Deploying template "openshift/datagrid65-basic" to
project jdg-rest-rolling-upgrade-demo

 datagrid65-basic

 Application template for JDG 6.5 applications.

 * With parameters:
 * APPLICATION_NAME=jdg65-cluster
 * HOSTNAME_HTTP=
 * USERNAME=
 * PASSWORD=
 * IMAGE_STREAM_NAMESPACE=openshift

CHAPTER 4. TUTORIALS

17

 * INFINISPAN_CONNECTORS=rest
 * CACHE_NAMES=clustercache
 * ENCRYPTION_REQUIRE_SSL_CLIENT_AUTH=
 * MEMCACHED_CACHE=default
 * REST_SECURITY_DOMAIN=
 * JGROUPS_CLUSTER_PASSWORD=kQiUcyhC # generated

--> Creating resources ...
 service "jdg65-cluster" created
 service "jdg65-cluster-memcached" created
 service "jdg65-cluster-hotrod" created
 route "jdg65-cluster" created
 deploymentconfig "jdg65-cluster" created
--> Success
 Run 'oc status' to view your app.

3. Populate clustercache with some content to synchronize later.

a. Add some entries using JBoss Data Grid CLI.

i. Given the following JBoss Data Grid CLI file to add cache entries non-
interactively.

$ mkdir -p cache-entries

$ cat << EOD > cache-entries/cache-input.cli
cache clustercache
put key1 val1
put key2 val2
put key3 val3
put key4 val4
EOD

Please note a rolling upgrade will fail (BZ-1101512 - CLI UPGRADE
command fails when testing data stored via CLI with REST encoding)
when storing cache data via CLI using the --codec=rest encoding
parameter for the put commands in previous step.

To overcome this issue, we do not specify codec to be used for encoding
of cache entries (cache entries will be stored using the default none
encoding).

ii. Get the name of the JBoss Data Grid 6.5 pod.

$ export JDG65_POD=$(oc get pods -o name \
| grep -Po "[^/]+$" | grep "jdg65" \
| grep -v "deploy")

iii. Copy the cache-input.cli file to JBoss Data Grid 6.5 pod.

$ oc rsync --no-perms=true ./cache-entries/
$JDG65_POD:/tmp
sending incremental file list
cache-input.cli

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

18

https://bugzilla.redhat.com/show_bug.cgi?id=1101512
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/6.4/html-single/6.4.0_Release_Notes/index.html#Known_Issues

sent 182 bytes received 40 bytes 444.00 bytes/sec
total size is 75 speedup is 0.34

iv. Add entries to clustercache by executing commands from cli-
input.cli file.

$ oc rsh $JDG65_POD /opt/datagrid/bin/cli.sh \
--connect=localhost --file=/tmp/cache-input.cli
Picked up JAVA_TOOL_OPTIONS: -
Duser.home=/home/jboss -Duser.name=jboss

b. Add some entries directly via remote REST client.

i. Get the host value of the route for jdg65-cluster.

$ export JDG65_ROUTE=$(oc get routes \
--no-headers | grep "jdg65" | tr -s ' ' \
| cut -d ' ' -f2)

ii. Add example ExampleKey entry to clustercache using the REST
endpoint remotely.

$ curl -X PUT -d "ExampleValue" \
$JDG65_ROUTE/rest/clustercache/ExampleKey

4.2.2. Deploy the Target Cluster

Perform the following to deploy JBoss Data Grid 7.1 cluster with the name of jdg71-cluster, using
datagrid71-basic template, and clustercache as the name of the replicated cache to synchronize
during the rolling upgrade:

IMPORTANT

The datagrid71-basic template uses ephemeral, in-memory datastore for the most
frequently accessed data. Therefore any cache data, synchronized during a rolling
upgrade will be available only during lifecycle of a JDG 7.1 pod (from rolling upgrade to
pod restart). Use persistent templates (datagrid71-mysql-persistent or datagrid71-
postgresql-persistent) to preserve the previously synchronized cache data across pod
restarts.

$ oc new-app --template=datagrid71-basic \
-p APPLICATION_NAME=jdg71-cluster \
-p INFINISPAN_CONNECTORS=rest \
-p CACHE_NAMES=clustercache \
-p CACHE_TYPE_DEFAULT=replicated \
-p MEMCACHED_CACHE=""
--> Deploying template "openshift/datagrid71-basic" to project jdg-rest-
rolling-upgrade-demo

 Red Hat JBoss Data Grid 7.1 (Ephemeral, no https)

 Application template for JDG 7.1 applications.

CHAPTER 4. TUTORIALS

19

 A new data grid service has been created in your project. It supports
connector type(s) "rest".

 * With parameters:
 * Application Name=jdg71-cluster
 * Custom http Route Hostname=
 * Username=
 * Password=
 * ImageStream Namespace=openshift
 * Infinispan Connectors=rest
 * Cache Names=clustercache
 * Datavirt Cache Names=
 * Default Cache Type=replicated
 * Encryption Requires SSL Client Authentication?=
 * Memcached Cache Name=
 * REST Security Domain=
 * JGroups Cluster Password=3Aux1ORc # generated

--> Creating resources ...
 service "jdg71-cluster" created
 service "jdg71-cluster-memcached" created
 service "jdg71-cluster-hotrod" created
 route "jdg71-cluster" created
 deploymentconfig "jdg71-cluster" created
--> Success
 Run 'oc status' to view your app.

4.2.3. Configure REST Store for Caches on the Target Cluster

For each cache in the Target Cluster, intended to be synchronized during a rolling upgrade, configure
a RestCacheStore with the following settings:

1. Ensure that the host and port values point to the Source Cluster.

2. Ensure that the path value points to the REST endpoint of the Source Cluster.

Given the following helper script to add a REST store to all replicated caches defined in CACHE_NAMES
array:

$ mkdir -p update-cache

NOTE

Edit the definition of the REST_SERVICE variable below to match the name of the REST
service endpoint for your environment. Also, edit the definition of CACHE_NAMES
variable in the following helper script to contain names of all caches, that should be
equipped with the definition of a REST store.

$ cat << \EOD > ./update-cache/add-rest-store-to-cache.sh
#!/bin/bash

export JDG_CONF=/opt/datagrid/standalone/configuration/clustered-

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

20

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/7.1/html-single/Administration_and_Configuration_Guide/index.html#rolling_upgrades_using_rest

openshift.xml
export REST_SERVICE="jdg65-cluster"
read -r -d '' REST_STORE_ELEM << EOV
<rest-store path="/rest/cachename" shared="true" purge="false"
passivation="false">
<connection-pool connection-timeout="60000" socket-timeout="60000" tcp-no-
delay="true"/>
<remote-server outbound-socket-binding="remote-store-rest-server"/>
</rest-store>
EOV

declare -a CACHE_NAMES=("clustercache")

for CACHE in "${CACHE_NAMES[@]}"
do
 # Replace 'cachename' with actual cachename
 REST_STORE_ELEM=${REST_STORE_ELEM//cachename/${CACHE}}
 # Replace newline character with newline and two tabs (in escaped form)
 export REST_STORE_ELEM=${REST_STORE_ELEM//$'\n'/\\n\\t\\t}
 # sed pattern to locate cache definition
 CACHE_PATTERN="\(<replicated-cache[[:space:]]name=\"${CACHE}\"[^<]\+\)\
(</replicated-cache>\)"
 # Add REST store definition to cache entry
 sed -i "s#${CACHE_PATTERN}#\1\n\t\t${REST_STORE_ELEM}\n\2#g" $JDG_CONF
done

sed pattern to locate host / port settings for REST connector
REST_HOST_PATTERN="\(<remote-destination host=\"\)remote-host\(\"
port=\"8080\"/>\)"
Set host value to point to the Source Cluster
sed -i "s#${REST_HOST_PATTERN}#\1${REST_SERVICE}\2#g" $JDG_CONF
EOD

, perform the following:

1. Get the name of the JBoss Data Grid 7.1 pod.

$ export JDG71_POD=$(oc get pods -o name \
| grep -Po "[^/]+$" | grep "jdg71" | grep -v "deploy")

2. Copy the add-rest-store-to-cache.sh script to JBoss Data Grid 7.1 pod.

$ oc rsync --no-perms=true update-cache/ $JDG71_POD:/tmp
sending incremental file list

sent 71 bytes received 11 bytes 54.67 bytes/sec
total size is 892 speedup is 10.88

3. Run the script to:

a. Add REST store definition to each replicated cache from CACHE_NAMES array.

b. Set host and port to point to the Source Cluster.

$ oc rsh $JDG71_POD /bin/bash /tmp/add-rest-store-to-cache.sh

CHAPTER 4. TUTORIALS

21

4. Restart the JBoss Data Grid 7.1 server in order the corresponding caches to recognize the
REST store configuration.

$ oc rsh $JDG71_POD /opt/datagrid/bin/cli.sh \
--connect ':reload'
Picked up JAVA_TOOL_OPTIONS: -Duser.home=/home/jboss -
Duser.name=jboss
{
 "outcome" => "success",
 "result" => undefined
}

WARNING

When restarting the server it is important to restart just the JBoss Data
Grid process within the running container, not the whole container, since
in the latter case the JBoss Data Grid container would be recreated with
the default configuration from scratch, without the REST store(s) to be
defined for specific cache(s).

4.2.4. Do Not Dump the Key Set During REST Rolling Upgrades

The REST rolling upgrades use case is designed to fetch all the data from the Source Cluster without
using the recordKnownGlobalKeyset operation.

WARNING

Do not invoke the recordKnownGlobalKeyset operation for REST rolling
upgrades. If you invoke this operation, it will cause data corruption and REST
rolling upgrades will not complete successfully.

4.2.5. Synchronize Cache Data Using the REST Connector

Run the upgrade --synchronize=rest on the Target Cluster for all caches to be migrated.
Optionally, use the --all switch to synchronize all caches in the cluster.

$ oc rsh $JDG71_POD /opt/datagrid/bin/cli.sh -c \
--commands='cd /subsystem=datagrid-infinispan/cache-container=clustered, \
cache clustercache,upgrade --synchronize=rest'
Picked up JAVA_TOOL_OPTIONS: -Duser.home=/home/jboss -Duser.name=jboss
ISPN019500: Synchronized 5 entries using migrator 'rest' on cache
'clustercache'

4.2.6. Use the Synchronized Data from the JBoss Data Grid 7.1 (Target) cluster

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

22

All the requested data have been just synchronized. You can now point the client application(s) to the
Target Cluster.

1. Get the value of key1 from the JBoss Data Grid 7.1 cache via CLI.

$ oc rsh $JDG71_POD /opt/datagrid/bin/cli.sh -c \
--commands='cd /subsystem=datagrid-infinispan/cache-
container=clustered, \
cache clustercache,get key1' \
| grep '"' | base64 -di; echo
val1

2. Get the value of ExampleKey from the JBoss Data Grid 7.1 cache via remote REST call.

a. Get the value of JBoss Data Grid 7.1 route.

$ JDG71_ROUTE=$(oc get routes | grep jdg71 \
| tr -s ' ' | cut -d ' ' -f2)

b. Get the value of ExampleKey via remote REST client.

$ curl -X GET \
$JDG71_ROUTE/rest/clustercache/ExampleKey; echo
ExampleValue

4.2.7. Disable the RestCacheStore on the Target Cluster

Once the Target Cluster has obtained all data from the Source Cluster, disable the RestCacheStore
(for each cache it has been previously configured) on the Target Cluster using the following command:

$ oc rsh $JDG71_POD /opt/datagrid/bin/cli.sh -c \
--commands='cd /subsystem=datagrid-infinispan/cache-container=clustered, \
cache clustercache,upgrade --disconnectsource=rest'
Picked up JAVA_TOOL_OPTIONS: -Duser.home=/home/jboss -Duser.name=jboss
ISPN019501: Disconnected 'rest' migrator source on cache 'clustercache'

The Source Cluster can now be decommissioned.

CHAPTER 4. TUTORIALS

23

CHAPTER 5. REFERENCE

5.1. ARTIFACT REPOSITORY MIRRORS

A repository in Maven holds build artifacts and dependencies of various types (all the project jars,
library jar, plugins or any other project specific artifacts). It also specifies locations from where to
download artifacts from, while performing the S2I build. Besides using central repositories, it is a
common practice for organizations to deploy a local custom repository (mirror).

Benefits of using a mirror are:

Availability of a synchronized mirror, which is geographically closer and faster.

Ability to have greater control over the repository content.

Possibility to share artifacts across different teams (developers, CI), without the need to rely
on public servers and repositories.

Improved build times.

Often, a repository manager can serve as local cache to a mirror. Assuming that the repository
manager is already deployed and reachable externally at http://10.0.0.1:8080/repository/internal/,
the S2I build can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to
the build configuration of the application as follows:

1. Identify the name of the build configuration to apply MAVEN_MIRROR_URL variable against:

oc get bc -o name
buildconfig/jdg

2. Update build configuration of jdg with a MAVEN_MIRROR_URL environment variable

oc env bc/jdg
MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "jdg" updated

3. Verify the setting

oc env bc/jdg --list
buildconfigs jdg
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule new build of the application

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were
retrieved and used during the build.

5.2. INFORMATION ENVIRONMENT VARIABLES

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

24

The following information environment variables are designed to convey information about the image
and should not be modified by the user:

Table 5.1. Information Environment Variables

Variable Name Description Value

JBOSS_DATAGRID_VERSION The full release that the
containerized image is based
from.

7.1.0.GA

JBOSS_HOME The directory where the JBoss
distribution is located.

/opt/datagrid

JBOSS_IMAGE_NAME Image name, same as Name label jboss-datagrid-7/datagrid71-
openshift

JBOSS_IMAGE_RELEASE Image release, same as Release
label

Example: dev

JBOSS_IMAGE_VERSION Image version, same as Version
label

Example: 1.2

JBOSS_MODULES_SYSTEM_PKG
S

 org.jboss.logmanager

JBOSS_PRODUCT datagrid

LAUNCH_JBOSS_IN_BACKGROU
ND

Allows the data grid server to be
gracefully shutdown even when
there is no terminal attached.

true

5.3. CONFIGURATION ENVIRONMENT VARIABLES

Configuration environment variables are designed to conveniently adjust the image without requiring a
rebuild, and should be set by the user as desired.

Table 5.2. Configuration Environment Variables

Variable Name Description Example Value

ADMIN_GROUP Comma-separated list of groups /
roles to configure for the JDG
user specified via the USERNAME
variable.

Example:
admin,___schema_manager,___sc
ript_manager

CHAPTER 5. REFERENCE

25

CACHE_CONTAINER_START Should this cache container be
started on server startup, or
lazily when requested by a
service or deployment. Defaults
to LAZY

Example: EAGER

CACHE_CONTAINER_STATISTICS Determines if the cache container
collects statistics. Disable for
optimal performance. Defaults to
true.

Example: false

CACHE_NAMES List of caches to configure.
Defaults to default, memcached,
and each defined cache will be
configured as a distributed-cache
with a mode of SYNC.

Example: addressbook,
addressbook_indexed

CONTAINER_SECURITY_CUSTO
M_ROLE_MAPPER_CLASS

Class of the custom principal to
role mapper.

Example:
com.acme.CustomRoleMapper

CONTAINER_SECURITY_ROLE_M
APPER

Set a role mapper for this cache
container. Valid values are:
identity-role-mapper, common-
name-role-mapper, cluster-role-
mapper, custom-role-mapper.

Example: identity-role-mapper

CONTAINER_SECURITY_ROLES Define role names and assign
permissions to them.

Example: admin=ALL,
reader=READ, writer=WRITE

DATAGRID_SPLIT Allow multiple instances of JBoss
Data Grid server to share the
same persistent volume. If
enabled (set to true) each
instance will use a separate area
within the persistent volume as its
data directory. Such persistent
volume is required to be mounted
at
/opt/datagrid/standalone/partiti
oned_data path. Not set by
default.

Example: true

DB_SERVICE_PREFIX_MAPPING Define a comma-separated list of
datasources to configure.

Example: test-
mysql=TEST_MYSQL

DEFAULT_CACHE Indicates the default cache for
this cache container.

Example: addressbook

Variable Name Description Example Value

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

26

ENCRYPTION_REQUIRE_SSL_CLI
ENT_AUTH

Whether to require client
certificate authentication.
Defaults to false.

Example: true

HOTROD_AUTHENTICATION If defined the hotrod-connectors
will be configured with
authentication in the
ApplicationRealm.

Example: true

HOTROD_ENCRYPTION If defined the hotrod-connectors
will be configured with encryption
in the ApplicationRealm.

Example: true

HOTROD_SERVICE_NAME Name of the OpenShift service
used to expose HotRod
externally.

Example:
DATAGRID_APP_HOTROD

INFINISPAN_CONNECTORS Comma separated list of
connectors to configure. Defaults
to hotrod, memcached, rest. Note
that if authorization or
authentication is enabled on the
cache then memcached should be
removed as this protocol is
inherently insecure.

Example: hotrod

JAVA_OPTS_APPEND The contents of
JAVA_OPTS_APPEND is
appended to JAVA_OPTS on
startup.

Example: -Dfoo=bar

JGROUPS_CLUSTER_PASSWOR
D

A password to control access to
JGroups. Needs to be set
consistently cluster-wide. The
image default is to use the
OPENSHIFT_KUBE_PING_LABEL
S variable value; however, the
JBoss application templates
generate and supply a random
value.

Example: miR0JaDR

MEMCACHED_CACHE The name of the cache to use for
the Memcached connector.

Example: memcached

OPENSHIFT_KUBE_PING_LABEL
S

Clustering labels selector. Example: application=eap-app

Variable Name Description Example Value

CHAPTER 5. REFERENCE

27

OPENSHIFT_KUBE_PING_NAMES
PACE

Clustering project namespace. Example: myproject

PASSWORD Password for the JDG user. Example: p@ssw0rd

REST_SECURITY_DOMAIN The security domain to use for
authentication and authorization
purposes. Defaults to none (no
authentication).

Example: other

TRANSPORT_LOCK_TIMEOUT Infinispan uses a distributed lock
to maintain a coherent
transaction log during state
transfer or rehashing, which
means that only one cache can be
doing state transfer or rehashing
at the same time. This constraint
is in place because more than one
cache could be involved in a
transaction. This timeout
controls the time to wait to
acquire a distributed lock.
Defaults to 240000.

Example: 120000

USERNAME Username for the JDG user. Example: openshift

Variable Name Description Example Value

NOTE

HOTROD_ENCRYPTION is defined:

If set to a non-empty string (e.g. true), or

If JDG for OpenShift image was deployed using some of the application
templates allowing configuration of HTTPS (datagrid71-https, datagrid71-mysql,
datagrid71-mysql-persistent, datagrid71-postgresql, or datagrid71-postgresql-
persistent), and at the same time the HTTPS_NAME parameter is set when
deploying that template.

5.4. CACHE ENVIRONMENT VARIABLES

The following environment variables all control behavior of individual caches; when defining these
values for a particular cache substitute the cache’s name for CACHE_NAME.

Table 5.3. Cache Environment Variables

Variable Name Description Example Value

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

28

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/#https

<CACHE_NAME>_CACHE_TYPE Determines whether this cache
should be distributed or
replicated. Defaults to
distributed.

Example: replicated

<CACHE_NAME>_CACHE_START Determines if this cache should
be started on server startup, or
lazily when requested by a
service or deployment. Defaults
to LAZY.

Example: EAGER

<CACHE_NAME>_CACHE_BATCH
ING

Enables invocation batching for
this cache. Defaults to false.

Example: true

<CACHE_NAME>_CACHE_STATIS
TICS

Determines whether or not the
cache collects statistics. Disable
for optimal performance. Defaults
to true.

Example: false

<CACHE_NAME>_CACHE_MODE Sets the clustered cache mode,
ASYNC for asynchronous
operations, or SYNC for
synchronous operations.

Example: ASYNC

<CACHE_NAME>_CACHE_QUEUE
_SIZE

In ASYNC mode this attribute can
be used to trigger flushing of the
queue when it reaches a specific
threshold. Defaults to 0, which
disables flushing.

Example: 100

<CACHE_NAME>_CACHE_QUEUE
_FLUSH_INTERVAL

In ASYNC mode this attribute
controls how often the
asynchronous thread runs to
flush the replication queue. This
should be a positive integer that
represents thread wakeup time in
milliseconds. Defaults to 10.

Example: 20

<CACHE_NAME>_CACHE_REMOT
E_TIMEOUT

In SYNC mode the timeout, in
milliseconds, used to wait for an
acknowledgement when making a
remote call, after which the call is
aborted and an exception is
thrown. Defaults to 17500.

Example: 25000

Variable Name Description Example Value

CHAPTER 5. REFERENCE

29

<CACHE_NAME>_CACHE_OWNE
RS

Number of cluster-wide replicas
for each cache entry. Defaults to
2.

Example: 5

<CACHE_NAME>_CACHE_SEGME
NTS

Number of hash space segments
per cluster. The recommended
value is 10 * cluster size. Defaults
to 80.

Example: 30

<CACHE_NAME>_CACHE_L1_LIF
ESPAN

Maximum lifespan, in
milliseconds, of an entry placed in
the L1 cache. Defaults to 0,
indicating that L1 is disabled.

Example: 100.

<CACHE_NAME>_CACHE_EVICTI
ON_STRATEGY

Sets the cache eviction strategy.
Available options are
UNORDERED, FIFO, LRU, LIRS,
and NONE (to disable eviction).
Defaults to NONE.

Example: FIFO

<CACHE_NAME>_CACHE_EVICTI
ON_MAX_ENTRIES

Maximum number of entries in a
cache instance. If selected value
is not a power of two the actual
value will default to the least
power of two larger than the
selected value. A value of -1
indicates no limit. Defaults to
10000.

Example: -1

<CACHE_NAME>_CACHE_EXPIR
ATION_LIFESPAN

Maximum lifespan, in
milliseconds, of a cache entry,
after which the entry is expired
cluster-wide. Defaults to -1,
indicating that the entries never
expire.

Example: 10000

<CACHE_NAME>_CACHE_EXPIR
ATION_MAX_IDLE

Maximum idle time, in
milliseconds, a cache entry will be
maintained in the cache. If the
idle time is exceeded, then the
entry will be expired cluster-wide.
Defaults to -1, indicating that the
entries never expire.

Example: 10000

Variable Name Description Example Value

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

30

<CACHE_NAME>_CACHE_EXPIR
ATION_INTERVAL

Interval, in milliseconds, between
subsequent runs to purge expired
entries from memory and any
cache stores. If you wish to
disable the periodic eviction
process altogether, then set the
interval to -1. Defaults to 5000.

Example: -1

<CACHE_NAME>_JDBC_STORE_
TYPE

Type of JDBC store to configure.
This value may either be string or
binary.

Example: string

<CACHE_NAME>_JDBC_STORE_
DATASOURCE

Defines the jndiname of the
datasource.

Example:
java:jboss/datasources/Example
DS

<CACHE_NAME>_KEYED_TABLE
_PREFIX

Defines the prefix prepended to
the cache name used when
composing the name of the cache
entry table. Defaults to
ispn_entry.

Example: JDG

<CACHE_NAME>_CACHE_INDEX The indexing mode of the cache.
Valid values are NONE, LOCAL,
and ALL. Defaults to NONE.

Example: ALL

<CACHE_NAME>_INDEXING_PR
OPERTIES

Comma separated list of
properties to pass on to the
indexing system.

Example:
default.directory_provider=ram

<CACHE_NAME>_CACHE_SECUR
ITY_AUTHORIZATION_ENABLED

Enables authorization checks for
this cache. Defaults to false.

Example: true

<CACHE_NAME>_CACHE_SECUR
ITY_AUTHORIZATION_ROLES

Sets the valid roles required to
access this cache.

Example: admin, reader, writer

<CACHE_NAME>_CACHE_PARTI
TION_HANDLING_ENABLED

If enabled, then the cache will
enter degraded mode when it
loses too many nodes. Defaults to
true.

Example: false

Variable Name Description Example Value

5.5. DATASOURCE ENVIRONMENT VARIABLES

Datasource properties may be configured with the following environment variables:

Table 5.4. Datasource Environment Variables

CHAPTER 5. REFERENCE

31

Variable Name Description Example Value

<NAME>_<DATABASE_TYPE>_S
ERVICE_HOST

Defines the database server’s
hostname or IP to be used in the
datasource’s connection_url
property.

Example: 192.168.1.3

<NAME>_<DATABASE_TYPE>_S
ERVICE_PORT

Defines the database server’s
port for the datasource.

Example: 5432

<PREFIX>_BACKGROUND_VALI
DATION

When set to true database
connections are validated
periodically in a background
thread prior to use. Defaults to
false (<validate-on-match>
method is enabled by default
instead).

Example: true

<PREFIX>_BACKGROUND_VALI
DATION_MILLIS

Specifies frequency of the
validation (in miliseconds), when
the <background-validation>
database connection validation
mechanism is enabled
(<PREFIX>_BACKGROUND_VALI
DATION variable is set to true).
Defaults to 10000.

Example: 20000

<PREFIX>_CONNECTION_CHECK
ER

Specifies a connection checker
class that is used to validate
connections for the particular
database in use.

Example:
org.jboss.jca.adapters.jdbc.extens
ions.postgres.PostgreSQLValidCo
nnectionChecker

<PREFIX>_DATABASE Defines the database name for
the datasource.

Example: myDatabase

<PREFIX>_DRIVER Defines Java database driver for
the datasource.

Example: postgresql

<PREFIX>_EXCEPTION_SORTER Specifies the exception sorter
class that is used to properly
detect and clean up after fatal
database connection exceptions.

Example:
org.jboss.jca.adapters.jdbc.extens
ions.mysql.MySQLExceptionSorte
r

<PREFIX>_JNDI Defines the JNDI name for the
datasource. Defaults to
java:jboss/datasources/<name>_
<database_type>, where name
and database_type are taken
from the triplet definition. This
setting is useful if you want to
override the default generated
JNDI name.

Example:
java:jboss/datasources/test-
postgresql

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

32

<PREFIX>_JTA Defines Java Transaction API
(JTA) option for the non-XA
datasource (XA datasource are
already JTA capable by default).
Defaults to true.

Example: false

<PREFIX>_MAX_POOL_SIZE Defines the maximum pool size
option for the datasource.

Example: 20

<PREFIX>_MIN_POOL_SIZE Defines the minimum pool size
option for the datasource.

Example: 1

<PREFIX>_NONXA Defines the datasource as a non-
XA datasource. Defaults to false.

Example: true

<PREFIX>_PASSWORD Defines the password for the
datasource.

Example: password

<PREFIX>_TX_ISOLATION Defines the java.sql.Connection
transaction isolation level for the
database.

Example:
TRANSACTION_READ_UNCOMMI
TTED

<PREFIX>_URL Defines connection URL for the
datasource.

Example:
jdbc:postgresql://localhost:5432
/postgresdb

<PREFIX>_USERNAME Defines the username for the
datasource.

Example: admin

Variable Name Description Example Value

5.6. SECURITY ENVIRONMENT VARIABLES

The following environment variables may be defined to customize the environment’s security domain:

Table 5.5. Security Environment Variables

Variable Name Description Example Value

SECDOMAIN_NAME Define in order to enable the
definition of an additional
security domain.

Example: myDomain

SECDOMAIN_PASSWORD_STACK
ING

If defined, the password-stacking
module option is enabled and set
to the value useFirstPass.

Example: true

CHAPTER 5. REFERENCE

33

SECDOMAIN_LOGIN_MODULE The login module to be used.
Defaults to UsersRoles.

Example: UsersRoles

SECDOMAIN_USERS_PROPERTIE
S

The name of the properties file
containing user definitions.
Defaults to users.properties.

Example: users.properties

SECDOMAIN_ROLES_PROPERTIE
S

The name of the properties file
containing role definitions.
Defaults to roles.properties.

Example: roles.properties

Variable Name Description Example Value

5.7. EXPOSED PORTS

The following ports are exposed by default in the JDG for OpenShift Image:

Value Description

8443 Secure Web

8778 -

11211 memcached

11222 internal hotrod

11333 external hotrod

IMPORTANT

The external hotrod connector is only available if the HOTROD_SERVICE_NAME
environment variables has been defined.

5.8. TROUBLESHOOTING

In addition to viewing the OpenShift logs, you can troubleshoot a running JDG for OpenShift Image
container by viewing its logs. These are outputted to the container’s standard out, and are accessible
with the following command:

$ oc logs -f <pod_name> <container_name>

NOTE

By default, the OpenShift JDG for OpenShift Image does not have a file log handler
configured. Logs are only sent to the container’s standard out.

Red Hat JBoss Data Grid 7.1 Data Grid for OpenShift

34

CHAPTER 5. REFERENCE

35

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. BEFORE YOU BEGIN
	2.1. FUNCTIONALITY DIFFERENCES FOR JDG FOR OPENSHIFT IMAGES
	2.2. INITIAL SETUP
	2.3. FORMING A CLUSTER USING THE JDG FOR OPENSHIFT IMAGES
	2.4. ROLLING UPGRADES
	2.4.1. Rolling Upgrades Using Hot Rod
	2.4.2. Rolling Upgrades Using REST

	2.5. ENDPOINTS
	2.6. CONFIGURING CACHES
	2.6.1. Preserving Existing Content of the JBoss Data Grid Data Directory Across JDG for OpenShift Pod Restarts

	2.7. DATASOURCES
	2.7.1. JNDI Mappings for Datasources
	2.7.2. Database Drivers
	2.7.3. Examples
	2.7.3.1. Single Mapping
	2.7.3.2. Multiple Mappings

	2.7.4. Environment Variables

	2.8. SECURITY DOMAINS
	2.9. MANAGING JDG FOR OPENSHIFT IMAGES

	CHAPTER 3. GET STARTED
	3.1. USING THE JDG FOR OPENSHIFT IMAGE SOURCE-TO-IMAGE (S2I) PROCESS
	3.1.1. Using a Different JDK Version in the JDG for OpenShift image

	3.2. USING A MODIFIED JDG FOR OPENSHIFT IMAGE
	3.3. BINARY BUILDS

	CHAPTER 4. TUTORIALS
	4.1. EXAMPLE WORKFLOW: DEPLOYING BINARY BUILD OF EAP 6.4 / EAP 7.0 INFINISPAN APPLICATION TOGETHER WITH JDG FOR OPENSHIFT IMAGE
	4.1.1. Prerequisite
	4.1.2. Deploy JBoss Data Grid 7.1 server
	4.1.3. Deploy binary build of EAP 6.4 / EAP 7.0 CarMart application

	4.2. EXAMPLE WORKFLOW: PERFORMING JDG ROLLING UPGRADE FROM JDG 6.5 FOR OPENSHIFT IMAGE TO JDG 7.1 FOR OPENSHIFT IMAGE USING THE REST CONNECTOR
	4.2.1. Start / Deploy the Source Cluster
	4.2.2. Deploy the Target Cluster
	4.2.3. Configure REST Store for Caches on the Target Cluster
	4.2.4. Do Not Dump the Key Set During REST Rolling Upgrades
	4.2.5. Synchronize Cache Data Using the REST Connector
	4.2.6. Use the Synchronized Data from the JBoss Data Grid 7.1 (Target) cluster
	4.2.7. Disable the RestCacheStore on the Target Cluster

	CHAPTER 5. REFERENCE
	5.1. ARTIFACT REPOSITORY MIRRORS
	5.2. INFORMATION ENVIRONMENT VARIABLES
	5.3. CONFIGURATION ENVIRONMENT VARIABLES
	5.4. CACHE ENVIRONMENT VARIABLES
	5.5. DATASOURCE ENVIRONMENT VARIABLES
	5.6. SECURITY ENVIRONMENT VARIABLES
	5.7. EXPOSED PORTS
	5.8. TROUBLESHOOTING

