
Red Hat JBoss Enterprise Application
Platform 6.4

Security Architecture

Security Architecture Guide

Last Updated: 2022-05-02

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

Security Architecture Guide

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document focuses on the high level concepts of security within JBoss EAP 6 and what
components exist to implement those concepts. This document focuses on what and why and much
less on how, meaning specifics on how to configure a specific scenario will be housed in other
documents. When completing this document, readers should have a solid conceptual understanding
of the components of security within JBoss EAP 6, as well as how those components fit together.

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF GENERAL SECURITY CONCEPTS
1.1. AUTHENTICATION
1.2. AUTHORIZATION
1.3. AUTHENTICATION AND AUTHORIZATION IN PRACTICE
1.4. ENCRYPTION
1.5. SSL/TLS AND CERTIFICATES
1.6. SINGLE SIGN ON (SSO)

1.6.1. Third-Party SSO Implementations
1.6.2. Claims-Based Identity

1.7. LDAP

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF
THE BOX

2.1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM-SPECIFIC CONCEPTS
2.1.1. Core Services, Subsystems, and Profiles
2.1.2. Management Interfaces
2.1.3. Security Realms
2.1.4. Security Domains
2.1.5. Using Security Realms and Security Domains
2.1.6. Security Auditing
2.1.7. Security Mapping
2.1.8. JMX
2.1.9. Role-Based Access Control
2.1.10. Declarative Security and JAAS

2.2. CORE MANAGEMENT AUTHENTICATION
2.2.1. Default Security

2.2.1.1. Local and Remote Client Authentication with the Native Interface
2.2.1.2. Local and Remote Client Authentication with the HTTP Interface

2.2.2. Advanced Security
2.2.2.1. Updating the Management Interfaces
2.2.2.2. Adding Outbound Connections
2.2.2.3. Adding RBAC to the Management Interfaces
2.2.2.4. Using LDAP with the Management Interfaces
2.2.2.5. JAAS and the Management Interfaces

2.3. SECURITY SUBSYSTEM
2.3.1. Password Vault System
2.3.2. Security Domains

2.3.2.1. Login Modules
2.3.2.2. Password Stacking
2.3.2.3. Password Hashing

2.3.3. Security Management
2.3.3.1. Deep Copy Mode

2.3.4. Additional Components
2.3.4.1. JASPI
2.3.4.2. JACC
2.3.4.3. About Fine Grained Authorization and XACML
2.3.4.4. SSO

CHAPTER 3. ADDITIONAL USECASES FOR SSO WITH RED HAT JBOSS ENTERPRISE APPLICATION
PLATFORM

3.1. BROWSER-BASED SSO USING SAML
3.1.1. Identity Provider Initiated Flow

4
4
4
4
4
5
5
6
7
8

9
9
9
9

10
10
11
11
11
11

12
14
15
15
15
16
16
16
17
17
19

20
20
20
21
21
23
23
24
24
24
24
24
24
25

26
26
26

Table of Contents

1

. .

3.1.2. Global Logout
3.2. DESKTOP-BASED SSO
3.3. SSO USING STS

CHAPTER 4. EXAMPLE SCENARIOS
4.1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM OUT OF THE BOX

4.1.1. Core Management Authentication Out of the Box
4.1.1.1. Security
4.1.1.2. How it works

4.1.2. Security Subsystem Out of the Box
4.1.2.1. Security
4.1.2.2. How it Works

4.2. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM WITH HTTPS AND RBAC ADDED TO THE
MANAGEMENT INTERFACES

4.2.1. Security
4.2.2. How it works

4.3. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM WITH AN UPDATED SECURITY SUBSYSTEM
INCLUDING HTTPS

4.3.1. Security
4.3.2. How it works

4.4. SSO FOR WEB APPLICATIONS ON RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
4.4.1. Security
4.4.2. How it works

4.5. MULTIPLE RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM INSTANCES AND MULTIPLE
APPLICATIONS USING BROWSER-BASED SSO WITH SAML

4.5.1. Security
4.5.2. How it works

4.6. USING LDAP WITH THE MANAGEMENTREALM
4.6.1. Security
4.6.2. How it works

4.7. USING DESKTOP SSO (VIA KERBEROS) TO PROVIDE SSO FOR WEB APPLICATIONS
4.7.1. Security
4.7.2. How it works

27
27
27

29
29
29
29
30
30
30
30

30
31
31

32
33
33
34
34
35

36
36
37
38
39
39
40
40
41

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

2

Table of Contents

3

CHAPTER 1. OVERVIEW OF GENERAL SECURITY CONCEPTS
Before digging into how JBoss EAP 6 handles security, it is important to understand a few basic security
concepts.

1.1. AUTHENTICATION

Authentication refers to identifying a subject and verifying the authenticity of the identification. The
most common authentication mechanism is a username and password combination, but other
mechanisms, such as shared keys, smart cards, or fingerprints are also used for Authentication. When in
the context of Java Enterprise Edition declarative security, the result of a successful authentication is
called a principal.

1.2. AUTHORIZATION

Authorization refers to a way of specifying access rights or defining access policies. A system can then
implement a mechanism to utilize those policies to permit or deny access to resources for the requestor.
In many cases, this is implemented by matching a principal with a set of actions or places they are or are
not allowed to access, sometimes referred to as a role.

1.3. AUTHENTICATION AND AUTHORIZATION IN PRACTICE

Though Authentication and Authorization are distinct concepts, they are very often linked. Many
modules written to handle authentication also handle authorization and vice-versa.

Example

The application MyPersonalSoapbox provides the ability to post and view messages. Principals with the
Talk role are allowed to post messages and view other posted messages. Users who have not logged in
have the Listen role and are allowed to view posted messages. Suzy, Adam, and Bob use the application.
Suzy and Bob can authenticate with their username and password, but Adam does not have a username
and password yet. Suzy has the Talk role, but Bob has no roles (neither Talk nor Listen). When Suzy
authenticates, she may post and view messages. When Adam uses MyPersonalSoapbox, he cannot log
in, but he can still see posted messages. When Bob logs in, he cannot post any messages nor can he
view any other posted messages.

Suzy is both authenticated and authorized. Adam has not authenticated, but he is authorized (with the
Listen role) to view messages. Bob is authenticated, but has no authorization (no roles).

1.4. ENCRYPTION

Encryption refers to encoding sensitive information by applying mathematical algorithms to it. Data is
secured by converting (or encrypting) it to an encoded format. In order to read the data again, the
encoded format must be converted back (or decrypted) to the original format. Encryption can be
applied to simple string data in files or databases, or even on data sent across communications streams.

Examples of encryption include:

LUKS can be used to encrypt Linux filesystem disks.

The blowfish or AES algorithms can be used to encrypt data stored in Postgres databases.

The HTTPS protocol encrypts all data via SSL/TLS before transferring it from one party to
another.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

4

When a users connects from one server to another using the Secure Shell (SSH) protocol, all of
the communication is sent in an encrypted tunnel.

1.5. SSL/TLS AND CERTIFICATES

Secure Sockets Layer (SSL)/Transport Layer Security(TLS) encrypts network traffic between two
systems. This occurs by using a symmetric key which is exchanged between and only known by those two
systems. To ensure a secure exchange of the symmetric key, SSL/TLS makes use of Public Key
Infrastructure (PKI), a method of encryption that utilizes a key pair. A key pair consists of two separate
but matching cryptographic keys - a public key and a private key. The public key is shared with any party
and is used to encrypt data, and the private key is kept secret and is used to decrypt data that has been
encrypted using the public key.

When a client requests a secure connection to exchange symmetric keys, a handshake phase takes place
before secure communication can begin. During the SSL/TLS handshake, the server passes its public
key to the client in the form of a certificate. The certificate contains the identity of the server (its URL),
the public key of the server, and a digital signature that validates the certificate. The client then
validates the certificate and makes a decision about whether the certificate is trusted or not. If the
certificate is trusted, the client generates the symmetric key for the SSL/TLS connection, encrypts it
using the public key of the server, and sends it back to the server. The server decrypts the symmetric
key, using its private key, and further communication between the two machines over this connection is
encrypted using the symmetric key.

There are two basic kinds of certificates: Self-Signed Certificates and Authority-Signed Certificates.
A self-signed certificate uses its own private key to sign itself, and that signature is unverified (not
connected to any chain of trust). An authority-signed certificate is a certificate that is issued to a party
by a certificate authority and is signed by that certificate authority (e.g. Verisign, CAcert, RSA and many
others). The certificate authority is essentially verifying the authenticity of the holder of the certificate.

Self-Signed certificates can be faster and easier to generate and require less infrastructure to manage,
but they can be difficult for clients to verify their authenticity since no third party has confirmed their
authenticity. This inherently makes the less secure. Authority-signed certificates can take more effort to
setup initially, but are far easier for clients to verify their authenticity (i.e. a chain of trust has been
created since a third party has confirmed the authenticity of the holder of the certificate).

1.6. SINGLE SIGN ON (SSO)

Single Sign On (SSO) allows principals authenticated to one resource to implicitly authorize access to
other resources. If a set of distinct resources are secured by SSO, a user is only required to authenticate
the first time they access any of the secured resources. Upon successful authentication, the roles
associated with the user are stored and used for authorization of all other associated resources. This
allows the user to access any additional authorized resources without re-authenticating.

If the user logs out of a resource, or a resource invalidates the session programmatically, all persisted
authorization data is removed, and the process starts over. In the case of a resource session timeout,
the SSO session is not invalidated if there are other valid resource sessions associated with that user.
SSO may be used for authentication and authorization on both web applications as well as on desktop
applications. In some cases, an single SSO implementation can integrate with both.

Within SSO, there are a few common terms used to describe different concepts and parts of the system:

Identity Management

Identity Management (IDM) refers to the idea of managing principals and their associated
authentication, authorization, and privileges across one or more systems or domains. The term Indentity
and Access Management (IAM) is sometimes used to describe this same concept.

CHAPTER 1. OVERVIEW OF GENERAL SECURITY CONCEPTS

5

Identity Provider

An identity provider (IDP) is the authoritative entity responsible for authenticating an end user and
asserting the identity for that user in a trusted fashion to trusted partners.

Identity Store

An identity provider needs an identity store to retrieve users' information. This information will be used
during the authentication and authorization process. Identity stores can be any type of repository: a
database, LDAP, properties file, etc.

Service Provider

A service provider relies on an identity provider to assert information about a user via an electronic user
credential, leaving the service provider to manage access control and dissemination based on a trusted
set of user credential assertions.

Clustered and Non-Clustered SSO

Non-clustered SSO limits the sharing of authorization information to applications on the same virtual
host. In addition, there is no resiliency in the event of a host failure. In a clustered SSO scenario, data can
be shared between applications in multiple virtual hosts, and is therefore resilient to failover. In addition,
clustered SSO is able to receive requests from a load balancer.

1.6.1. Third-Party SSO Implementations

Kerberos

Kerberos is a network authentication protocol for client/server applications. It allows authentication
across a non-secure network in a secure way, using secret-key symmetric cryptography.

Kerberos uses security tokens called tickets. To use a secured service, users need to obtain a ticket from
the Ticket Granting Service (TGS), which is a service running on a server on their network. After
obtaining the ticket, users request a Service Ticket (ST) from an Authentication Service (AS), which is
another service running on the same network. Users then use the ST to authenticate to the desired
service. The TGS and the AS both run inside an enclosing service called the Key Distribution Center
(KDC).

Kerberos is designed to be used in a client-server desktop environment, and is not usually used in web
applications or thin client environments. However, many organizations already use a Kerberos system for
desktop authentication, and prefer to reuse their existing system rather than create a second one for
their web applications. Kerberos is an integral part of Microsoft Active Directory, and is also used in
many Red Hat Enterprise Linux environments.

SPNEGO

Simple and Protected GSS_API Negotiation Mechanism (SPNEGO) provides a mechanism for extending
a Kerberos-based SSO environment for use in web applications.

When an application on a client computer, such as a web browser, attempts to access a protected page
on a web server, the server responds that authorization is required. The application then requests a
service ticket from the Kerberos Key Distribution Center (KDC). After the ticket is obtained, the
application wraps it in a request formatted for SPNEGO, and sends it back to the web application, via
the browser. The web container running the deployed web application unpacks the request and
authenticates the ticket. Upon successful authentication, access is granted.

SPNEGO works with all types of Kerberos providers, including the Kerberos service included in Red Hat
Enterprise Linux and the Kerberos server which is an integral part of Microsoft Active Directory.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

6

Microsoft Active Directory

Microsoft Active Directory (AD) is a directory service developed by Microsoft to authenticate users and
computers in a Microsoft Windows domain. It is included as part of Microsoft Windows Server. The
computer running Microsoft Windows Server controlling the domain is referred to as the domain
controller. Red Hat Enterprise Linux can integrate with Active Directory domains as can Red Hat Identity
Management, Red Hat JBoss Enterprise Application Platform, and other Red Hat Products.

Active Directory relies on three core technologies which work together:

1. Lightweight Directory Access Protocol (LDAP), for storing information about users, computers,
passwords, and other resources.

2. Kerberos, for providing secure authentication over the network.

3. Domain Name Service (DNS) for providing mappings between IP addresses and host names of
computers and other devices on the network.

1.6.2. Claims-Based Identity

One way of implementing SSO is by using a claims-based identity system. A claims-based identity
system allows systems to pass around identity information, but abstracts that information into two
components: a claim and an issuer (or authority). A claim is statement that one subject (e.g. user, group,
application, organization) makes about another. That claim (or set of claims) is then packaged into a
token (or set of tokens) and issued by a provider. Claims-based identity allows individual secured
resources to implement SSO without having to know everything about a user.

Security Token Service (STS)

A Security Token Service (STS) is an authentication service that issues security tokens to clients for use
in authenticating and authorizing users for secured applications (web services or EJBs). A client
attempting to authenticate against an application (service provider) secured with STS will be redirect to
a centralized STS authenticate and issued a token. If successful, that client will reattempt to access the
service provider, providing their token in along with the original request. That service provider will
validate the token from the client with the STS and proceed accordingly. This same token may be
reused by the client against other web services or EJBs that are connected to the STS. The concept of a
centralized STS that can issue, cancel, renew and validate security tokens, and specifies the format of
security token request and response messages is known as WS-Trust.

Browser-Based SSO

In browser-based SSO, one or more web applications, known as service providers, are connected to a
centralized identity provider in a hub and spoke architecture. The identity provider (IDP) acts as the
central source (hub) for identity and role information by issuing claim statements (via SAML) to service
providers (spokes). Requests may be issued when a user attempts to access a service provider or if a
user attempt to authenticate directly with the identity provider. These are known as SP-initiated and
IDP-initiated flows respectively, and will both issue the same claim statements.

SAML

Security Assertion Markup Language (SAML) is a data format that allows two parties, usually an identity
provider and a service provider, to exchange authentication and authorization information. A SAML
token is a type of token issued by a STS or IDP and can be used to enable SSO. A resource secured by
SAML (SAML service provider) will redirect users to the SAML identity provider (a type of STS or IDP)
to obtain a valid SAML token before authenticating and authorizing that user.

Desktop-Based SSO

Desktop-Based SSO enables service providers and desktop domains (e.g. Active Directory or Kerberos)

CHAPTER 1. OVERVIEW OF GENERAL SECURITY CONCEPTS

7

Desktop-Based SSO enables service providers and desktop domains (e.g. Active Directory or Kerberos)
to share a principal. In practice, this allows users to login on their computer using their domain credentials
and then have service providers re-use that principal during authentication (without having to re-
authenticate), thus providing SSO.

1.7. LDAP

Lightweight Directory Access Protocol (LDAP) is a protocol for storing and distributing directory
information across a network. This directory information includes information about users, hardware
devices, access roles and restrictions, and other information.

In Lightweight Directory Access Protocol (LDAP), the Distinguished Name (DN) uniquely identifies an
object in a directory. Each distinguished name must have a unique name and location from all other
objects, which is achieved using a number of attribute-value pairs (AVPs). The AVPs define information
such as common names, organization unit, among others. The combination of these values results in a
unique string required by the LDAP.

Some common implementations of LDAP include Red Hat Directory Server, OpenLDAP, Microsoft
Active Directory, IBM Tivoli Directory Server, Oracle Internet Directory, 389 Directory Server, and
others.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

8

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE
APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF

THE BOX
There are two components that ship with JBoss EAP 6 and above that relate to security: Core
Management Authentication and the Security Subsystem. These two components are based on the
general security concepts discussed in the overview section, but they also incorporate some JBoss EAP-
specific concepts in their implementation discussed in the in the Section 2.1, “Red Hat JBoss Enterprise
Application Platform-Specific Concepts” section.

2.1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM-
SPECIFIC CONCEPTS

In addition to the general security concept covered in the Chapter 1, Overview of General Security
Concepts section, it’s important to understand some of the concepts specific to JBoss EAP and JBoss
EAP security.

2.1.1. Core Services, Subsystems, and Profiles

JBoss EAP 6 is built on the concept of modular classloading. Each API or service provided by JBoss EAP
is implemented as a module, which is loaded and unloaded on demand. The core services are services
which are always loaded on server startup and are required to be running prior to starting any additional
subsystems.

A subsystem is an additional set of capabilities added to the core server by an extension. Some example
subsystems include: a subsystem that provides servlet handling capabilities, a subsystem provides an
EJB container, and a subsystem provides JTA.

A profile is a named list of subsystems, along with the details of each subsystem’s configuration. A
profile with a large number of subsystems results in a server with a large set of capabilities. A profile with
a small, focused set of subsystems will have fewer capabilities but a smaller footprint. By default, JBoss
EAP 6 comes with several pre-defined profiles (e.g. default, full, ha, full-ha). In these profiles, the
Management Interfaces and the associated security realms are loaded as core services.

2.1.2. Management Interfaces

JBoss EAP 6 offers two different management interfaces (APIs) for interacting with and editing its
configuration: The Management Console (HTTP API) and the Management CLI (Native API). Both of
these interfaces expose the functionality of the core management of JBoss EAP. In essence, these
interfaces offer two ways to access the same core management system.

The Management Console is a web-based administration tool for JBoss EAP 6 . It may be used to start
and stop servers, deploy and undeploy applications, tune system settings, and make persistent
modifications to the server configuration. The Management Console also has the ability to perform
administrative tasks, with live notifications when any changes require the server instance to be restarted
or reloaded. In a Managed Domain, server instances and server groups in the same domain can be
centrally managed from the Management Console of the domain controller.

The Management Command Line Interface (CLI) is a command line administration tool for JBoss EAP
6. The Management CLI may be used to start and stop servers, deploy and undeploy applications,
configure system settings, and perform other administrative tasks. Operations can be performed in
batch mode, allowing multiple tasks to be run as a group. The Management CLI may also connect to the

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

9

Domain Controller in a managed domain to execute management operations on the domain. The
Management CLI can perform all tasks that the web-based administration tool can perform as well as
many other lower level operations that are unavailable to the web-based administration tool.

NOTE

In addition to the clients that ship with JBoss EAP 6, other clients can be written to invoke
the management interfaces over either the HTTP or native interfaces using the APIs
included with JBoss EAP 6.

2.1.3. Security Realms

A security realm is effectively an identity store of usernames, passwords, and group membership
information that can be used when authenticating users in EJBs, Web applications, and the
Management Interface. Initially, JBoss EAP 6 comes pre-configured with two security realms by default:
ManagementRealm and ApplicationRealm. Both of these security realms use the filesystem to store
mappings between users and passwords, and users and group membership information and use a digest
mechanism by default when authenticating.

A digest mechanism is simply an authentication mechanism that authenticates the user by making use of
one-time, one-way hashes comprised of various pieces of information including information stored in
the users/passwords mapping property file. This allows JBoss EAP to authenticate users without
sending any passwords in plain text over the network.

A script is included with the JBoss EAP 6 install which enables administrators to add users to both
realms. When users are added in this way, the username and hashed password are stored in the
corresponding users/passwords properties file. When a user attempts to authenticate, JBoss EAP sends
back a one-time use number (nonce) to the client. The client then generates a one-way hash using their
username, password, nonce and a few other fields, and then sends back to JBoss EAP the username,
nonce and one-way hash. JBoss EAP then looks up the user’s pre-hashed password and uses it along
with the provided username and nonce and few other fields to generate another one-way hash in the
same manner. If all the same information is used (e.g. correct password) on both sides then hashes will
match and the user is authenticated.

Though security realms use the digest mechanism by default, they may be reconfigured to use other
authentication mechanisms as well. On startup, the management interfaces determine which
authentication mechanisms will be enabled based on what authentication mechanisms are configured in
ManagementRelam.

Security realms are not involved in any authorization decisions, however they can be configured to load a
user’s group membership information which can subsequently be used to make authorization decisions.
After a user has been authenticated, a second step will occur to load the group membership information
based on the username.

By default, the ManagementRealm is used during authentication and authorization for the management
interfaces. The ApplicationRealm is a default realm made available for web applications and EJBs to use
when authenticating and authorizing users.

2.1.4. Security Domains

A security domain is a set of Java Authentication and Authorization Service (JAAS) declarative security
configurations which one or more applications use to control authentication, authorization, auditing, and
mapping. Three security domains are included by default: jboss-ejb-policy , jboss-web-policy, and other.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

10

jboss-ejb-policy and jboss-web-policy are the default authorization mechanisms that are used if an
application’s configured security domain has none. Those security domains along with other are also
used internally within JBoss EAP for authorization and are therefore required for correct operation.

A security domain consists of configurations for authentication, authorization, security mapping, and
auditing. Security domains are part of the JBoss EAP 6 security subsystem and are managed centrally by
the domain controller or standalone server. Users can create as many security domains as needed to
accommodate application requirements.

2.1.5. Using Security Realms and Security Domains

Both security realms and security domains can be used as a part of securing web applications deployed
to JBoss EAP. When deciding if either should be used, it’s important to understand the difference
between the two.

Web applications and EJB deployments can only use Security Domains directly. They perform the actual
authentication and authorization via login modules using the identity information passed from an identity
store. Security domains can be configured to use Security Realms for identity information (e.g. other
allows applications to specify a security realm to use for authentication and getting authorization
information), but they may also be configured to use external identity stores. Web applications and EJB
deployments cannot be configured to directly use Security Realms for authentication. The security
domains are also part of the security subsystem and are therefore loaded after core services.

Only the core management (e.g. the management interfaces) and the EJB remoting end points can use
the Security Realms directly. They are identity stores that provide authentication as well as authorization
information. They are also a core service and are loaded before any subsystems are started. The out of
the box Security Realms (ManagementRealm and ApplicationRealm) use a simple file-based
authentication mechanism, but they can be configured to use other mechanisms.

2.1.6. Security Auditing

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem. Auditing mechanisms are configured as part of a security
domain, along with authentication, authorization, and security mapping details. Auditing uses provider
modules to control the way that security events are reported. JBoss EAP ships with several secuirty
auditing providers, but custom ones may be used as well. In addition, the core management of JBoss
EAP also has its own security auditing and logging functionality which is configure separately and is not
part of the security subsystem.

2.1.7. Security Mapping

Security mapping adds the ability to combine authentication and authorization information after the
authentication or authorization happens, but before the information is passed to your application. Roles
(authorization), principals (authentication), or credentials (attributes which are not principals or roles)
may all be mapped. Role Mapping is used to add, replace, or remove roles to the subject after
authentication. Principal mapping is used to modify a principal after authentication. Credential
(attribute) mapping is used to convert attributes from an external system to be used by your application,
and vice versa.

2.1.8. JMX

Java Management Extensions (JMX) provides a way to remotely trigger JDK and application
management operations. The Management API of JBoss EAP 6 is exposed as JMX Managed Beans.
These Managed Beans are referred to as core mbeans and access to them is controlled and filtered
exactly the same as the underlying Management API itself.

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

11

NOTE

Prior to JBoss EAP 6, the management functionality was primarily JMX based, meaning
the management functionality relied on these JMX exposed beans to perform
operations. With JBoss EAP 6, the core management does not rely on them to perform
operations. JMX exposed beans are now just alternative mechanism (in addition to the
native and http interfaces) to access and perform management operations.

2.1.9. Role-Based Access Control

Role-Based Access Control (RBAC) is a mechanism for specifying a set of permissions for management
users. It allows multiple users to share responsibility for managing JBoss EAP 6 servers without each of
them requiring unrestricted access. By providing a separation of duties for management users, JBoss
EAP 6 makes it easy for an organization to spread responsibility between individuals or groups without
granting unnecessary privileges. This ensures the maximum possible security of your servers and data
while still providing flexibility for configuration, deployment, and management.

Role-Based Access Control in JBoss EAP 6 works through a combination of role permissions and
constraints. Seven predefined roles are provided that each have different fixed permissions. Each
management user is assigned one or more roles, which specify what the user is permitted to do when
managing the server.

Role-Based Access Control is supported by JBoss EAP 6.2 and above, but is disabled by default.

Standard Roles

JBoss EAP 6 provides seven predefined user roles: Monitor, Operator, Maintainer, Deployer, Auditor,
Administrator, and SuperUser. Each of these roles has a different set of permissions and is designed for
specific use cases. The Monitor, Operator, Maintainer, Administrator, and SuperUser role each build
successively upon each other, with each having more permissions than the previous. The Auditor and
Deployer roles are similar to the Monitor and Maintainer roles respectively but have some additional
special permissions and restrictions.

Monitor

Users of the Monitor role have the fewest permissions and can only read the current configuration
and state of the server. This role is intended for users who need to track and report on the
performance of the server. Monitors cannot modify server configuration nor can they access
sensitive data or operations.

Operator

The Operator role extends the Monitor role by adding the ability to modify the runtime state of the
server. This means that Operators can reload and shutdown the server as well as pause and resume
JMS destinations. The Operator role is ideal for users who are responsible for the physical or virtual
hosts of the application server so they can ensure that servers can be shutdown and restarted
corrected when needed. Operators cannot modify server configuration or access sensitive data or
operations.

Maintainer

The Maintainer role has access to view and modify runtime state and all configuration except
sensitive data and operations. The Maintainer role is the general purpose role that doesn’t have
access to sensitive data and operation. The Maintainer role allows users to be granted almost
complete access to administer the server without giving those users access to passwords and other
sensitive information. Maintainers cannot access sensitive data or operations.

Administrator

The Administrator role has unrestricted access to all resources and operations on the server except
the audit logging system. The Administrator role has access to sensitive data and operations. This

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

12

role can also configure the access control system. The Administrator role is only required when
handling sensitive data or configuring users and roles. Administrators cannot access the audit
logging system and cannot change themselves to the Auditor or SuperUser role.

SuperUser

The SuperUser role has no restrictions and has complete access to all resources and operations of
the server including the audit logging system. This role is equivalent to the administrator users of
earlier versions of JBoss EAP 6 (6.0 and 6.1). If RBAC is disabled, all management users have
permissions equivalent to the SuperUser role.

Deployer

The Deployer role has the same permissions as the Monitor, but can modify configuration and state
for deployments and any other resource type enabled as an application resource.

Auditor

The Auditor role has all the permissions of the Monitor role and can also view (but not modify)
sensitive data, and has full access to the audit logging system. The Auditor role is the only role other
than SuperUser that can access the audit logging system. Auditors cannot modify sensitive data or
resources. Only read access is permitted.

Permissions

What each role is allowed to do is defined by what permissions it has. Not every role has every
permission. Notably SuperUser has every permission and Monitor has the least. Each permission can
grant read and/or write access for a single category of resources. The categories are: runtime state,
server configuration, sensitive data, the audit log, and the access control system.

Table 2.1. Permissions of Each Role

 Monitor Operator Maintaine
r

Deployer Auditor Administr
ator

SuperUse
r

Read
Config
and State

X X X X X X X

Read
Sensitive

Data 2

 X X X

Modify
Sensitive

Data 2

 X X

Read/Mo
dify Audit
Log

 X X

Modify
Runtime
State

 X X X1 X X

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

13

Modify
Persistent
Config

 X X1 X X

Read/Mo
dify
Access
Control

 X X

 Monitor Operator Maintaine
r

Deployer Auditor Administr
ator

SuperUse
r

1 permissions are restricted to application resources.

2 What resources are considered to be "sensitive data" are configured using Sensitivity

Constraints

Constraints are named sets of access-control configuration for a specified list of resources. The RBAC
system uses the combination of constraints and role permissions to determine if any specific user can
perform a management action.

Constraints are divided into three classifications:

Application Constraints

Application Constraints define sets of resources and attributes that can be accessed by users of the
Deployer role. By default the only enabled Application Constraint is core which includes
deployments, deployment overlays. Application Constraints are also included (but not enabled by
default) for datasources, logging, mail, messaging, naming, resource-adapters and security. These
constraints allow Deployer users to not only deploy applications but also configure and maintain the
resources that are required by those applications.

Sensitivity Constraints

Sensitivity Constraints define sets of resources that are considered sensitive. A sensitive resource is
generally one that is either secret, like a password, or one that will have serious impact on the
operation of the server, like networking, JVM configuration, or system properties. The access control
system itself is also considered sensitive. The only roles permitted to write to sensitive resources are
Administrator and SuperUser. The Auditor role is only able to read sensitive resources. No other roles
have access.

Vault Expression Constraint

The Vault Expression constraint defines if reading or writing vault expressions is consider a sensitive
operation. By default both reading and writing vault expressions is a sensitive operation.

2.1.10. Declarative Security and JAAS

Declarative security is a method to separate security concerns from application code by using the
container to manage security. The container provides an authorization system based on either file
permissions or users, groups, and roles. This approach is usually superior to programmatic security,
which gives the application itself all of the responsibility for security. JBoss EAP 6 provides declarative
security via security domains in the Security Subsystem.

Java Authentication and Authorization Service (JAAS) is a declarative security API which consists of a set

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

14

of Java packages designed for user authentication and authorization. The API is a Java implementation
of the standard Pluggable Authentication Modules (PAM) framework. It extends the Java EE access
control architecture to support user-based authorization. The JBoss EAP 6 security subsystem is
actually based on the JAAS API.

Since JAAS is the foundation for the security subsystem, authentication is performed in a pluggable
fashion. This permits Java applications to remain independent from underlying authentication
technologies, such as Kerberos or LDAP, and allows the security manager to work in different security
infrastructures. Integration with a security infrastructure is achievable without changing the security
manager implementation. Only the configuration of the authentication stack JAAS uses needs to be
changed.

2.2. CORE MANAGEMENT AUTHENTICATION

Core Management Authentication is responsible for securing the Management Interfaces (HTTP and
Native) for the core management functionality using the ManagementRealm. It is built into the core
management and is enabled and configured as a core service by default. It is only responsible for
securing the Management Interfaces.

2.2.1. Default Security

By default, the Core Management Authentication secures each of the Management Interfaces (HTTP
and Native) in two different forms: local clients and remote clients, both of which are configured using
the ManagementRealm security realm by default. These defaults may be configured differently or
replaced entirely. In addition to securing the Management Interfaces, the HTTP and Native interfaces
may each be disabled.

NOTE

Out of the box, the Management Interfaces are configured to use simple access controls,
which does not use roles. As a result, all users by default (when using simple access
controls) have the same privileges as the SuperUser Role, which essentially has access to
everything.

2.2.1.1. Local and Remote Client Authentication with the Native Interface

The Native Interface (CLI) can be invoked on the same host as the running JBoss EAP instance (local)
or from another machine with the jboss-cli script (remote). When attempting to connect via the Native
Interface, JBoss EAP presents the client with a list of available SASL authentication mechanisms (e.g.
local jboss user, BASIC, etc). The client chooses its desired authentication mechanism and attempts to
authenticate with the JBoss EAP instance. If it fails, it retries with any remaining mechanisms or stops
attempting to connect. Local clients have the option to use the local jboss user authentication
mechanism. This security mechanism is based on the client’s ability to access the local filesystem. It
simply validates that the user attempting to log in actually has access to the local filesystem on the
same host as the JBoss EAP instance.

This authentication mechanism happens in four steps:

1. The client sends a message to the server which includes a request to authenticate using local
jboss user.

2. The server generates a one-time token, writes it to a unique file, and sends a message to the
client with the full path of the file.

3. The client reads the token from the file and sends it to the server, verifying that it has local

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

15

3. The client reads the token from the file and sends it to the server, verifying that it has local
access to the filesystem.

4. The server verifies the token and then deletes the file.

This form of authentication is based on the principle that if physical access to the filesystem is achieved,
other security mechanisms are superfluous. The reasoning being that if a user has local filesystem
access, that user has enough access to create a new user or otherwise thwart other security mechanism
put in place. This is sometimes referred to as Silent Authentication since it allows the local user the
ability to access the Management CLI without username or password authentication.

This functionality is enabled as a convenience, and to assist local users running Management CLI scripts
without requiring additional authentication. It is considered a useful feature given that access to the
local configuration typically also gives the user the ability to add their own user details or otherwise
disable security checks.

The Native Interface can also be accessed from other servers (or even the same server) as a remote
client. When accessing the Native Interface as a remote client, clients will not be able to authenticate
using local jboss user and will be forced another authentication mechanism (e.g. DIGEST). If a local client
fails to authenticate via local jboss user it will automatically fall back and attempt to use the other
mechanisms as a remote client.

NOTE

The Management CLI may also be invoked from other servers (or even the same server)
using the HTTP interface as apposed to the native interface. All HTTP connections (CLI
or otherwise) are considered to be remote and NOT covered by local interface
authentication.

2.2.1.2. Local and Remote Client Authentication with the HTTP Interface

The HTTP Interface can be invoked by clients on the same host as the same host as the running JBoss
EAP instance (local) or by clients from another machine (remote). Despite allowing both local and
remote clients to access the HTTP interface, all clients accessing the HTTP interface, are treated as
remote connections.

When a client attempts to connect to the HTTP management interfaces, JBoss EAP sends back an
HTTP response with a status code of 401 (requires authentication) and a set of headers that list the
supported authentication mechanisms (e.g. Digest, GSSAPI, etc). The header for Digest also includes
the nonce generated by JBoss EAP. The client then looks at the headers and chooses which
authentication method to use and sends an appropriate response. In the case where the client chooses
Digest, it prompts the user for their username and password. The client then uses the supplied fields
(e.g. username and password), the nonce, and a few other pieces of information to generate a one-way
hash. The client then sends the one-way hash, username, and nonce back to JBoss EAP as a response.
JBoss EAP then takes that information, generates another one-way hash, compares to the two, and
authenticates the user based on the result.

2.2.2. Advanced Security

There are a number of ways to change the default configuration of Management Interfaces as well as
the Authentication/Authorization mechanisms to affect how it is secured.

2.2.2.1. Updating the Management Interfaces

In addition to modifying the Authentication and Authorization mechanisms, JBoss EAP 6 allows

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

16

In addition to modifying the Authentication and Authorization mechanisms, JBoss EAP 6 allows
administrators to update the configuration of the Management Interface itself. There are a number of
options:

Configuring the Management Interfaces to use HTTPS

Configuring the JBoss EAP management console for communication only via HTTPS provides
increased security. All network traffic between the client and management console is encrypted,
which reduces the risk of security attacks such as a man-in-the-middle attack. Anyone administering
a JBoss EAP instance has greater permissions on that instance than non-privileged users, and using
HTTPS helps protect the integrity and availability of that instance. When configuring HTTPS with
JBoss EAP 6, authority-signed certificates are preferred over self-signed certificates since they
provide a chain of trust. Self-signed certificates are still permitted but not recommended.

Using 2-way SSL/TLS

2-way SSL/TLS authentication, also known as client authentication, authenticates both the client and
the server using SSL/TLS certificates. This provides assurance that not only is the server who it says
it is, but the client is also who it says it is.

Using Distinct Network Interfaces for HTTP and HTTPS Traffic

The Management Interface can listen on distinct network interfaces for HTTP and HTTPS
connections. For instance, an administrator may want to configure an external interface to listen for
HTTPS traffic only while the internal-facing interface can accept HTTP traffic. If a server listens for
HTTP and HTTPS traffic on the same interface, HTTPS requests received by the HTTP listener are
automatically redirected to the HTTPS port. When distinct interfaces are used for HTTP and HTTPS
traffic, no redirection is performed when an HTTPS request is received by the HTTP listener.

Disabling Management Interfaces

In certain instances, such as with managed domains or when using other management clients such as
JBoss Operations Network, administrators may wish disable the HTTP interface, the Native
interface, or the Web Console. Each of these interfaces may be disabled or removed entirely.

NOTE

The native interface is used by JBoss EAP 6 when running in domain mode for several
purposes, including communication with slave domain controllers. As a result, the native
interface should not be disabled when running in domain mode.

Updating or Creating a New Security Realm

The default security realm can be updated or replaced with a new security realm.

2.2.2.2. Adding Outbound Connections

Some security realms connect to external interfaces, such as an LDAP server. An outbound connection
defines how to make this connection. A pre-defined connection type, ldap-connection , sets all of the
required and optional attributes to connect to the LDAP server and verify the credential.

2.2.2.3. Adding RBAC to the Management Interfaces

By default the Role-Based Access Control (RBAC) system is disabled. It is enabled by changing the
provider attribute from simple to rbac. This can be done using the jboss-cli script. When RBAC is
disabled or enabled on a running server, the server configuration must be reloaded before it takes
effect.

When RBAC is enabled for the management interfaces, the role assigned to a user determines the
resources to which they have access and what operations they can conduct with a resource’s attributes.

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

17

Only users of the Administration or SuperUser role can view and make changes to the access control
system.

WARNING

Enabling RBAC without having users and roles properly configured could result in
administrators being unable to login to the management interfaces.

RBAC’s Effect on the Management Console (Web Console)

In the management console some controls and views are disabled (greyed out) or not visible at all
depending on the permissions of the role to which the user has been assigned.

If the user does not have read permissions to a resource attribute, that attribute will appear blank in the
console. For example, most roles cannot read the username and password fields for datasources.

If the user has read permissions but does not have write permissions to a resource attribute, that
attribute will be disabled (greyed-out) in the edit form for the resource. If the user does not have write
permissions to the resource, then the edit button for the resource will not appear.

If a user does not have permissions to access a resource or attribute (it is unaddressable for that role), it
will not appear in the console for that user. An example of that is the access control system itself which
is only visible to a few roles by default.

The management console also provides an interface for the following common RBAC tasks:

View and configure what roles are assigned to (or excluded from) each user

View and configure what roles are assigned to (or excluded from) each group

View group and user membership per role.

Configure default membership per role.

Create a scoped role

NOTE

Constraints cannot be configured in the Management Console at this time.

RBAC’s Effect on the Management CLI or API (HTTP and Native)

Users of the jboss-cli script or management API will encounter slightly different behavior in the API
when RBAC is enabled.

Resources and attributes that cannot be read are filtered from results. If the filtered items are
addressable by the role, their names are listed as filtered-attributes in the response-headers section of
the result. If a resource or attribute is not addressable by the role, it is not listed.

Attempting to access a resource that is not addressable will result in a resource not found error.

If a user attempts to write or read a resource that they can address but lack the appropriate write or

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

18

If a user attempts to write or read a resource that they can address but lack the appropriate write or
read permissions, a Permission Denied error is returned.

The management CLI can perform all of same RBAC tasks as the management console as well as a few
additional tasks:

Enable and disable RBAC

Change permission combination policy

Configuring Application Resource and Resource Sensitivity Constraints

RBAC’s Effect on JMX Managed Beans

Role-Based Access Control applies to JMX in three ways:

1. The Management API of JBoss EAP 6 is exposed as JMX Managed Beans. These Managed
Beans are referred to as core mbeans and access to them is controlled and filtered exactly the
same as the underlying Management API itself.

2. The JMX subsystem is configured with write permissions being sensitive. This means only users
of the Administrator and SuperUser roles can make changes to that subsystem. Users of the
Auditor role can also read this subsystem configuration.

3. By default Managed Beans registered by deployed applications and services (non-core
mbeans) can be accessed by all management users, but only users of the Maintainer, Operator,
Administrator, and SuperUser roles can write to them.

RBAC Authentication

Role-Based Access Control works with the standard authentication providers that are included with
JBoss EAP 6 :

Username/Password

Users are authenticated using a username and password combination which is verified according to
the settings of the ManagementRealm, which has the ability to use a local properties file or LDAP.

Client Certificate

Using the Trust Store.

Local User

jboss-cli script authenticates automatically as Local User if the server that is running on the same
machine. By default Local User is a member of the SuperUser group.

Regardless of which provider is used, JBoss EAP is responsible for the assignment of roles to users.
However when authenticating with the ManagementRealm or an LDAP server, those systems can supply
user group information. This information can also be used by JBoss EAP to assign roles to users.

2.2.2.4. Using LDAP with the Management Interfaces

JBoss EAP 6 includes several authentication and authorization modules which allow an LDAP server to
be used as the authentication and authorization authority for web and EJB applications.

To use an LDAP directory server as the authentication source for the Management Console,
Management CLI, or Management API, the following must be done:

1. Create an outbound connection to the LDAP server.

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

19

2. Create an LDAP-enabled security realm or update an existing security realm to use LDAP.

3. Reference the new security realm in the Management Interface.

The LDAP authenticator operates by first establishing a connection to the remote directory server. It
then performs a search using the username, which the user passed to the authentication system, to find
the fully-qualified distinguished name (DN) of the LDAP record. A new connection to the LDAP server is
established, using the DN of the user as the credential and password supplied by the user. If this
authentication to the LDAP server is successful, the DN is verified to be valid.

Once an LDAP-enabled security realm is created, it can be referenced by the management interface.
The management interface will then use the security realm for authentication. JBoss EAP 6 can also be
configured to use an outbound connection to a LDAP server using 2-way SSL/TLS for authentication in
the Management Interface and CLI.

2.2.2.5. JAAS and the Management Interfaces

JAAS can be used to secure the management interfaces. When using JAAS for the management
interfaces, the security realm must be configured to use a security domain. This introduces a
dependency between core services and the subsystems. In addition, while SSL/TLS is not required to
use JAAS to secure the management interfaces, it is heavily recommend that administrators enable
SSL/TLS to avoid accidentally transmitting sensitive information in an unsecured manner.

NOTE

When JBoss EAP 6 instances are configured to run in ADMIN_ONLY mode, using JAAS
to secure the management interfaces is not supported. For more information on
ADMIN_ONLY mode, please see section Reference of Switches and Arguments to pass at
Server Runtime of the Administration and Configuration Guide .

2.3. SECURITY SUBSYSTEM

The security subsystem provides security infrastructure for applications and is based on the JAAS API.
The subsystem uses a security context associated with the current request to expose the capabilities of
the authentication manager, authorization manager, audit manager, and mapping manager to the
relevant container.

The authentication and authorization managers handle authentication and authorization. The mapping
manager handles adding, modifying, or deleting information from a principal, role, or attribute before
passing the information to your application. The auditing manager allows users to configure provider
modules to control the way that security events are reported.

In most cases, administrators should only need to focus on setting up and configuring security domains
in regards to updating the configuration of the security subsystem. Outside of security domains, the only
security element that may need to be changed is whether to use deep-copy-subject-mode. In the rare
case where security elements do require changes, those configuration changes (as well as deep-copy-
subject-mode) may be found in the security management portion of the security subsystem.

2.3.1. Password Vault System

JBoss EAP 6 has a Password Vault to encrypt sensitive strings, store them in an encrypted keystore, and
decrypt them for applications and verification systems. In plain-text configuration files, such as XML
deployment descriptors, it is sometimes necessary to specify passwords and other sensitive information.
The JBoss EAP Password Vault can be used to securely store sensitive strings for use in plain-text files.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

20

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/6.4/html-single/Administration_and_Configuration_Guide/index.html#Reference_of_Switches_and_Arguments_to_pass_at_Server_Runtime1

2.3.2. Security Domains

Security domains are configured centrally either at the domain controller or on the standalone server.
When security domains are used, an application may be configured to use a security domain lieu of
individually configuring security. This allows users and administrators to leverage declarative security.

Example

One common scenario that benefits from this type of configuration structure is the process of moving
applications between testing and production environments. If an application has it’s security individually
configured, it may need to be updated every time its promoted to a new environment (e.g. from a
testing environment to a production environment). If that application instead used a security domain, the
JBoss EAP instances in the individual environments would have their security domains properly
configured for the current environment, allowing the application to rely on the container to provide the
proper security configuration (via the security domain).

2.3.2.1. Login Modules

JBoss EAP 6 includes several bundled login modules suitable for most user management which are
configured within a security domain. The security subsystem offers some core login modules that can
read user information from a relational database, an LDAP server, or flat files. In addition to these core
login modules, JBoss EAP 6 provides other login modules that provide user information and
functionality for very customized needs.

Summary of the login modules commonly used

Ldap Login Module

Ldap login module is a LoginModule implementation that authenticates against an LDAP server. The
security subsystem connects to the LDAP server using connection information (i.e. a bindDN that has
permissions to search both the baseCtxDN and rolesCtxDN trees for the user and roles) provided
using a JNDI initial context. When a user attempts to authenticate, the LDAP login module connects
to the LDAP server, and passes the user’s credentials to the LDAP server. Upon successful
authentication, an InitialLDAPContext is created for that user within JBoss EAP, populated with the
user’s roles.

LdapExtended Login Module

The LdapExtended (org.jboss.security.auth.spi.LdapExtLoginModule) login module searches for the
user to bind, as well as the associated roles, for authentication. The roles query recursively follows
DNs to navigate a hierarchical role structure. The LoginModule options include whatever options are
supported by the chosen LDAP JNDI provider supports.

UsersRoles Login Module

UsersRoles login module is a simple login module that supports multiple users and user roles loaded
from Java properties files. The primary purpose of this login module is to easily test the security
settings of multiple users and roles using properties files deployed with the application.

Database Login Module

The Database login module is a Java Database Connectivity-based (JDBC) login module that
supports authentication and role mapping. This login module is used if user name, password and role
information are stored in a relational database. This works by providing a reference to logical tables
containing Principals and Roles in the expected format.

Certificate Login Module

Certificate login module authenticates users based on X509 certificates. A typical use case for this
login module is CLIENT-CERT authentication in the web tier. This login module only performs
authentication and must be combined with another login module capable of acquiring authorization

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

21

roles to completely define access to a secured web or EJB components. Two subclasses of this login
module, CertRolesLoginModule and DatabaseCertLoginModule extend the behavior to obtain the
authorization roles from either a properties file or database.

Identity Login Module

Identity login module is a simple login module that associates a hard-coded user name to any subject
authenticated against the module. It creates a SimplePrincipal instance using the name specified by
the principal option. This login module is useful when a fixed identity is required to be provided to a
service. This can also be used in development environments for testing the security associated with a
given principal and associated roles.

RunAs Login Module

RunAs login module is a helper module that pushes a run as role onto the stack for the duration of the
login phase of authentication, then pops the run as role from the stack in either the commit or abort
phase. The purpose of this login module is to provide a role for other login modules that must access
secured resources in order to perform their authentication (for example, a login module that
accesses a secured EJB). RunAs login module must be configured ahead of the login modules that
require a run as role established.

Client Login Module

Client login module (org.jboss.security.ClientLoginModule) is an implementation of LoginModule for
use by JBoss clients when establishing caller identity and credentials. This creates a new
SecurityContext, assigns it a principal and a credential and sets the SecurityContext to the
ThreadLocal security context. Client login module is the only supported mechanism for a client to
establish the current thread’s caller. Both stand-alone client applications, and server environments
(acting as JBoss EJB clients where the security environment has not been configured to use the
JBoss EAP security subsystem transparently) must use Client login module.

WARNING

This login module does not perform any authentication. It merely copies the login
information provided to it into the server EJB invocation layer for subsequent
authentication on the server. Within JBoss EAP 6, this is only supported for the
purpose of switching a user’s identity for in-JVM calls. This is NOT supported for
remote clients to establish an identity.

SPNEGO Login Module

The SPNEGO login module (org.jboss.security.negotiation.spnego.SPNEGOLoginModule) is an
implementation of LoginModule that establishes caller identity and credentials with a KDC. The
module implements SPNEGO (Simple and Protected GSSAPI Negotiation mechanism) and is a part
of the JBoss Negotiation project. This authentication can be used in the chained configuration with
the AdvancedLdap login module to allow cooperation with an LDAP server. Web applications must
also enable the NegotiationAuthenticator within the application in order to use this login module.

RoleMapping Login Module

The RoleMapping login module supports mapping roles, that are the end result of the authentication
process, to one or more declarative roles. For example, if the authentication process has determined
that the user John has the roles ldapAdmin and testAdmin, and the declarative role defined in the
web.xml or ejb-jar.xml file for access is admin, then this login module maps the admin roles to John.
The RoleMapping login module must be defined as an optional module to a login module
configuration as it alters mapping of the previously mapped roles.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

22

Remoting Login Module

The Remoting login module checks if the request that is currently being authenticated was received
over the Remoting connection. In cases where the request was received via the remoting interface,
that request is associated with the identity created during the authentication process.

Realm Direct Login Module

The Realm Direct login module allows for the use of an existing security realm to be used in making
authentication and authorization decisions. When configured, this module will look up identity
information using the referenced realm for making authentication decisions and mapping user roles.
For example, the pre-configured other security domain that ships with JBoss EAP 6 has a Realm
Direct login module. If no realm is referenced in this module, the ApplicationRealm security realm is
used by default.

Custom Modules

In cases where the login modules bundled with the JBoss EAP security framework do not meet the
needs of the security environment, a custom login module implementation may be written. The
AuthenticationManager requires a particular usage pattern of the Subject principals set. A full
understanding of the JAAS Subject class’s information storage features and the expected usage of
these features are required to write a login module that works with the AuthenticationManager.

In addition, the Unauthenticated Identity login module option is also commonly used. There are certain
cases where requests are not received in an authenticated format. unauthenticatedIdentity is a login
module configuration option that assigns a specific identity (guest, for example) to requests that are
made with no associated authentication information. This can be used to allow unprotected servlets to
invoke methods on EJBs that do not require a specific role. Such a principal has no associated roles and
so can only access either unsecured EJBs or EJB methods that are associated with the unchecked
permission constraint.

2.3.2.2. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing both the
credentials verification and role assignment during authentication. This works for many use cases, but
sometimes credentials verification and role assignment are split across multiple user management
stores.

Consider the case where users are managed in a central LDAP server but application-specific roles are
stored in the application’s relational database. The password-stacking module option captures this
relationship.

To use password stacking, each login module should set the password-stacking attribute to useFirstPass,
which is located in the <module-option> section. If a previous module configured for password stacking
has authenticated the user, all the other stacking modules will consider the user authenticated and only
attempt to provide a set of roles for the authorization step.

When password-stacking option is set to useFirstPass, this module first looks for a shared user name and
password under the property names javax.security.auth.login.name and javax.security.auth.login.password
respectively in the login module shared state map.

If found, these properties are used as the principal name and password. If not found, the principal name
and password are set by this login module and stored under the property names
javax.security.auth.login.name and javax.security.auth.login.password respectively.

2.3.2.3. Password Hashing

Most login modules must compare a client-supplied password to a password stored in a user
management system. These modules generally work with plain text passwords, but can be configured to

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

23

support hashed passwords to prevent plain text passwords from being stored on the server side. JBoss
EAP 6 supports the ability to configure the hashing algorithm, encoding, and character set as well as
when the user password and store password are hashed.

IMPORTANT

Red Hat JBoss Enterprise Application Platform Common Criteria certified configuration
does not support hash algorithms weaker than SHA-256.

2.3.3. Security Management

The security management portion of the security subsystem is used to override the high-level behaviors
of the security subsystem. Each setting is optional. It is unusual to change any of these settings except
for deep copy subject mode.

2.3.3.1. Deep Copy Mode

If deep copy subject mode is disabled (the default), copying a security data structure makes a reference
to the original, rather than copying the entire data structure. This behavior is more efficient, but is prone
to data corruption if multiple threads with the same identity clear the subject by means of a flush or
logout operation.

If deep copy subject mode is enabled, a complete copy of the data structure along with and all its
associated data is made (as long as they are marked cloneable). This is more thread-safe, but less
efficient.

2.3.4. Additional Components

2.3.4.1. JASPI

Java Authentication SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java applications
and is defined in JSR-196. In addition to JAAS authentication, JBoss EAP 6 also allows for JASPI
authentication to be used. JASPI authentication is configured using login modules in a security domain
and those modules may be stacked. The web-based management console does not expose the
configuration of JASPI authentication modules. In addition, applications deployed to JBoss EAP 6
require a special authenticator to be configured in their deployment descriptor to use JASPI security
domains.

2.3.4.2. JACC

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It was defined in JSR-115 and has been part of the core Java EE specification since
version 1.3.

JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.

2.3.4.3. About Fine Grained Authorization and XACML

Fine Grained Authorization caters to the changing requirements and multiple variables involved in the
decision making process, which becomes the basis of providing authorization for accessing a module.
Hence, the process of Fine Grained Authorization is complex in itself.

NOTE

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

24

http://www.jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=115

NOTE

The XACML bindings (web, ejb) are not supported in JBoss EAP 6.

JBoss EAP uses XACML as a medium to achieve Fine Grained Authorization. XACML provides
standards based solution to the complex nature of achieving Fine Grained Authorization. XACML
defines a policy language and an architecture for decision making. The XACML architecture includes a
Policy Enforcement Point (PEP), which intercepts any requests in a normal program flow, then asks a
Policy Decision Point (PDP) to make an access decision based on the policies associated with the PDP.
The PDP evaluates the XACML request created by the PEP and runs through the policies to make one
of the following access decisions:

PERMIT

The access is approved.

DENY

The access is denied.

INDETERMINATE

There is an error at the PDP.

NOTAPPLICABLE

There is some attribute missing in the request or there is no policy match.

XAMCL also has the following features:

Oasis XACML v2.0 library

JAXB v2.0 based object model

ExistDB Integration for storing/retrieving XACML Policies and Attributes

2.3.4.4. SSO

JBoss EAP 6 provides out of the box support for both clustered and non-clustered SSO via the web and
Infinispan subsystems. This requires the following:

A configured security domain which handles authentication and authorization.

The SSO infinispan replication cache. It is present in the ha and full-ha profiles for a managed
domain, or by using the standalone-ha or standalone-full-ha profile for a standalone server.

The web cache-container and SSO replication cache within it must each be present.

The web subsystem needs to be configured to use SSO.

Each application which will share the SSO information must be configured to use the same
security domain.

CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX

25

CHAPTER 3. ADDITIONAL USECASES FOR SSO WITH RED
HAT JBOSS ENTERPRISE APPLICATION PLATFORM

In addition to the out of the box functionality, JBoss EAP 6 supports additional use cases for Single Sign
On including SAML for browser-based SSO, desktop-based SSO, and SSO via a secure token service.

3.1. BROWSER-BASED SSO USING SAML

In a browser-based SSO scenario, one or more web applications (service providers) are connected to a
centralized identity provider in a hub and spoke architecture. The identity provider (IDP) acts as the
central source (hub) for identity and role information to all the service providers or spokes. When an
unauthenticated user attempts to access one of the service providers, that user is instead redirected to
an identity provider to perform the authentication. The identity provider authenticates the user, issues a
SAML token specifying the role of the principal, and redirects them back to the requested service
provider. From there, that SAML token is used across all of the associated service providers to
determine the user’s identity and access. This specific method of using SSO starting at the service
providers is known as a service provider-initiated flow.

Like many SSO systems, JBoss EAP and utilizes both identity providers (IDP) and a service providers
(SP). Both of these components are enabled to be run within JBoss EAP instances and work in
conjunction with the JBoss EAP security subsystem. SAML v2, FORM based web application security,
and HTTP/POST and HTTP/Redirect Bindings are also utilized to implement SSO.

To create an identity provider, a security domain is created (e.g. idp-domain) in an JBoss EAP instance
with an authentication and authorization mechanism defined (e.g. LDAP, database, etc) to serve as the
identity store. A web application (e.g. IDP.war) is configured to use additional modules (org.picketlink)
required for running an IDP in conjunction with idp-domain and is deployed to that same JBoss EAP
instance. IDP.war will serve as an identity provider. To create a service provider, a security domain is
created (e.g. sp-domain) that uses SAML2LoginModule as an authentication mechanism. A web
application (e.g. SP.war) is configured to use additional modules (org.picketlink) and contains a service
provider valve that uses sp-domain. SP.war is deployed to an JBoss EAP instance where sp-domain is
configured and is now a service provider. This process can be replicated for one or more service
providers (e.g. SP2.war, SP3.war, etc) and across one or more JBoss EAP instances.

3.1.1. Identity Provider Initiated Flow

In most SSO scenarios, the SP starts the flow by sending an authentication request to the IDP, which in
turns sends an SAML response to SP with a valid assertion. This is know as a service provider (SP)-
initiated flow. But the SAML 2.0 specs also defines another flow, called identity provider (IDP)-initiated
or Unsolicited Response flow. In this scenario, the service provider does not initiate the authentication
flow to receive a SAML response from the IDP. The flow instead starts on the IDP-side. Once
authenticated, the user can choose a specific service provider from a list and then get redirected to the
service provider’s URL. No special configuration is necessary to enable this flow.

Walkthrough

1. User accesses the IDP.

2. The IDP seeing that there is neither SAML request nor response, assumes an IDP-initiated flow
scenario using SAML.

3. The IDP challenges the user to authenticate.

4. Upon authentication, the IDP shows the hosted section where the user gets a page that links to

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

26

4. Upon authentication, the IDP shows the hosted section where the user gets a page that links to
all the SP applications.

5. The user chooses an SP application.

6. The IDP redirects the user to the service provider with a SAML assertion in the query parameter,
SAML response.

7. The SP checks the SAML assertion and provides access.

3.1.2. Global Logout

A Global Logout initiated at one service provider logs out the user from the Identity Provider (IDP) and
all the service providers. If a user attempts to access secured portions of any SP or IDP after performing
a global logout, they will be forced to re-authenticate.

3.2. DESKTOP-BASED SSO

A desktop-based SSO scenario enables a principal to be shared across both the desktop (usually
governed by an Active Directory or Kerberos server) as well as a set of web applications (service
providers). In this case, the desktop identity provider will also serve as the identity provider for the web
applications.

In a typical setup, the user logs into a desktop which is governed by the Active Directory domain. The
user then uses a web browser to access a web application that uses JBoss Negotiation hosted on the
JBoss EAP. The web browser transfers the sign on information from the local machine of the user to the
web application. JBoss EAP uses background GSS messages with the Active Directory or any Kerberos
Server to validate the user. This enables the user to achieve a seamless SSO into the web application.

To setup a desktop-based SSO as an identity provider for a web application, a security domain is
created that connects to the identity provider server. A NegotiationAuthenticator is then added as a
valve to the desired web application and JBoss Negotiation is added to the SP container’s class path.
Alternatively, an IDP can be setup similarly to the browser-based SSO scenario, but using the desktop-
based SSO provider as an identity store.

3.3. SSO USING STS

JBoss EAP 6 and above offers several login modules for service providers to connect to an STS. It can
also run a Security Token Service (PicketLinkSTS). More specifically, the PicketLinkSTS defines several
interfaces to other Security Token Services and provide extension points. Implementations can be
plugged in via configuration, and the default values can be specified for some properties via
configuration. This means that the PicketLinkSTS generates and manages the security tokens, but does
not issue tokens of a specific type. Instead, it defines generic interfaces that allows multiple token
providers to be plugged in. As a result, it can be configured to deal with various types of token, as long as
a token provider exists for each token type. It also specifies the format of the security token request
and response messages.

The following are the steps in which the security token requests are processed when using the
JBoss EAP Security Token Service:

1. A client sends a security token request to PicketLinkSTS.

2. PicketLinkSTS parses the request message, generating a JAXB object model.

3. PicketLinkSTS reads the configuration file and creates the STSConfiguration object, if needed.

CHAPTER 3. ADDITIONAL USECASES FOR SSO WITH RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM

27

3. PicketLinkSTS reads the configuration file and creates the STSConfiguration object, if needed.
Then it obtains a reference to the WSTrustRequestHandler from the configuration and
delegates the request processing to the handler instance.

4. The request handler uses the STSConfiguration to set default values when needed (for
example, when the request doesn’t specify a token lifetime value).

5. The WSTrustRequestHandler creates the WSTrustRequestContext, setting the JAXB request
object and the caller principal it received from PicketLinkSTS.

6. The WSTrustRequestHandler uses the STSConfiguration to get the SecurityTokenProvider that
must be used to process the request based on the type of the token that is being requested.
Then it invokes the provider, passing the constructed WSTrustRequestContext as a parameter.

7. The SecurityTokenProvider instance process the token request and stores the issued token in
the request context.

8. The WSTrustRequestHandler obtains the token from the context, encrypts it if needed, and
constructs the WS-Trust response object containing the security token.

9. PicketLinkSTS dictates the response generated by the request handler and returns it to the
client.

An STS Login Module (e.g. STSIssuingLoginModule, STSValidatingLoginModule,
SAML2STSLoginModule, etc) is typically configured as part of the security setup of a JEE container to
use a Security Token Service for authenticating users. The STS may be collocated on the same
container as the Login Module or be accessed remotely through Web Service calls or another
technology.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

28

CHAPTER 4. EXAMPLE SCENARIOS
One way of understanding how JBoss EAP security and its components work together is to view in
context of real scenarios. The following sections cover several generalized but realistic situations that
involve the various JBoss EAP security components and configuration options. They will focus on how
an application or set of applications is secured as well as how the management interfaces are secured.

4.1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM OUT OF
THE BOX

This scenario shows how JBoss EAP and a sample application are secured when no configuration
changes are made after the initial install. An application (sampleApp1.war) is deployed and configured to
use container-based security.

4.1.1. Core Management Authentication Out of the Box

4.1.1.1. Security

The core management authentication offers two pre-configured security realms by default:
ManagementRealm and ApplicationRealm. These realms use property files to store the usernames,
passwords, and roles. The ManagementRealm, which is used to store the authentication information the
management APIs, also defines and enables local authentication for users using the CLI interface on the
same host as the JBoss EAP instance. The ApplicationRealm is also pre-configured to store

CHAPTER 4. EXAMPLE SCENARIOS

29

authentication and authorization information, but for use with other applications besides the
management APIs. In addition, ApplicationRealm does come pre-configured with local authentication
enabled but is not commonly used.

4.1.1.2. How it works

For this scenario, the following users have been added to a default installation of JBoss EAP:

Table 4.1. Users

Username Password Roles Security Realm

Susan Testing123! ManagementRealm

Sarah Testing123! sample ApplicationRealm

Frank Testing123! ApplicationRealm

On startup, the JBoss EAP instance loads both the ManagementRealm and ApplicationRealm security
realms.

If Susan attempts to access either of the management APIs (HTTP or CLI), she is required to
authenticate. Her username, password, and roles must match an entry in the ManagementRealm security
realm. By default, no roles are required to access the management APIs. Sarah and Frank would not be
able to access the management APIs since they are not in the ManagementRealm security realm.

4.1.2. Security Subsystem Out of the Box

4.1.2.1. Security

The security subsystem also comes pre-configured with three security domains: other, jboss-web-policy,
and jboss-ejb-policy . The other security domain performs authentication and authorization by
delegating to the realm specified in the login module (uses ApplicationRealm by default).

Additional information about both the default security realms as well as the default security domains can
be found in the Security Realms and Security Domains sections.

4.1.2.2. How it Works

The application sampleApp1.war has two html files (/hello.html and /secure/hello.html) and uses basic
HTTP authentication to secure the path /secure/*. It uses the other security domain and requires the
role of sample. Since the other security domain defers to ApplicationRealm for its authentication and
authorization information, refer to the users in the Users table from the previous section.

When Sarah requests /hello.html, she is able to view the page without authenticating. When Sarah tries
to request /secure/hello.html, she is prompted to enter her username and password. She is then able to
view /secure/hello.html after successfully logging in. Frank and Susan (or any user) can access
/hello.html, but neither can access /secure/hello.html (Frank does not have the sample role and Susan
is not in the ApplicationRealm security realm).

4.2. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM WITH
HTTPS AND RBAC ADDED TO THE MANAGEMENT INTERFACES

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

30

This scenario shows how JBoss EAP is secured when HTTPS is enabled for the management interfaces,
and RBAC is added to the ManagementRealm security realm.

4.2.1. Security

JBoss EAP provides support for using HTTPS with the management interfaces, which includes the
Management Console. HTTPS can be enabled by configuring the secure-interface element, adding a
secure-port to the http-interface section of the management interface, and configuring an existing or
new security realm with the desired settings (e.g. server-identities, protocol, keystore, alias, etc). This
enables the management interfaces to use SSL/TLS for all HTTP traffic. For more background
information on HTTPS and securing the management interfaces in general, see the Section 2.2.2,
“Advanced Security” section.

JBoss EAP also offers the ability to enable RBAC on the managent interfaces using a couple of
different authentication schemes. This example uses username/password authentication with the
existing property files used in the ManagementRealm. RBAC is enabled by setting the provider attribute
to rbac for the management interface and updating the ManagementRealm with the desired users and
roles.

4.2.2. How it works

For this scenario, the following users have been added to the existing security realms:

Table 4.2. Management Users

CHAPTER 4. EXAMPLE SCENARIOS

31

Username Password Security Realm

Suzy Testing123! ManagementRealm

Tim Testing123! ManagementRealm

Emily Testing123! ManagementRealm

Zach Testing123! ManagementRealm

Natalie Testing123! ManagementRealm

Based on group membership, the users have also been mapped to the following RBAC roles:

Table 4.3. RBAC Roles

Username RBAC Role

Suzy SuperUser

Tim Administrator

Emily Maintainer

Zach Deployer

Natalie Monitor

On startup, JBoss EAP loads the ManagementRealm (with the RBAC configuration) and management
interfaces as part of the core services, which also starts the http-interface (configured for HTTPS) for
the management interfaces. Users now access the management interfaces via HTTPS, and RBAC has
also been enabled and configured. If RBAC is not enabled, any user in the ManagementRealm security
realm is considered a SuperUser and has unlimited access. Since RBAC has been enabled, each user is
now restricted based on the roles they have. Suzy, Tim, Emily, Zach, and Natalie all have different roles
which are showing in the table above. For example, only Suzy and Tim can read and modify access
control information. Suzy, Tim, and Emily can modify runtime state and other persistent configuration
information. Zach can also modify runtime state and other persistent configuration information, but only
related to application resources. Suzy, Tim, Emily, Zach, and Natalie can all read configuration and state
information, but Natalie cannot update anything. For more details on each of the roles and how JBoss
EAP handles RBAC, see the] and xref:Adding RBAC to the Management Interfaces[sections.

4.3. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM WITH AN
UPDATED SECURITY SUBSYSTEM INCLUDING HTTPS

This scenario shows how a sample application running on JBoss EAP is secured when a new security
domain is added, and HTTPS is enabled. An application (sampleApp2.war) is deployed that is configured
to use container-based security (sample-domain) and HTTPS.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

32

4.3.1. Security

JBoss EAP provides support for using HTTPS for use with applications, which is handled using the web
subsystem. A new connector for HTTPS is added to the web subystem and is configured with the desired
settings (e.g. protocol, port, keystore, etc). Once the configuration is saved, web applications can start
accepting HTTPS traffic on the configured port. A new security domain has also been added called
sample-domain that uses the IdentityLoginModule for authentication. sampleApp2.war is configured to
use sample-domain to authenticate users.

4.3.2. How it works

A security domain (sample-domain) has been created and configured to use the IdentityLoginModule.
The following credentials have been configured in the login module:

Table 4.4. sample-domain Users

Username Password Roles

Vincent samplePass sample

On startup, JBoss EAP loads the core services, and then starts up the web and security subsystems

CHAPTER 4. EXAMPLE SCENARIOS

33

On startup, JBoss EAP loads the core services, and then starts up the web and security subsystems
which manages the HTTPS connections for all web applications and the sample-domain respectively.
sampleApp2.war is then loaded which looks for sample-domain for providing authentication and
authorization for its secured URLs. sampleApp2.war has two html files (/hello.html and
/secure/hello.html) and uses basic HTTP authentication to secure the path /secure/*. It uses the
sample-domain security domain and requires the role of sample.

When Vincent requests /hello.html, he is able to view the page without authenticating. When Vincent
tries to request /secure/hello.html, he is prompted to enter her username and password. He is then able
to view /secure/hello.html after successfully logging in. All other users can access /hello.html without
loggin in, but none can access /secure/hello.html since Vincent is the only user in sample-domain. This
also applies to all traffic handled over HTTPS.

4.4. SSO FOR WEB APPLICATIONS ON RED HAT JBOSS ENTERPRISE
APPLICATION PLATFORM

This scenario shows how web applications make use of both clustered and non-clustered SSO on JBoss
EAP. Four JBoss EAP instances have are created (EAP1, EAP2, EAP3, and EAP4) with EAP1 and EAP2
operating in standalone mode, and EAP3 and EAP4 operating as a two node cluster. Two web
applications (sampleAppA and sampleAppB) have been deployed to each of the four JBoss EAP
instances.

4.4.1. Security

JBoss EAP provides support for both clustered and non-clustered SSO with web applications by using a

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

34

combination of the security, web, and infinispan subsystems. The security subsystem provides a security
domain for performing authentication and authorization while the infinispan and web subsystems help
with caching and distributing the SSO information between all the web applications on an JBoss EAP
instance or across a JBoss EAP cluster. All four eap instances have a security domain (sso-domain)
configured to use the IdentityLoginModule. sampleAppA and sampleAppB have been configured to use
the sso-domain security domain to secure the path /secure/* and require the role of sample to access it.
The following credentials have been configured in the sso-domain login module:

Table 4.5. sso-domain Users

Username Password Roles

Jane samplePass sample

All four JBoss EAP instances have also been configured to start up with either standalone-full-ha or full-
ha profile, which adds the infinispan subsystem and other functionality needed for enabling SSO in this
scenario. The web cache-container and SSO replicated-cache have also been added, and the web
subsystem has been configured to use both them. EAP1 and EAP2 have configured their web
subsystems for non-clustered SSO while the cluster containing EAP3 and EAP4 has been configured to
use clustered SSO.

APPLICATION CLUSTERING VS. CLUSTERED SSO

There is a distinct difference between a clustered web application and clustered SSO. A
clustered web application is one which is distributed across the nodes of a cluster to
spread the load of hosting that application. In clustered applications (marked as
distributable), all new sessions, and changes to existing sessions are replicated to other
members of the cluster. Clustered SSO allows for replication of security context and
identity information, regardless of whether or not the applications are themselves
clustered. Although these technologies may be used together they are mutually exclusive
and may be used independent of one other.

4.4.2. How it works

On startup, JBoss EAP loads the core services and then starts up the security, web, and infinispan
subsystems which manage sso-domain and the associated caching for SSO informaiton.
sampleAppA.war and sampleAppB.war are loaded on all four JBoss EAP instances, each of which look for
sso-domain for providing authentication and authorization.

If Jane attempts to access EAP1/sampleAppA/secure/hello.html, she will be asked to authenticate.
After providing the correct information, she will be allowed to see
EAP1/sampleAppA/secure/hello.html. Jane’s session will then be be added into the SSO caches used
by the web and infinispan subsystems. If she then attempts to access
EAP1/sampleAppB/secure/hello.html, she will not be asked to re-authenticate. sampleAppB running
on EAP1 will find her session using the web subsystem caches along with the infinispan subsystem and
grant her access since she is already authenticated. If Jane then attempts to access either
EAP2/sampleAppA/secure/hello.html or EAP2/sampleAppB/secure/hello.html, she will be asked to
authenticate again since EAP1 and EAP2 do not share a cache.

If Jane attempts to access EAP3/sampleAppA/secure/hello.html, she will be asked to authenticate
and her session will be stored in the SSO caches. These caches are stored across the entire cluster, so if
Jane attempts to log into EAP3/sampleAppB/secure/hello.html,
EAP4/sampleAppA/secure/hello.html, or EAP4/sampleAppB/secure/hello.html, she will not have to
re-authenticate. Additionally, if either EAP3 or EAP4 are restarted, Jane’s SSO information will remain in

CHAPTER 4. EXAMPLE SCENARIOS

35

the cache since the other JBoss EAP instance and the cluster remain running, hence preserving the
cache. Similarly, if Jane’s session is invalidated, it ripples across the cache and she will be asked to re-
authenticate regardless of which application or server she tries to access in the cluster.

4.5. MULTIPLE RED HAT JBOSS ENTERPRISE APPLICATION
PLATFORM INSTANCES AND MULTIPLE APPLICATIONS USING
BROWSER-BASED SSO WITH SAML

This scenario shows how multiple JBoss EAP are secured and browser-based SSO is added. Three
separate (non-clustered) JBoss EAP instances are configured(EAP1, EAP2, and EAP3) and three sample
applications (sampleAppA.war, sampleAppB.war, and sampleAppC.war) are configured to use browser-
based SSO for authentication.

4.5.1. Security

JBoss EAP provides support for doing browser-based SSO via SAML with web applications as well as
hosting an identity provider. To host an identity provider, a security domain (idp-domain) must be
configured with an authentication mechanism defined. In this case, idp-domain is configured to use the
DatabaseLoginModule as the authentication mechanism. The identity provider application (IDP.war) is
deployed to that JBoss EAP instance (EAP-IDP), and configured to use idp-domain as its identity store.
IDP.war uses the identity store in combination with functionality in the application to authentication
users as well as issue SAML tokens containing the users identity and role information. Three additional
JBoss EAP instances (EAP1, EAP2, and EAP3) each host one distinct application that will serve as an
individual service provider (sampleAppA.war, sampleAppB.war, and sampleAppC respectively). Each

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

36

JBoss EAP instance has a security domain (sso-domain) configured to use the SAML2LoginModule as
the authentication mechanism. Each application contains functionality to support SSO, use IDP.war as
an identity provider, and use HTTP/POST binding for authentication. Each application is also configured
to use sso-domain to secure the path /secure/* and supplies its own list of roles for handling
authorization.

4.5.2. How it works

For this scenario, the following users have been added to the database used by the
DatabaseLoginModule in the idp-domain security domain:

Table 4.6. idp-domain Users

Username Password Roles

Eric samplePass all

Amar samplePass AB

Brian samplePass C

Alan samplePass

On startup of EAP-IDP, the management interfaces start up, followed by the subsystems and deployed
applications including the security subsystem (which includes idp-domain) and IDP.war. idp-domain
connects to the database and loads the usernames, passwords, and roles as configured in the
DatabaseLoginModule login module. To prevent sensitive information from being stored in plaintext in
the configuration of the DatabaseLoginModule login module password hashing is configured to
obscure certain fields (e.g. password for the database). IDP.war uses idp-domain for authentication and
authorization. IDP.war is also configured (via jboss-web.xml, web.xml, picketlink.xml, and jboss-
deployment-structure.xml) to issue SAML tokens to authenticated users and supplies a simple login form
for users to authenticate against. This allows it to serve as an identity provider.

On startup of EAP1, EAP2 and EAP3, the management interfaces start up, followed by the subsystems
and deployed applications including the security subsystem (which includes sso-domain on each
instance) and sampleAppA.war, sampleAppB.war, and sampleAppC.war respectively. sso-domain is
configured to use the SAML2LoginModule login module, but relies on the application to supply the
proper SAML token. This means any application using sso-domain must handle properly connecting to
an identity provider to obtain a SAML token. In this case, sampleAppA, sampleAppB, and sampleAppC
are each configured (via jboss-web.xml, web.xml, picketlink.xml, and jboss-deployment-structure.xml) to
obtain SAML tokens from an identity provider (IDP.war) using that identity providers login form.

Each application is also configured with its own set of allowed roles:

Table 4.7. Application/SP roles

Application/SP Allowed Roles

sampleAppA all, AB

sampleAppB all, AB

CHAPTER 4. EXAMPLE SCENARIOS

37

sampleAppC all, C

Application/SP Allowed Roles

When an un-authenticated user attempts to access the URLs secured by sso-domain (i.e. /secure/*) of
any application, that user is redirected to the login page at IDP.war. The user then authenticates using
the form, is issued a SAML token containing their identity and role information. The user is then
redirected back to the original URL, and their SAML token is presented to the application (service
provider). The application ensures the SAML token is valid and then authorizes the user based on the
roles provided by the SAML token and the ones configured in the application. Once a user is issued a
SAML token, they will then use that token to be authenticated and authorized on the other applications
secured by SSO using the same identity provider. Once the SAML token expires or becomes invalidated,
the user will required to obtain a new SAML token from the identity provider.

In this example, if Eric accesses EAP1/sampleAppA/secure/hello.html, he is redirected to EAP-
IDP/IDP/login.html to login. After successful login, he is issued a SAML token containing his user
information and the role all, and redirected back to EAP1/sampleAppA/secure/hello.html. His SAML
token is then presented to sampleAppA to be checked and to authorize him based on his roles. Since
sampleAppA allows the roles all and AB to access /secure/* and Eric has the role all, he is allowed to
access EAP1/sampleAppA/secure/hello.html.

If Eric then tries to access EAP2/sampleAppB/secure/hello.html, since he is not already authenticated
against that service provider, he is redirected again to IDP.war with an authentication request. Since Eric
has already authenticated against the identity provider (IDP.war), he is then redirected back to
EAP2/sampleAppB/secure/hello.html by IDP.war with a new SAML token for that service provider
without having to re-authenticate. sampleAppB then simply checks his new SAML token and authorizes
him based on his role. Since sampleAppB allows the roles all and AB to access /secure/* and Eric has the
role all, he also is allowed to access EAP2/sampleAppB/secure/hello.html. The same thing would apply
if Eric were to try and access EAP3/sampleAppC/secure/hello.html.

If Eric were to return to EAP1/sampleAppA/secure/hello.html (or any URL under
EAP2/sampleAppB/secure/ * or EAP3/sampleAppC/secure/*) after his SAML token became
invalidated via global logout, he would be redirected back to EAP-IDP/IDP/login.html to authenticate
again and be issued a new SAML token.

If Amar attempted to access EAP1/sampleAppA/secure/hello.html or
EAP2/sampleAppB/secure/hello.html, he would be directed through the same flow as Eric. If Amar
attempted to access EAP3/sampleAppC/secure/hello.html, he would still be required to have or
obtain a SAML token, but would restricted from viewing EAP3/sampleAppC/secure/hello.html since
his role AB only allows him to access EAP1/sampleAppA/secure/* and EAP2/sampleAppB/secure/*.
Brian is in a similar situation, but he is only allowed to access EAP3/sampleAppC/secure/*. If Alan tries
to access any service provider’s secured area, he would still be required to have or obtain a SAML token,
but would be restricted from seeing anything since he has no role. Each service provider also has
unsecured area which any user (authorized or not) can view without obtaining a SAML token.

4.6. USING LDAP WITH THE MANAGEMENTREALM

This scenario shows the ManagementRealm using LDAP for securing the management interfaces. A
JBoss EAP instance has been created (EAP1) and is running in standalone mode. The
ManagementRealm on EAP1 has also been updated to use LDAP as the authentication and authorization
mechanism.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

38

4.6.1. Security

JBoss EAP supports using LDAP (as well as Kerberos) for authentication in security realms. This is
accomplished by updating the existing ManagementRealm to use ldap as the authentication type and
creating an outbound connection to the LDAP server. This, in turn, changes the authentication
mechanism from digest to BASIC / Plain, and will transmit usernames and passwords in the clear over
the network by default.

4.6.2. How it works

The following users have been added to the LDAP directory:

Table 4.8. Management Users

Username Password Roles

Adam samplePass SuperUser

Sam samplePass

On startup, EAP1 loads the core-services, including ManagementRealm and the management interfaces.
ManagementRealm connects to the LDAP directory server and provides the authentication for the
management interfaces as needed.

If Adam attempts to access a management interface, he will be forced to authenticate. His credentials
will be passed to the ManagementRealm security realm, which will use the LDAP directory server for

CHAPTER 4. EXAMPLE SCENARIOS

39

authentication. After he is authenticated, his roles will be passed back to the management interface and
for authorization. Since Adam has the SuperUser role, he will be granted access to the management
interface. If Sam attempts to access a management interface, he would be authenticated via LDAP, but
would be denied access since he does not have the proper role of SuperUser.

4.7. USING DESKTOP SSO (VIA KERBEROS) TO PROVIDE SSO FOR
WEB APPLICATIONS

This scenario shows how Kerberos can be used with JBoss EAP to provide SSO for web applications. A
JBoss EAP instance has been created (EAP1) and is running in standalone mode. Two web applications
(sampleAppA and sampleAppB) have been deployed to EAP1. Both the web applications and EAP1 have
been configured to authenticate using desktop-based SSO via Kerberos.

4.7.1. Security

JBoss EAP offers support for using Kerberos for SSO in web applications via SPNEGO and JBoss
Negotiation. For more information on the specifics of Kerberos and SPNEGO please see the
Section 1.6.1, “Third-Party SSO Implementations” section. To enable JBoss EAP and deployed web
applications to use Keberos for authentication, two security domains must be created. The first security
domain (host-domain) is configured with the kerberos login module to connect to the kerberos server.
This allows JBoss EAP to authenticate at the container level. A second security domain (spnego-
domain) is created with two login modules. One uses the spnego login module to connect to host-
domain to authenticate users. The second can use any other login module to load role information for
use in authorization decisions (e.g. UsersRoles using properties files to map users to roles).

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

40

These two login modules also make use of password-stacking to map the users and roles in the
authorization module with the users in the authentication login module. EAP1 is configured with both
host-domain and spnego-domain. Applications are then configured (via web.xml and jboss-web.xml) to
use spnego-domain to perform authentication and get a user’s roles for authorization. Applications can
also be configured with FORM authentication as a fallback authentication mechanism in case the
security tokens cannot be passed from the OS to the browser. If FORM authentication is configured as a
fallback, an additional security domain must be configured to support it. This security domain is
independent of Kerberos and SPNEGO, and just has to support FORM authentication (i.e.
username/password validation and roles). Each application is configured to use spengo-domain and to
provide FORM authentication as a fallback. Each application is also configured to secure the path
/secure/* and supplies its own list of roles for handling authorization.

4.7.2. How it works

The following users have been created in the Kerberos server:

Table 4.9. Kerberos Users

Username Password

Brent samplePass

Andy samplePass

Bill samplePass

Ron samplePass

The following roles have mapped to the users via an additional module that is chained by setting the
password-stacking option to useFirstPass:

Table 4.10. User Roles

Username Roles

Brent all

Andy A

Bill B

Ron

The following roles have also been configured in each application:

Table 4.11. Application Roles

Application/SP Allowed Roles

sampleAppA all, A

CHAPTER 4. EXAMPLE SCENARIOS

41

sampleAppB all, B

Application/SP Allowed Roles

On startup, EAP1 loads the core-services, followed by the security and other subsystems. host-domain
establishes a connection to the Kerberos server and spnego-domain connects to host-domain.
sampleAppA and sampleAppB are then deployed and connect to spnego-domain for authentication.

Brent has logged onto his computer that is secured with Kerberos. He then opens his browser and
attempts to access sampleAppA/secure/hello.html. Since that is secured, authentication is required.
EAP1 directs the browser to send a request for a key to the Kerberos server (specifically the Kerberos
Key Distribution Center which is configured on his computer). After a key is obtained by the browser, it is
sent to simpleAppA. simpleAppA sends the ticket to spnego-domain where it is unpacked and
authentication is performed by host-domain (in conjunction with the configured Kerberos server). Once
the ticket is authenticated, Brent’s role is passed back to simpleAppA to perform authorization. Since
Brent has the all role, he will be able to access sampleAppA/secure/hello.html. If Brent tries to access
sampleAppB/secure/hello.html, the same process will occur and he will be granted access (due to him
having the all role). Andy and Bill would follow the same process as well, but with Andy only having
access to sampleAppA/secure/hello.html and not sampleAppB/secure/hello.html. Bill would be the
opposite, having access to sampleAppB/secure/hello.html and not sampleAppA/secure/hello.html.
Ron would pass authentication to either sampleAppA/secure/hello.html or
sampleAppB/secure/hello.html, but would not be granted access to either since he has no role.

If Andy were to attempt to access sampleAppA/secure/hello.html from a computer not secured by
Kerberos (e.g. a personal laptop connected to the office network), he would be directed to the FORM
login page as a fallback login mechanism. His credentials would then be authenticated via the fallback
security domain and then the process would continue with authorization.

Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture

42

	Table of Contents
	CHAPTER 1. OVERVIEW OF GENERAL SECURITY CONCEPTS
	1.1. AUTHENTICATION
	1.2. AUTHORIZATION
	1.3. AUTHENTICATION AND AUTHORIZATION IN PRACTICE
	1.4. ENCRYPTION
	1.5. SSL/TLS AND CERTIFICATES
	1.6. SINGLE SIGN ON (SSO)
	1.6.1. Third-Party SSO Implementations
	1.6.2. Claims-Based Identity

	1.7. LDAP

	CHAPTER 2. HOW RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 HANDLES SECURITY OUT OF THE BOX
	2.1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM-SPECIFIC CONCEPTS
	2.1.1. Core Services, Subsystems, and Profiles
	2.1.2. Management Interfaces
	2.1.3. Security Realms
	2.1.4. Security Domains
	2.1.5. Using Security Realms and Security Domains
	2.1.6. Security Auditing
	2.1.7. Security Mapping
	2.1.8. JMX
	2.1.9. Role-Based Access Control
	2.1.10. Declarative Security and JAAS

	2.2. CORE MANAGEMENT AUTHENTICATION
	2.2.1. Default Security
	2.2.1.1. Local and Remote Client Authentication with the Native Interface
	2.2.1.2. Local and Remote Client Authentication with the HTTP Interface

	2.2.2. Advanced Security
	2.2.2.1. Updating the Management Interfaces
	2.2.2.2. Adding Outbound Connections
	2.2.2.3. Adding RBAC to the Management Interfaces
	2.2.2.4. Using LDAP with the Management Interfaces
	2.2.2.5. JAAS and the Management Interfaces

	2.3. SECURITY SUBSYSTEM
	2.3.1. Password Vault System
	2.3.2. Security Domains
	2.3.2.1. Login Modules
	2.3.2.2. Password Stacking
	2.3.2.3. Password Hashing

	2.3.3. Security Management
	2.3.3.1. Deep Copy Mode

	2.3.4. Additional Components
	2.3.4.1. JASPI
	2.3.4.2. JACC
	2.3.4.3. About Fine Grained Authorization and XACML
	2.3.4.4. SSO

	CHAPTER 3. ADDITIONAL USECASES FOR SSO WITH RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
	3.1. BROWSER-BASED SSO USING SAML
	3.1.1. Identity Provider Initiated Flow
	3.1.2. Global Logout

	3.2. DESKTOP-BASED SSO
	3.3. SSO USING STS

	CHAPTER 4. EXAMPLE SCENARIOS
	4.1. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM OUT OF THE BOX
	4.1.1. Core Management Authentication Out of the Box
	4.1.1.1. Security
	4.1.1.2. How it works

	4.1.2. Security Subsystem Out of the Box
	4.1.2.1. Security
	4.1.2.2. How it Works

	4.2. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM WITH HTTPS AND RBAC ADDED TO THE MANAGEMENT INTERFACES
	4.2.1. Security
	4.2.2. How it works

	4.3. RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM WITH AN UPDATED SECURITY SUBSYSTEM INCLUDING HTTPS
	4.3.1. Security
	4.3.2. How it works

	4.4. SSO FOR WEB APPLICATIONS ON RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
	4.4.1. Security
	4.4.2. How it works

	4.5. MULTIPLE RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM INSTANCES AND MULTIPLE APPLICATIONS USING BROWSER-BASED SSO WITH SAML
	4.5.1. Security
	4.5.2. How it works

	4.6. USING LDAP WITH THE MANAGEMENTREALM
	4.6.1. Security
	4.6.2. How it works

	4.7. USING DESKTOP SSO (VIA KERBEROS) TO PROVIDE SSO FOR WEB APPLICATIONS
	4.7.1. Security
	4.7.2. How it works

