
Red Hat Enterprise Linux 9

Managing certificates in IdM

Issuing certificates, configuring certificate-based authentication, and controlling
certificate validity

Last Updated: 2024-03-11

Red Hat Enterprise Linux 9 Managing certificates in IdM

Issuing certificates, configuring certificate-based authentication, and controlling certificate validity

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Administrators use X.509 certificates to authenticate users, hosts, and services, and to enable
digital signing and encryption. In Red Hat Identity Management (IdM), you can manage certificates
by using the integrated or an external Certificate Authority (CA). You can request and renew
certificates by using the certmonger service, the certutil tool, or Ansible Playbooks. To replace the
web server and LDAP server certificates of IdM servers, you must perform manual actions.
Administrators can create lightweight sub-CAs to issue certificates for a specific purpose, such as
user certificates for a VPN gateway. The administrator can then invalidate all certificates for this
service by revoking the sub-CA's certificate when this VPN gateway is no longer needed.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT
1.1. CERTIFICATE AUTHORITIES IN IDM
1.2. COMPARISON OF CERTIFICATES AND KERBEROS
1.3. THE PROS AND CONS OF USING CERTIFICATES TO AUTHENTICATE USERS IN IDM

CHAPTER 2. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM
CA

2.1. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE USING IDM WEB UI
2.2. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING CERTUTIL

2.3. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING OPENSSL

2.4. ADDITIONAL RESOURCES

CHAPTER 3. MANAGING IDM CERTIFICATES USING ANSIBLE
3.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
3.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
3.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
3.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

CHAPTER 4. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

4.1. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING
THE IDM CLI
4.2. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING
THE IDM WEB UI
4.3. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE
ACCOUNT BY USING THE IDM CLI
4.4. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE
ACCOUNT BY USING THE IDM WEB UI
4.5. ADDITIONAL RESOURCES

CHAPTER 5. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM
5.1. CERTIFICATE FORMATS AND ENCODINGS IN IDM
5.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN IDM USER ACCOUNT

5.2.1. Prerequisites
5.2.2. Converting an external certificate in the IdM CLI and loading it into an IdM user account
5.2.3. Converting an external certificate in the IdM web UI for loading into an IdM user account

5.3. PREPARING TO LOAD A CERTIFICATE INTO THE BROWSER
5.3.1. Exporting a certificate and private key from an NSS database into a PKCS #12 file
5.3.2. Combining certificate and private key PEM files into a PKCS #12 file

5.4. CERTIFICATE-RELATED COMMANDS AND FORMATS IN IDM

CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT
6.1. WHAT IS A CERTIFICATE PROFILE?
6.2. CREATING A CERTIFICATE PROFILE
6.3. WHAT IS A CA ACCESS CONTROL LIST?
6.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE PROFILES
6.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE CERTIFICATES
6.6. MODIFYING A CERTIFICATE PROFILE

7

8

9
9

10
10

12
12

13

15
16

17
17
18
19

20

22

22

23

23

24
25

26
26
28
28
28
29
30
30
30
31

33
33
34
35
36
38
39

Table of Contents

1

. .

. .

. .

. .

6.7. CERTIFICATE PROFILE CONFIGURATION PARAMETERS

CHAPTER 7. MANAGING THE VALIDITY OF CERTIFICATES IN IDM
7.1. MANAGING THE VALIDITY OF AN EXISTING CERTIFICATE THAT WAS ISSUED BY IDM CA
7.2. MANAGING THE VALIDITY OF FUTURE CERTIFICATES ISSUED BY IDM CA
7.3. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN IDM WEBUI
7.4. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN THE CLI
7.5. REVOKING CERTIFICATES WITH THE INTEGRATED IDM CAS

7.5.1. Certificate revocation reasons
7.5.2. Revoking certificates with the integrated IdM CAs using IdM WebUI
7.5.3. Revoking certificates with the integrated IdM CAs using IdM CLI

7.6. RESTORING CERTIFICATES WITH THE INTEGRATED IDM CAS
7.6.1. Restoring certificates with the integrated IdM CAs using IdM WebUI
7.6.2. Restoring certificates with the integrated IdM CAs using IdM CLI

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION
8.1. CONFIGURING THE IDM SERVER FOR SMART CARD AUTHENTICATION
8.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART CARD AUTHENTICATION
8.3. CONFIGURING THE IDM CLIENT FOR SMART CARD AUTHENTICATION
8.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD AUTHENTICATION
8.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI
8.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI
8.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
8.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
8.9. LOGGING IN TO IDM WITH SMART CARDS
8.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION ON AN IDM CLIENT
8.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

CHAPTER 9. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

9.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST CONFIGURATION AND CERTIFICATE USAGE
9.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP
9.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD AUTHENTICATION USING ADCS
CERTIFICATES
9.4. CONVERTING THE PFX FILE
9.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
9.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
9.7. CONFIGURING TIMEOUTS IN SSSD.CONF
9.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD AUTHENTICATION

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT
10.1. CERTIFICATE MAPPING RULES FOR CONFIGURING AUTHENTICATION
10.2. COMPONENTS OF AN IDENTITY MAPPING RULE IN IDM
10.3. OBTAINING DATA FROM A CERTIFICATE FOR USE IN A MATCHING RULE
10.4. CONFIGURING CERTIFICATE MAPPING FOR USERS STORED IN IDM

10.4.1. Adding a certificate mapping rule in the IdM web UI
10.4.2. Adding a certificate mapping rule in the IdM CLI
10.4.3. Adding certificate mapping data to a user entry in the IdM web UI
10.4.4. Adding certificate mapping data to a user entry in the IdM CLI

10.5. CERTIFICATE MAPPING RULES FOR TRUSTS WITH ACTIVE DIRECTORY DOMAINS
10.6. CONFIGURING CERTIFICATE MAPPING FOR USERS WHOSE AD USER ENTRY CONTAINS THE WHOLE
CERTIFICATE

10.6.1. Adding a certificate mapping rule in the IdM web UI

40

44
44
44
44
45
45
45
46
47
47
47
48

49
49
52
55
57
59
61

62

63
64
66
66

68
68
69

69
71
71

72
74
75

76
76
77
78
78
79
80
81

83
84

85
85

Red Hat Enterprise Linux 9 Managing certificates in IdM

2

. .

. .

. .

. .

. .

. .

. .

. .

10.6.2. Adding a certificate mapping rule in the IdM CLI
10.7. CONFIGURING CERTIFICATE MAPPING IF AD IS CONFIGURED TO MAP USER CERTIFICATES TO USER
ACCOUNTS

10.7.1. Adding a certificate mapping rule in the IdM web UI
10.7.2. Adding a certificate mapping rule in the IdM CLI
10.7.3. Checking certificate mapping data on the AD side

10.8. CONFIGURING CERTIFICATE MAPPING IF AD USER ENTRY CONTAINS NO CERTIFICATE OR MAPPING
DATA

10.8.1. Adding a certificate mapping rule in the IdM web UI
10.8.2. Adding a certificate mapping rule in the IdM CLI
10.8.3. Adding a certificate to an AD user’s ID override in the IdM web UI
10.8.4. Adding a certificate to an AD user’s ID override in the IdM CLI

10.9. COMBINING SEVERAL IDENTITY MAPPING RULES INTO ONE
10.10. ADDITIONAL RESOURCES

CHAPTER 11. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN
IDM CLIENT

11.1. CONFIGURING THE IDENTITY MANAGEMENT SERVER FOR CERTIFICATE AUTHENTICATION IN THE
WEB UI
11.2. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
11.3. MAKING SURE THE CERTIFICATE AND USER ARE LINKED TOGETHER
11.4. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION
11.5. AUTHENTICATING TO THE IDENTITY MANAGEMENT WEB UI WITH A CERTIFICATE AS AN IDENTITY
MANAGEMENT USER
11.6. CONFIGURING AN IDM CLIENT TO ENABLE AUTHENTICATING TO THE CLI USING A CERTIFICATE

CHAPTER 12. USING IDM CA RENEWAL SERVER
12.1. EXPLANATION OF IDM CA RENEWAL SERVER
12.2. CHANGING AND RESETTING IDM CA RENEWAL SERVER
12.3. SWITCHING FROM AN EXTERNALLY TO SELF-SIGNED CA IN IDM
12.4. RENEWING THE IDM CA RENEWAL SERVER CERTIFICATE USING AN EXTERNAL CA

CHAPTER 13. RENEWING EXPIRED SYSTEM CERTIFICATES WHEN IDM IS OFFLINE
13.1. RENEWING EXPIRED SYSTEM CERTIFICATES ON A CA RENEWAL SERVER
13.2. VERIFYING OTHER IDM SERVERS IN THE IDM DOMAIN AFTER RENEWAL

CHAPTER 14. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE NOT YET
EXPIRED ON AN IDM REPLICA

CHAPTER 15. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN
THE WHOLE IDM DEPLOYMENT

CHAPTER 16. GENERATING CRL ON THE IDM CA SERVER
16.1. STOPPING CRL GENERATION ON AN IDM SERVER
16.2. STARTING CRL GENERATION ON AN IDM REPLICA SERVER

CHAPTER 17. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL
PUBLISHER ROLES

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
18.1. CERTMONGER OVERVIEW
18.2. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
18.3. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
18.4. VIEWING THE DETAILS OF A CERTIFICATE REQUEST TRACKED BY CERTMONGER
18.5. STARTING AND STOPPING CERTIFICATE TRACKING
18.6. RENEWING A CERTIFICATE MANUALLY

87

87
87
89
89

90
90
91

92
94
94
96

97

97
98

100
100

103
104

105
105
106
107
109

112
112
113

115

117

121
121
121

123

127
127
128
129
132
133
134

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

18.7. MAKING CERTMONGER RESUME TRACKING OF IDM CERTIFICATES ON A CA REPLICA
18.8. USING SCEP WITH CERTMONGER

18.8.1. SCEP overview
18.8.2. Requesting an IdM CA-signed certificate through SCEP
18.8.3. Automatically renewing AD SCEP certificates with certmonger

CHAPTER 19. DEPLOYING AND MANAGING THE ACME SERVICE IN IDM
19.1. THE ACME SERVICE IN IDM
19.2. ENABLING THE ACME SERVICE IN IDM
19.3. DISABLING THE ACME SERVICE IN IDM

CHAPTER 20. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES
20.1. THE CERTIFICATE SYSTEM ROLE
20.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE USING THE CERTIFICATE SYSTEM ROLE
20.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE CERTIFICATE SYSTEM ROLE
20.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER CERTIFICATE ISSUANCE USING THE
CERTIFICATE SYSTEM ROLE

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES
21.1. MANAGING LIGHTWEIGHT SUB-CAS

21.1.1. Creating a sub-CA from the IdM WebUI
21.1.2. Deleting a sub-CA from the IdM WebUI
21.1.3. Creating a sub-CA from the IdM CLI
21.1.4. Disabling a sub-CA from the IdM CLI
21.1.5. Deleting a sub-CA from the IdM CLI

21.2. DOWNLOADING THE SUB-CA CERTIFICATE FROM IDM WEBUI
21.3. CREATING CA ACLS FOR WEB SERVER AND CLIENT AUTHENTICATION

21.3.1. Viewing CA ACLs in IdM CLI
21.3.2. Creating a CA ACL for web servers authenticating to web clients using certificates issued by webserver-
ca
21.3.3. Creating a CA ACL for user web browsers authenticating to web servers using certificates issued by
webclient-ca

21.4. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
21.5. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
21.6. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER
21.7. ADDING TLS ENCRYPTION TO AN APACHE HTTP SERVER
21.8. SETTING THE SUPPORTED TLS PROTOCOL VERSIONS ON AN APACHE HTTP SERVER
21.9. SETTING THE SUPPORTED CIPHERS ON AN APACHE HTTP SERVER
21.10. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION
21.11. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
21.12. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION

CHAPTER 22. INVALIDATING A SPECIFIC GROUP OF RELATED CERTIFICATES QUICKLY
22.1. DISABLING CA ACLS IN IDM CLI
22.2. DISABLING AN IDM SUB-CA

CHAPTER 23. VERIFYING CERTIFICATES USING IDM HEALTHCHECK
23.1. IDM CERTIFICATES HEALTHCHECK TESTS
23.2. SCREENING CERTIFICATES USING THE HEALTHCHECK TOOL

CHAPTER 24. VERIFYING SYSTEM CERTIFICATES USING IDM HEALTHCHECK
24.1. SYSTEM CERTIFICATES HEALTHCHECK TESTS
24.2. SCREENING SYSTEM CERTIFICATES USING HEALTHCHECK

CHAPTER 25. UNDERSTANDING THE CERTIFICATES USED INTERNALLY BY IDM

135
136
136
137
140

141
141

142
142

144
144
144
146

147

149
149
150
151
152
153
154
156
156
156

157

159
160
162
165
165
167
168
170
171

173

175
175
176

178
178
179

181
181

182

183

Red Hat Enterprise Linux 9 Managing certificates in IdM

4

25.1. ABOUT THE INTERNAL CERTIFICATES IN IDM
25.2. CERTIFICATES INTERNAL TO IDM
25.3. IDM INTERNAL CERTIFICATE RENEWAL PROCESS
25.4. ADDITIONAL RESOURCES

183
184
188
189

Table of Contents

5

Red Hat Enterprise Linux 9 Managing certificates in IdM

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 9 Managing certificates in IdM

8

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. PUBLIC KEY CERTIFICATES IN IDENTITY
MANAGEMENT

X.509 public key certificates are used to authenticate users, hosts and services in Identity Management
(IdM). In addition to authentication, X.509 certificates also enable digital signing and encryption to
provide privacy, integrity and non-repudiation.

A certificate contains the following information:

The subject that the certificate authenticates.

The issuer, that is the CA that has signed the certificate.

The start and end date of the validity of the certificate.

The valid uses of the certificate.

The public key of the subject.

A message encrypted by the public key can only be decrypted by a corresponding private key. While a
certificate and the public key it includes can be made publicly available, the user, host or service must
keep their private key secret.

1.1. CERTIFICATE AUTHORITIES IN IDM

Certificate authorities operate in a hierarchy of trust. In an IdM environment with an internal Certificate
Authority (CA), all the IdM hosts, users and services trust certificates that have been signed by the CA.
Apart from this root CA, IdM supports sub-CAs to which the root CA has granted the ability to sign
certificates in their turn. Frequently, the certificates that such sub-CAs are able to sign are certificates of
a specific kind, for example VPN certificates. Finally, IdM supports using external CAs. The table below
presents the specifics of using the individual types of CA in IdM.

Table 1.1. Comparison of using integrated and external CAs in IdM

Name of
CA

Description Use Useful links

The ipa
CA

An integrated CA
based on the Dogtag
upstream project

Integrated CAs can create,
revoke, and issue certificates for
users, hosts, and services.

Using the ipa CA to request a new
user certificate and exporting it to
the client

IdM sub-
CAs

An integrated CA
that is subordinate to
the ipa CA

IdM sub-CAs are CAs to which
the ipa CA has granted the ability
to sign certificates. Frequently,
these certificates are of a specific
kind, for example VPN
certificates.

Restricting an application to trust
only a subset of certificates

External
CAs

An external CA is a
CA other than the
integrated IdM CA or
its sub-CAs.

Using IdM tools, you add
certificates issued by these CAs
to users, services, or hosts as well
as remove them.

Managing externally signed
certificates for IdM users, hosts,
and services

From the certificate point of view, there is no difference between being signed by a self-signed IdM CA

CHAPTER 1. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT

9

From the certificate point of view, there is no difference between being signed by a self-signed IdM CA
and being signed externally.

The role of the CA includes the following purposes:

It issues digital certificates.

By signing a certificate, it certifies that the subject named in the certificate owns a public key.
The subject can be a user, host or service.

It can revoke certificates, and provides revocation status via Certificate Revocation Lists
(CRLs) and Online Certificate Status Protocol (OCSP).

Additional resources

See Planning your CA services .

1.2. COMPARISON OF CERTIFICATES AND KERBEROS

Certificates perform a similar function to that performed by Kerberos tickets. Kerberos is a computer
network authentication protocol that works on the basis of tickets to allow nodes communicating over a
non-secure network to prove their identity to one another in a secure manner. The following table shows
a comparison of Kerberos and X.509 certificates:

Table 1.2. Comparison of certificates and Kerberos

Characteristic Kerberos X.509

Authentication Yes Yes

Privacy Optional Yes

Integrity Optional Yes

Type of cryptography
involved

Symmetrical Asymmetrical

Default validity Short (1 day) Long(2 years)

By default, Kerberos in Identity Management only ensures the identity of the communicating parties.

1.3. THE PROS AND CONS OF USING CERTIFICATES TO
AUTHENTICATE USERS IN IDM

The advantages of using certificates to authenticate users in IdM include the following points:

A PIN that protects the private key on a smart card is typically less complex and easier to
remember than a regular password.

Depending on the device, a private key stored on a smart card cannot be exported. This
provides additional security.

Smart cards can make logout automatic: IdM can be configured to log out users when they

Red Hat Enterprise Linux 9 Managing certificates in IdM

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/planning_identity_management/planning-your-ca-services_planning-identity-management

Smart cards can make logout automatic: IdM can be configured to log out users when they
remove the smart card from the reader.

Stealing the private key requires actual physical access to a smart card, making smart cards
secure against hacking attacks.

Smart card authentication is an example of two-factor authentication: it requires both
something you have (the card) and something you know (the PIN).

Smart cards are more flexible than passwords because they provide the keys that can be used
for other purposes, such as encrypting email.

Using smart cards use on shared machines that are IdM clients does not typically pose additional
configuration problems for system administrators. In fact, smart card authentication is an ideal
choice for shared machines.

The disadvantages of using certificates to authenticate users in IdM include the following points:

Users might lose or forget to bring their smart card or certificate and be effectively locked out.

Mistyping a PIN multiple times might result in a card becoming locked.

There is generally an intermediate step between request and authorization by some sort of
security officer or approver. In IdM, the security officer or administrator must run the ipa cert-
request command.

Smart cards and readers tend to be vendor and driver specific: although a lot of readers can be
used for different cards, a smart card of a specific vendor might not work in the reader of
another vendor or in the type of a reader for which it was not designed.

Certificates and smart cards have a steep learning curve for administrators.

CHAPTER 1. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT

11

CHAPTER 2. MANAGING CERTIFICATES FOR USERS, HOSTS,
AND SERVICES USING THE INTEGRATED IDM CA

To learn more about how to manage certificates in Identity Management (IdM) using the integrated CA,
the ipa CA, and its sub-CAs, see the following sections:

Requesting new certificates for a user, host, or service using the IdM Web UI .

Requesting new certificates for a user, host, or service from the IdM CA using the IdM CLI:

Requesting new certificates for a user, host, or service from IdM CA using certutil

For a specific example of requesting a new user certificate from the IdM CA using the
certutil utility and exporting it to an IdM client, see Requesting a new user certificate
and exporting it to the client.

Requesting new certificates for a user, host, or service from IdM CA using openssl

You can also request new certificates for a service from the IdM CA using the certmonger utility. For
more information, see Requesting new certificates for a service from IdM CA using certmonger .

Prerequisites

Your IdM deployment contains an integrated CA:

For information about how to plan your CA services in IdM, see Planning your CA services .

For information about how to install an IdM server with integrated DNS and integrated CA
as the root CA, see Installing an IdM server: With integrated DNS, with an integrated CA as
the root CA

For information about how to install an IdM server with integrated DNS and an external CA
as the root CA, see Installing an IdM server: With integrated DNS, with an external CA as the
root CA

For information about how to install an IdM server without integrated DNS and with an
integrated CA as the root CA, see Installing an IdM server: Without integrated DNS, with an
integrated CA as the root CA.

[Optional] Your IdM deployment supports users authenticating with a certificate:

For information about how to configure your IdM deployment to support user
authentication with a certificate stored in the IdM client filesystem, see Configuring
authentication with a certificate stored on the desktop of an IdM client.

For information about how to configure your IdM deployment to support user
authentication with a certificate stored on a smart card inserted into an IdM client, see
Configuring Identity Management for smart card authentication .

For information about how to configure your IdM deployment to support user
authentication with smart cards issued by an Active Directory certificate system, see
Configuring certificates issued by ADCS for smart card authentication in IdM .

2.1. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR
SERVICE USING IDM WEB UI

Red Hat Enterprise Linux 9 Managing certificates in IdM

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/using-certmonger_managing-certificates-in-idm#obtain-service-cert-with-certmonger_certmonger-for-issuing-renewing-service-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/planning_identity_management/planning-your-ca-services_planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/installing_identity_management/index#installing-an-ipa-server-with-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/installing_identity_management/index#installing-an-ipa-server-with-external-ca_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/installing_identity_management/index#installing-an-ipa-server-without-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication

Follow this procedure to use the Identity Management (IdM) Web UI to request a new certificate for any
IdM entity from the integrated IdM certificate authorities (CAs): the ipa CA or any of its sub-CAs.

IdM entities include:

Users

Hosts

Services

IMPORTANT

Services typically run on dedicated service nodes on which the private keys are stored.
Copying a service’s private key to the IdM server is considered insecure. Therefore, when
requesting a certificate for a service, create the certificate signing request (CSR) on the
service node.

Prerequisites

Your IdM deployment contains an integrated CA.

You are logged into the IdM Web UI as the IdM administrator.

Procedure

1. Under the Identity tab, select the Users, Hosts, or Services subtab.

2. Click the name of the user, host, or service to open its configuration page.

Figure 2.1. List of Hosts

3. Click Actions → New Certificate.

4. Optional: Select the issuing CA and profile ID.

5. Follow the instructions for using the certutil command-line (CLI) utility on the screen.

6. Click Issue.

2.2. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR
SERVICE FROM IDM CA USING CERTUTIL

You can use the certutil utility to request a certificate for an Identity Management (IdM) user, host or

CHAPTER 2. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM CA

13

You can use the certutil utility to request a certificate for an Identity Management (IdM) user, host or
service in standard IdM situations. To ensure that a host or service Kerberos alias can use a certificate,
use the openssl utility to request a certificate instead.

Follow this procedure to request a certificate for an IdM user, host, or service from ipa, the IdM
certificate authority (CA), using certutil.

IMPORTANT

Services typically run on dedicated service nodes on which the private keys are stored.
Copying a service’s private key to the IdM server is considered insecure. Therefore, when
requesting a certificate for a service, create the certificate signing request (CSR) on the
service node.

Prerequisites

Your IdM deployment contains an integrated CA.

You are logged into the IdM command-line interface (CLI) as the IdM administrator.

Procedure

1. Create a temporary directory for the certificate database:

mkdir ~/certdb/

2. Create a new temporary certificate database, for example:

certutil -N -d ~/certdb/

3. Create the CSR and redirect the output to a file. For example, to create a CSR for a 4096 bit
certificate and to set the subject to CN=server.example.com,O=EXAMPLE.COM:

certutil -R -d ~/certdb/ -a -g 4096 -s "CN=server.example.com,O=EXAMPLE.COM" -8
server.example.com > certificate_request.csr

4. Submit the certificate request file to the CA running on the IdM server. Specify the Kerberos
principal to associate with the newly-issued certificate:

ipa cert-request certificate_request.csr --principal=host/server.example.com

The ipa cert-request command in IdM uses the following defaults:

The caIPAserviceCert certificate profile
To select a custom profile, use the --profile-id option.

The integrated IdM root CA, ipa
To select a sub-CA, use the --ca option.

Additional resources

See the output of the ipa cert-request --help command.

See Creating and managing certificate profiles in Identity Management .

Red Hat Enterprise Linux 9 Managing certificates in IdM

14

2.3. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR
SERVICE FROM IDM CA USING OPENSSL

You can use the openssl utility to request a certificate for an Identity Management (IdM) host or
service if you want to ensure that the Kerberos alias of the host or service can use the certificate. In
standard situations, consider requesting a new certificate using the certutil utility instead.

Follow this procedure to request a certificate for an IdM host, or service from ipa, the IdM certificate
authority, using openssl.

IMPORTANT

Services typically run on dedicated service nodes on which the private keys are stored.
Copying a service’s private key to the IdM server is considered insecure. Therefore, when
requesting a certificate for a service, create the certificate signing request (CSR) on the
service node.

Prerequisites

Your IdM deployment contains an integrated CA.

You are logged into the IdM command-line interface (CLI) as the IdM administrator.

Procedure

1. Create one or more aliases for your Kerberos principal test/server.example.com. For example,
test1/server.example.com and test2/server.example.com.

2. In the CSR, add a subjectAltName for dnsName (server.example.com) and otherName
(test2/server.example.com). To do this, configure the openssl.conf file to include the following
line specifying the UPN otherName and subjectAltName:

otherName=1.3.6.1.4.1.311.20.2.3;UTF8:test2/server.example.com@EXAMPLE.COM
DNS.1 = server.example.com

3. Create a certificate request using openssl:

openssl req -new -newkey rsa:2048 -keyout test2service.key -sha256 -nodes -out
certificate_request.csr -config openssl.conf

4. Submit the certificate request file to the CA running on the IdM server. Specify the Kerberos
principal to associate with the newly-issued certificate:

ipa cert-request certificate_request.csr --principal=host/server.example.com

The ipa cert-request command in IdM uses the following defaults:

The caIPAserviceCert certificate profile
To select a custom profile, use the --profile-id option.

The integrated IdM root CA, ipa
To select a sub-CA, use the --ca option.

Additional resources

CHAPTER 2. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM CA

15

Additional resources
See the output of the ipa cert-request --help command.

See Creating and managing certificate profiles in Identity Management .

2.4. ADDITIONAL RESOURCES

See Revoking certificates with the integrated IdM CAs.

See Restoring certificates with the integrated IdM CAs .

See Restricting an application to trust only a subset of certificates .

Red Hat Enterprise Linux 9 Managing certificates in IdM

16

CHAPTER 3. MANAGING IDM CERTIFICATES USING ANSIBLE
You can use the ansible-freeipa ipacert module to request, revoke, and retrieve SSL certificates for
Identity Management (IdM) users, hosts and services. You can also restore a certificate that has been
put on hold.

3.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM
HOSTS, SERVICES AND USERS

You can use the ansible-freeipa ipacert module to request SSL certificates for Identity Management
(IdM) users, hosts and services. They can then use these certificates to authenticate to IdM.

Complete this procedure to request a certificate for an HTTP server from an IdM certificate authority
(CA) using an Ansible playbook.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Your IdM deployment has an integrated CA.

Procedure

1. Generate a certificate-signing request (CSR) for your user, host or service. For example, to use
the openssl utility to generate a CSR for the HTTP service running on client.idm.example.com,
enter:

openssl req -new -newkey rsa:2048 -days 365 -nodes -keyout new.key -out new.csr -
subj '/CN=client.idm.example.com,O=IDM.EXAMPLE.COM'

As a result, the CSR is stored in new.csr.

2. Create your Ansible playbook file request-certificate.yml with the following content:

- name: Playbook to request a certificate
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Request a certificate for a web server
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 state: requested

CHAPTER 3. MANAGING IDM CERTIFICATES USING ANSIBLE

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-identity-management

 csr: |
 -----BEGIN CERTIFICATE REQUEST-----

MIGYMEwCAQAwGTEXMBUGA1UEAwwOZnJlZWlwYSBydWxlcyEwKjAFBgMrZXADIQBs
 HlqIr4b/XNK+K8QLJKIzfvuNK0buBhLz3LAzY7QDEqAAMAUGAytlcANBAF4oSCbA
 5aIPukCidnZJdr491G4LBE+URecYXsPknwYb+V+ONnf5ycZHyaFv+jkUBFGFeDgU
 SYaXm/gF8cDYjQI=
 -----END CERTIFICATE REQUEST-----
 principal: HTTP/client.idm.example.com
 register: cert

Replace the certificate request with the CSR from new.csr.

3. Request the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/request-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

3.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS,
SERVICES AND USERS

You can use the ansible-freeipa ipacert module to revoke SSL certificates used by
Identity Management (IdM) users, hosts and services to authenticate to IdM.

Complete this procedure to revoke a certificate for an HTTP server using an Ansible playbook. The
reason for revoking the certificate is “keyCompromise”.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in <path_to_certificate> command. In this example, the serial number
of the certificate is 123456789.

Your IdM deployment has an integrated CA.

Procedure

1. Create your Ansible playbook file revoke-certificate.yml with the following content:

Red Hat Enterprise Linux 9 Managing certificates in IdM

18

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-identity-management

- name: Playbook to revoke a certificate
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Revoke a certificate for a web server
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 revocation_reason: "keyCompromise"
 state: revoked

2. Revoke the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/revoke-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

Reason Code in RFC 5280

3.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM
USERS, HOSTS, AND SERVICES

You can use the ansible-freeipa ipacert module to restore a revoked SSL certificate previously used by
an Identity Management (IdM) user, host or a service to authenticate to IdM.

NOTE

You can only restore a certificate that was put on hold. You may have put it on hold
because, for example, you were not sure if the private key had been lost. However, now
you have recovered the key and as you are certain that no-one has accessed it in the
meantime, you want to reinstate the certificate.

Complete this procedure to use an Ansible playbook to release a certificate for a service enrolled into
IdM from hold. This example describes how to release a certificate for an HTTP service from hold.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

CHAPTER 3. MANAGING IDM CERTIFICATES USING ANSIBLE

19

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://datatracker.ietf.org/doc/html/rfc5280#section-5.3.1
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-identity-management

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Your IdM deployment has an integrated CA.

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in path/to/certificate command. In this example, the certificate serial
number is 123456789.

Procedure

1. Create your Ansible playbook file restore-certificate.yml with the following content:

- name: Playbook to restore a certificate
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Restore a certificate for a web service
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 state: released

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/restore-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

3.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM
USERS, HOSTS, AND SERVICES

You can use the ansible-freeipa ipacert module to retrieve an SSL certificate issued for an
Identity Management (IdM) user, host or a service, and store it in a file on the managed node.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

You have obtained the serial number of the certificate, for example by entering the openssl

Red Hat Enterprise Linux 9 Managing certificates in IdM

20

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-identity-management

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in <path_to_certificate> command. In this example, the serial number of
the certificate is 123456789, and the file in which you store the retrieved certificate is cert.pem.

Procedure

1. Create your Ansible playbook file retrieve-certificate.yml with the following content:

- name: Playbook to retrieve a certificate and store it locally on the managed node
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Retrieve a certificate and save it to file 'cert.pem'
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 certificate_out: cert.pem
 state: retrieved

2. Retrieve the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/retrieve-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

CHAPTER 3. MANAGING IDM CERTIFICATES USING ANSIBLE

21

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md

CHAPTER 4. MANAGING EXTERNALLY SIGNED
CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

This chapter describes how to use the Identity Management (IdM) command-line interface (CLI) and
the IdM Web UI to add or remove user, host, or service certificates that were issued by an external
certificate authority (CA).

4.1. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM
USER, HOST, OR SERVICE BY USING THE IDM CLI

As an Identity Management (IdM) administrator, you can add an externally signed certificate to the
account of an IdM user, host, or service by using the Identity Management (IdM) CLI.

Prerequisites

You have obtained the ticket-granting ticket of an administrative user.

Procedure

To add a certificate to an IdM user, enter:

$ ipa user-add-cert user --certificate=MIQTPrajQAwg...

The command requires you to specify the following information:

The name of the user

The Base64-encoded DER certificate

NOTE

Instead of copying and pasting the certificate contents into the command line, you can
convert the certificate to the DER format and then re-encode it to Base64. For example,
to add the user_cert.pem certificate to user, enter:

$ ipa user-add-cert user --certificate="$(openssl x509 -outform der -in
user_cert.pem | base64 -w 0)"

You can run the ipa user-add-cert command interactively by executing it without adding any options.

To add a certificate to an IdM host, enter:

ipa host-add-cert

To add a certificate to an IdM service, enter:

ipa service-add-cert

Additional resources

Managing certificates for users, hosts, and services using the integrated IdM CA

Red Hat Enterprise Linux 9 Managing certificates in IdM

22

4.2. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM
USER, HOST, OR SERVICE BY USING THE IDM WEB UI

As an Identity Management (IdM) administrator, you can add an externally signed certificate to the
account of an IdM user, host, or service by using the Identity Management (IdM) Web UI.

Prerequisites

You are logged in to the Identity Management (IdM) Web UI as an administrative user.

Procedure

1. Open the Identity tab, and select the Users, Hosts, or Services subtab.

2. Click the name of the user, host, or service to open its configuration page.

3. Click Add next to the Certificates entry.

Figure 4.1. Adding a certificate to a user account

4. Paste the certificate in Base64 or PEM encoded format into the text field, and click Add.

5. Click Save to store the changes.

4.3. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM
AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM CLI

As an Identity Management (IdM) administrator, you can remove an externally signed certificate from
the account of an IdM user, host, or service by using the Identity Management (IdM) CLI .

Prerequisites

You have obtained the ticket-granting ticket of an administrative user.

CHAPTER 4. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

23

Procedure

To remove a certificate from an IdM user, enter:

$ ipa user-remove-cert user --certificate=MIQTPrajQAwg...

The command requires you to specify the following information:

The name of the user

The Base64-encoded DER certificate

NOTE

Instead of copying and pasting the certificate contents into the command line, you can
convert the certificate to the DER format and then re-encode it to Base64. For example,
to remove the user_cert.pem certificate from user, enter:

$ ipa user-remove-cert user --certificate="$(openssl x509 -outform der -in
user_cert.pem | base64 -w 0)"

You can run the ipa user-remove-cert command interactively by executing it without adding any
options.

To remove a certificate from an IdM host, enter:

ipa host-remove-cert

To remove a certificate from an IdM service, enter:

ipa service-remove-cert

Additional resources

Managing certificates for users, hosts, and services using the integrated IdM CA

4.4. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM
AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM WEB
UI

As an Identity Management (IdM) administrator, you can remove an externally signed certificate from
the account of an IdM user, host, or service by using the Identity Management (IdM) Web UI.

Prerequisites

You are logged in to the Identity Management (IdM) Web UI as an administrative user.

Procedure

1. Open the Identity tab, and select the Users, Hosts, or Services subtab.

2. Click the name of the user, host, or service to open its configuration page.

Red Hat Enterprise Linux 9 Managing certificates in IdM

24

3. Click the Actions next to the certificate to delete, and select Delete.

4. Click Save to store the changes.

4.5. ADDITIONAL RESOURCES

Ensuring the presence of an externally signed certificate in an IdM service entry using an Ansible
playbook

CHAPTER 4. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_ansible_to_install_and_manage_identity_management/index#ensuring-the-presence-of-an-externally-signed-certificate-in-an-idm-service-entry-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

CHAPTER 5. CONVERTING CERTIFICATE FORMATS TO WORK
WITH IDM

This user story describes how to make sure that you as an IdM system administrator are using the correct
format of a certificate with specific IdM commands. This is useful, for example, in the following
situations:

You are loading an external certificate into a user profile. For details, see Converting an external
certificate to load into an IdM user account.

You are using an external CA certificate when configuring the IdM server for smart card
authentication or configuring the IdM client for smart card authentication so that users can
authenticate to IdM using smart cards with certificates on them that have been issued by the
external certificate authority.

You are exporting a certificate from an NSS database into a pkcs #12 format that includes both
the certificate and the private key. For details, see Exporting a certificate and private key from
an NSS database into a PKCS #12 file.

5.1. CERTIFICATE FORMATS AND ENCODINGS IN IDM

Certificate authentication including smart card authentication in IdM proceeds by comparing the
certificate that the user presents with the certificate, or certificate data, that are stored in the user’s IdM
profile.

System configuration

What is stored in the IdM profile is only the certificate, not the corresponding private key. During
authentication, the user must also show that he is in possession of the corresponding private key. The
user does that by either presenting a PKCS #12 file that contains both the certificate and the private key
or by presenting two files: one that contains the certificate and the other containing the private key.

Therefore, processes such as loading a certificate into a user profile only accept certificate files that do
not contain the private key.

Similarly, when a system administrator provides you with an external CA certificate, he will provide only
the public data: the certificate without the private key. The ipa-advise utility for configuring the IdM
server or the IdM client for smart card authentication expects the input file to contain the certificate of
the external CA but not the private key.

Certificate encodings

There are two common certificate encodings: Privacy-enhanced Electronic Mail (PEM) and
Distinguished Encoding Rules (DER). The base64 format is almost identical to the PEM format but it
does not contain the -----BEGIN CERTIFICATE-----/-----END CERTIFICATE----- header and footer.

A certificate that has been encoded using DER is a binary X509 digital certificate file. As a binary file,
the certificate is not human-readable. DER files sometimes use the .der filename extension, but files
with the .crt and .cer filename extensions also sometimes contain DER certificates. DER files containing
keys can be named .key.

A certificate that has been encoded using PEM Base64 is a human-readable file. The file contains ASCII
(Base64) armored data prefixed with a “-----BEGIN …” line. PEM files sometimes use the .pem
filename extension, but files with the .crt and .cer filename extensions also sometimes contain PEM
certificates. PEM files containing keys can be named .key.

Different ipa commands have different limitations regarding the types of certificates that they accept.

Red Hat Enterprise Linux 9 Managing certificates in IdM

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth

Different ipa commands have different limitations regarding the types of certificates that they accept.
For example, the ipa user-add-cert command only accepts certificates encoded in the base64 format
but ipa-server-certinstall accepts PEM, DER, PKCS #7, PKCS #8 and PKCS #12 certificates.

Table 5.1. Certificate encodings

Encoding format Human-readable Common filename
extensions

Sample IdM commands
accepting the encoding
format

PEM/base64 Yes .pem, .crt, .cer ipa user-add-cert, ipa-
server-certinstall, …

DER No .der, .crt, .cer ipa-server-certinstall, …

Certificate-related commands and formats in IdM lists further ipa commands with the certificate
formats that the commands accept.

User authentication

When using the web UI to access IdM, the user proves that he is in possession of the private key
corresponding to the certificate by having both stored in the browser’s database.

When using the CLI to access IdM, the user proves that he is in possession of the private key
corresponding to the certificate by one of the following methods:

The user adds, as the value of the X509_user_identity parameter of the kinit -X command, the
path to the smart card module that is connected to the smart card that contains both the
certificate and the key:

$ kinit -X X509_user_identity='PKCS11:opensc-pkcs11.so' idm_user

The user adds two files as the values of the X509_user_identity parameter of the kinit -X
command, one containing the certificate and the other the private key:

$ kinit -X X509_user_identity='FILE:`/path/to/cert.pem,/path/to/cert.key`' idm_user

Useful certificate commands

To view the certificate data, such as the subject and the issuer:

$ openssl x509 -noout -text -in ca.pem

To compare in which lines two certificates differ:

$ diff cert1.crt cert2.crt

To compare in which lines two certificates differ with the output displayed in two columns:

$ diff cert1.crt cert2.crt -y

5.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN

CHAPTER 5. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM

27

5.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN
IDM USER ACCOUNT

This section describes how to make sure that an external certificate is correctly encoded and formatted
before adding it to a user entry.

5.2.1. Prerequisites

If your certificate was issued by an Active Directory certificate authority and uses the PEM
encoding, make sure that the PEM file has been converted into the UNIX format. To convert a
file, use the dos2unix utility provided by the eponymous package.

5.2.2. Converting an external certificate in the IdM CLI and loading it into an IdM
user account

The IdM CLI only accepts a PEM certificate from which the first and last lines (-----BEGIN
CERTIFICATE----- and -----END CERTIFICATE-----) have been removed.

Follow this procedure to convert an external certificate to PEM format and add it to an IdM user account
using the IdM CLI.

Procedure

1. Convert the certificate to the PEM format:

If your certificate is in the DER format:

$ openssl x509 -in cert.crt -inform der -outform pem -out cert.pem

If your file is in the PKCS #12 format, whose common filename extensions are .pfx and
.p12, and contains a certificate, a private key, and possibly other data, extract the certificate
using the openssl pkcs12 utility. When prompted, enter the password protecting the
private key stored in the file:

$ openssl pkcs12 -in cert_and_key.p12 -clcerts -nokeys -out cert.pem
Enter Import Password:

2. Obtain the administrator’s credentials:

$ kinit admin

3. Add the certificate to the user account using the IdM CLI following one of the following
methods:

Remove the first and last lines (-----BEGIN CERTIFICATE----- and -----END
CERTIFICATE-----) of the PEM file using the sed utility before adding the string to the ipa
user-add-cert command:

$ ipa user-add-cert some_user --certificate="$(sed -e '/BEGIN
CERTIFICATE/d;/END CERTIFICATE/d' cert.pem)"

Copy and paste the contents of the certificate file without the first and last lines (-----

Red Hat Enterprise Linux 9 Managing certificates in IdM

28

Copy and paste the contents of the certificate file without the first and last lines (-----
BEGIN CERTIFICATE----- and -----END CERTIFICATE-----) into the ipa user-add-cert
command:

$ ipa user-add-cert some_user --
certificate=MIIDlzCCAn+gAwIBAgIBATANBgkqhki...

NOTE

You cannot pass a PEM file containing the certificate as input to the ipa
user-add-cert command directly, without first removing the first and last
lines (-----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----):

$ ipa user-add-cert some_user --cert=some_user_cert.pem

This command results in the "ipa: ERROR: Base64 decoding failed: Incorrect
padding" error message.

4. Optionally, to check if the certificate was accepted by the system:

[idm_user@r8server]$ ipa user-show some_user

5.2.3. Converting an external certificate in the IdM web UI for loading into an IdM
user account

Follow this procedure to convert an external certificate to PEM format and add it to an IdM user account
in the IdM web UI.

Procedure

1. Using the CLI, convert the certificate to the PEM format:

If your certificate is in the DER format:

$ openssl x509 -in cert.crt -inform der -outform pem -out cert.pem

If your file is in the PKCS #12 format, whose common filename extensions are .pfx and
.p12, and contains a certificate, a private key, and possibly other data, extract the certificate
using the openssl pkcs12 utility. When prompted, enter the password protecting the
private key stored in the file:

$ openssl pkcs12 -in cert_and_key.p12 -clcerts -nokeys -out cert.pem
Enter Import Password:

2. Open the certificate in an editor and copy the contents. You can include the "-----BEGIN
CERTIFICATE-----" and "-----END CERTIFICATE-----" header and footer lines but you do not
have to, as both the PEM and base64 formats are accepted by the IdM web UI.

3. In the IdM web UI, log in as security officer.

4. Go to Identity → Users → some_user.

5. Click Add next to Certificates.

CHAPTER 5. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM

29

6. Paste the PEM-formatted contents of the certificate into the window that opens.

7. Click Add.

If the certificate was accepted by the system, you can see it listed among the Certificates in the user
profile.

5.3. PREPARING TO LOAD A CERTIFICATE INTO THE BROWSER

Before importing a user certificate into the browser, make sure that the certificate and the
corresponding private key are in a PKCS #12 format. There are two common situations requiring extra
preparatory work:

The certificate is located in an NSS database. For details how to proceed in this situation, see
Exporting a certificate and private key from an NSS database into a PKCS #12 file .

The certificate and the private key are in two separate PEM files. For details how to proceed in
this situation, see Combining certificate and private key PEM files into a PKCS #12 file .

Afterwards, to import both the CA certificate in the PEM format and the user certificate in the PKCS
#12 format into the browser, follow the procedures in Configuring a browser to enable certificate
authentication and Authenticating to the Identity Management Web UI with a Certificate as an Identity
Management User.

5.3.1. Exporting a certificate and private key from an NSS database into a PKCS #12
file

Procedure

1. Use the pk12util command to export the certificate from the NSS database to the PKCS12
format. For example, to export the certificate with the some_user nickname from the NSS
database stored in the ~/certdb directory into the ~/some_user.p12 file:

$ pk12util -d ~/certdb -o ~/some_user.p12 -n some_user
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL

2. Set appropriate permissions for the .p12 file:

chmod 600 ~/some_user.p12

Because the PKCS #12 file also contains the private key, it must be protected to prevent other
users from using the file. Otherwise, they would be able to impersonate the user.

5.3.2. Combining certificate and private key PEM files into a PKCS #12 file

Follow this procedure to combine a certificate and the corresponding key stored in separate PEM files
into a PKCS #12 file.

Procedure

To combine a certificate stored in certfile.cer and a key stored in certfile.key into a certfile.p12

Red Hat Enterprise Linux 9 Managing certificates in IdM

30

To combine a certificate stored in certfile.cer and a key stored in certfile.key into a certfile.p12
file that contains both the certificate and the key:

$ openssl pkcs12 -export -in certfile.cer -inkey certfile.key -out certfile.p12

5.4. CERTIFICATE-RELATED COMMANDS AND FORMATS IN IDM

The following table displays certificate-related commands in IdM with acceptable formats.

Table 5.2. IdM certificate commands and formats

Command Acceptable formats Notes

ipa user-add-cert some_user
--certificate

base64 PEM certificate

ipa-server-certinstall PEM and DER certificate;
PKCS#7 certificate chain;
PKCS#8 and raw private key;
PKCS#12 certificate and private
key

ipa-cacert-manage install DER; PEM; PKCS#7

ipa-cacert-manage renew --
external-cert-file

PEM and DER certificate;
PKCS#7 certificate chain

ipa-ca-install --external-cert-
file

PEM and DER certificate;
PKCS#7 certificate chain

ipa cert-show <cert serial> --
certificate-out
/path/to/file.pem

N/A Creates the PEM-encoded
file.pem file with the certificate
having the <cert_serial> serial
number.

ipa cert-show <cert serial> --
certificate-out
/path/to/file.pem

N/A Creates the PEM-encoded
file.pem file with the certificate
having the <cert_serial> serial
number. If the --chain option is
used, the PEM file contains the
certificate including the
certificate chain.

ipa cert-request --certificate-
out=FILE /path/to/req.csr

N/A Creates the req.csr file in the
PEM format with the new
certificate.

CHAPTER 5. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM

31

ipa cert-request --certificate-
out=FILE /path/to/req.csr

N/A Creates the req.csr file in the
PEM format with the new
certificate. If the --chain option
is used, the PEM file contains the
certificate including the
certificate chain.

Command Acceptable formats Notes

Red Hat Enterprise Linux 9 Managing certificates in IdM

32

CHAPTER 6. CREATING AND MANAGING CERTIFICATE
PROFILES IN IDENTITY MANAGEMENT

Certificate profiles are used by the Certificate Authority (CA) when signing certificates to determine if a
certificate signing request (CSR) is acceptable, and if so what features and extensions are present on
the certificate. A certificate profile is associated with issuing a particular type of certificate. By
combining certificate profiles and CA access control lists (ACLs), you can define and control access to
custom certificate profiles.

In describing how to create certificate profiles, the procedures use S/MIME certificates as an example.
Some email programs support digitally signed and encrypted email using the Secure Multipurpose
Internet Mail Extension (S/MIME) protocol. Using S/MIME to sign or encrypt email messages requires
the sender of the message to have an S/MIME certificate.

What is a certificate profile

Creating a certificate profile

What is a CA access control list

Defining a CA ACL to control access to certificate profiles

Using certificate profiles and CA ACLs to issue certificates

Modifying a certificate profile

Certificate profile configuration parameters

6.1. WHAT IS A CERTIFICATE PROFILE?

You can use certificate profiles to determine the content of certificates, as well as constraints for issuing
the certificates, such as the following:

The signing algorithm to use to encipher the certificate signing request.

The default validity of the certificate.

The revocation reasons that can be used to revoke a certificate.

If the common name of the principal is copied to the subject alternative name field.

The features and extensions that should be present on the certificate.

A single certificate profile is associated with issuing a particular type of certificate. You can define
different certificate profiles for users, services, and hosts in IdM. IdM includes the following certificate
profiles by default:

caIPAserviceCert

IECUserRoles

KDCs_PKINIT_Certs (used internally)

In addition, you can create and import custom profiles, which allow you to issue certificates for specific
purposes. For example, you can restrict the use of a particular profile to only one user or one group,
preventing other users and groups from using that profile to issue a certificate for authentication. To

CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

33

create custom certificate profiles, use the ipa certprofile command.

Additional resources

See the ipa help certprofile command.

6.2. CREATING A CERTIFICATE PROFILE

Follow this procedure to create a certificate profile through the command line by creating a profile
configuration file for requesting S/MIME certificates.

Procedure

1. Create a custom profile by copying an existing default profile:

$ ipa certprofile-show --out smime.cfg caIPAserviceCert
--
Profile configuration stored in file 'smime.cfg'
--
 Profile ID: caIPAserviceCert
 Profile description: Standard profile for network services
 Store issued certificates: TRUE

2. Open the newly created profile configuration file in a text editor.

$ vi smime.cfg

3. Change the Profile ID to a name that reflects the usage of the profile, for example smime.

NOTE

When you are importing a newly created profile, the profileId field, if present,
must match the ID specified on the command line.

4. Update the Extended Key Usage configuration. The default Extended Key Usage extension
configuration is for TLS server and client authentication. For example for S/MIME, the
Extended Key Usage must be configured for email protection:

policyset.serverCertSet.7.default.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.4

5. Import the new profile:

$ ipa certprofile-import smime --file smime.cfg \
 --desc "S/MIME certificates" --store TRUE

Imported profile "smime"

 Profile ID: smime
 Profile description: S/MIME certificates
 Store issued certificates: TRUE

Red Hat Enterprise Linux 9 Managing certificates in IdM

34

Verification steps

Verify the new certificate profile has been imported:

$ ipa certprofile-find

4 profiles matched

 Profile ID: caIPAserviceCert
 Profile description: Standard profile for network services
 Store issued certificates: TRUE

 Profile ID: IECUserRoles
 Profile description: User profile that includes IECUserRoles extension from request
 Store issued certificates: TRUE

 Profile ID: KDCs_PKINIT_Certs
 Profile description: Profile for PKINIT support by KDCs
 Store issued certificates: TRUE

 Profile ID: smime
 Profile description: S/MIME certificates
 Store issued certificates: TRUE

Number of entries returned 4

Additional resources

See ipa help certprofile.

See RFC 5280, section 4.2.1.12 .

6.3. WHAT IS A CA ACCESS CONTROL LIST?

Certificate Authority access control list (CA ACL) rules define which profiles can be used to issue
certificates to which principals. You can use CA ACLs to do this, for example:

Determine which user, host, or service can be issued a certificate with a particular profile

Determine which IdM certificate authority or sub-CA is permitted to issue the certificate

For example, using CA ACLs, you can restrict use of a profile intended for employees working from an
office located in London only to users that are members of the London office-related IdM user group.

The ipa caacl utility for management of CA ACL rules allows privileged users to add, display, modify, or
delete a specified CA ACL.

Additional resources

See ipa help caacl.

6.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE

CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

35

https://tools.ietf.org/html/rfc5280#section-4.2.1.12

6.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE
PROFILES

Follow this procedure to use the caacl utility to define a CA Access Control List (ACL) rule to allow
users in a group access to a custom certificate profile. In this case, the procedure describes how to
create an S/MIME user’s group and a CA ACL to allow users in that group access to the smime
certificate profile.

Prerequisites

Make sure that you have obtained IdM administrator’s credentials.

Procedure

1. Create a new group for the users of the certificate profile:

$ ipa group-add smime_users_group

Added group "smime users group"

 Group name: smime_users_group
 GID: 75400001

2. Create a new user to add to the smime_user_group group:

$ ipa user-add smime_user
First name: smime
Last name: user

Added user "smime_user"

 User login: smime_user
 First name: smime
 Last name: user
 Full name: smime user
 Display name: smime user
 Initials: TU
 Home directory: /home/smime_user
 GECOS: smime user
 Login shell: /bin/sh
 Principal name: smime_user@IDM.EXAMPLE.COM
 Principal alias: smime_user@IDM.EXAMPLE.COM
 Email address: smime_user@idm.example.com
 UID: 1505000004
 GID: 1505000004
 Password: False
 Member of groups: ipausers
 Kerberos keys available: False

3. Add the smime_user to the smime_users_group group:

$ ipa group-add-member smime_users_group --users=smime_user
 Group name: smime_users_group
 GID: 1505000003

Red Hat Enterprise Linux 9 Managing certificates in IdM

36

 Member users: smime_user

Number of members added 1

4. Create the CA ACL to allow users in the group to access the certificate profile:

$ ipa caacl-add smime_acl

Added CA ACL "smime_acl"

 ACL name: smime_acl
 Enabled: TRUE

5. Add the user group to the CA ACL:

$ ipa caacl-add-user smime_acl --group smime_users_group
 ACL name: smime_acl
 Enabled: TRUE
 User Groups: smime_users_group

Number of members added 1

6. Add the certificate profile to the CA ACL:

$ ipa caacl-add-profile smime_acl --certprofile smime
 ACL name: smime_acl
 Enabled: TRUE
 Profiles: smime
 User Groups: smime_users_group

Number of members added 1

Verification steps

View the details of the CA ACL you created:

$ ipa caacl-show smime_acl
 ACL name: smime_acl
 Enabled: TRUE
 Profiles: smime
 User Groups: smime_users_group
...

Additional resources

See ipa man page.

See ipa help caacl.

6.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE

CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

37

6.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE
CERTIFICATES

You can request certificates using a certificate profile when permitted by the Certificate Authority
access control lists (CA ACLs). Follow this procedure to request an S/MIME certificate for a user using a
custom certificate profile which has been granted access through a CA ACL.

Prerequisites

Your certificate profile has been created.

An CA ACL has been created which permits the user to use the required certificate profile to
request a certificate.

NOTE

You can bypass the CA ACL check if the user performing the cert-request command:

Is the admin user.

Has the Request Certificate ignoring CA ACLs permission.

Procedure

1. Generate a certificate request for the user. For example, using OpenSSL:

$ openssl req -new -newkey rsa:2048 -days 365 -nodes -keyout private.key -out cert.csr -
subj '/CN=smime_user'

2. Request a new certificate for the user from the IdM CA:

$ ipa cert-request cert.csr --principal=smime_user --profile-id=smime

Optionally pass the --ca sub-CA_name option to the command to request the certificate from a
sub-CA instead of the root CA.

Verification steps

Verify the newly-issued certificate is assigned to the user:

$ ipa user-show user
 User login: user
 ...
 Certificate: MIICfzCCAWcCAQA...
 ...

Additional resources

See ipa(a) man page.

See the ipa help user-show command.

See the ipa help cert-request command.

Red Hat Enterprise Linux 9 Managing certificates in IdM

38

See openssl(lssl) man page.

6.6. MODIFYING A CERTIFICATE PROFILE

Follow this procedure to modify certificate profiles directly through the command line using the ipa
certprofile-mod command.

Procedure

1. Determine the certificate profile ID for the certificate profile you are modifying. To display all
certificate profiles currently stored in IdM:

ipa certprofile-find

4 profiles matched

 Profile ID: caIPAserviceCert
 Profile description: Standard profile for network services
 Store issued certificates: TRUE

 Profile ID: IECUserRoles
 ...

 Profile ID: smime
 Profile description: S/MIME certificates
 Store issued certificates: TRUE

Number of entries returned

2. Modify the certificate profile description. For example, if you created a custom certificate
profile for S/MIME certificates using an existing profile, change the description in line with the
new usage:

ipa certprofile-mod smime --desc "New certificate profile description"

Modified Certificate Profile "smime"

 Profile ID: smime
 Profile description: New certificate profile description
 Store issued certificates: TRUE

3. Open your customer certificate profile file in a text editor and modify to suit your requirements:

vi smime.cfg

For details on the options which can be configured in the certificate profile configuration file,
see Certificate profile configuration parameters .

4. Update the existing certificate profile configuration file:

ipa certprofile-mod _profile_ID_ --file=smime.cfg

CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

39

Verification steps

Verify the certificate profile has been updated:

$ ipa certprofile-show smime
 Profile ID: smime
 Profile description: New certificate profile description
 Store issued certificates: TRUE

Additional resources

See ipa(a) man page.

See ipa help certprofile-mod.

6.7. CERTIFICATE PROFILE CONFIGURATION PARAMETERS

Certificate profile configuration parameters are stored in a profile_name.cfg file in the CA profile
directory, /var/lib/pki/pki-tomcat/ca/profiles/ca. All of the parameters for a profile - defaults, inputs,
outputs, and constraints - are configured within a single policy set. A policy set for a certificate profile
has the name policyset.policyName.policyNumber. For example, for policy set serverCertSet:

policyset.list=serverCertSet
policyset.serverCertSet.list=1,2,3,4,5,6,7,8
policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=CN=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=CN=$request.req_subject_name.cn$, OU=pki-ipa,
O=IPA
policyset.serverCertSet.2.constraint.class_id=validityConstraintImpl
policyset.serverCertSet.2.constraint.name=Validity Constraint
policyset.serverCertSet.2.constraint.params.range=740
policyset.serverCertSet.2.constraint.params.notBeforeCheck=false
policyset.serverCertSet.2.constraint.params.notAfterCheck=false
policyset.serverCertSet.2.default.class_id=validityDefaultImpl
policyset.serverCertSet.2.default.name=Validity Default
policyset.serverCertSet.2.default.params.range=731
policyset.serverCertSet.2.default.params.startTime=0

Each policy set contains a list of policies configured for the certificate profile by policy ID number in the
order in which they should be evaluated. The server evaluates each policy set for each request it
receives. When a single certificate request is received, one set is evaluated, and any other sets in the
profile are ignored. When dual key pairs are issued, the first policy set is evaluated for the first certificate
request, and the second set is evaluated for the second certificate request. You do not need more than
one policy set when issuing single certificates or more than two sets when issuing dual key pairs.

Table 6.1. Certificate profile configuration file parameters

Parameter Description

Red Hat Enterprise Linux 9 Managing certificates in IdM

40

desc A free text description of the certificate profile,
which is shown on the end-entities page. For
example, desc=This certificate profile is for
enrolling server certificates with agent
authentication.

enable Enables the profile so it is accessible through the
end-entities page. For example, enable=true.

auth.instance_id Sets the authentication manager plug-in to use to
authenticate the certificate request. For automatic
enrollment, the CA issues a certificate immediately if
the authentication is successful. If authentication
fails or there is no authentication plug-in specified,
the request is queued to be manually approved by an
agent. For example,
auth.instance_id=AgentCertAuth.

authz.acl Specifies the authorization constraint. This is
predominantly used to set the group evaluation
Access Control List (ACL). For example, the
caCMCUserCert parameter requires that the
signer of the CMC request belongs to the Certificate
Manager Agents group:

authz.acl=group="Certificate Manager
Agents

In directory-based user certificate renewal, this
option is used to ensure that the original requester
and the currently-authenticated user are the same.
An entity must authenticate (bind or, essentially, log
into the system) before authorization can be
evaluated.

name The name of the certificate profile. For example,
name=Agent-Authenticated Server Certificate
Enrollment. This name is displayed on the end users
enrollment or renewal page.

input.list Lists the allowed inputs for the certificate profile by
name. For example, input.list=i1,i2.

input.input_id.class_id Indicates the java class name for the input by input ID
(the name of the input listed in input.list). For
example, input.i1.class_id=certReqInputImpl.

Parameter Description

CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

41

output.list Lists the possible output formats for the certificate
profile by name. For example, output.list=o1.

output.output_id.class_id Specifies the java class name for the output format
named in output.list. For example,
output.o1.class_id=certOutputImpl.

policyset.list Lists the configured certificate profile rules. For dual
certificates, one set of rules applies to the signing
key and the other to the encryption key. Single
certificates use only one set of certificate profile
rules. For example, policyset.list=serverCertSet.

policyset.policyset_id.list Lists the policies within the policy set configured for
the certificate profile by policy ID number in the
order in which they should be evaluated. For
example,
policyset.serverCertSet.list=1,2,3,4,5,6,7,8.

policyset.policyset_id.policy_number.constraint.class_
id

Indicates the java class name of the constraint plug-
in set for the default configured in the profile rule.
For example,
policyset.serverCertSet.1.constraint.class_id=subject
NameConstraintImpl.

policyset.policyset_id.policy_number.constraint.name Gives the user-defined name of the constraint. For
example,
policyset.serverCertSet.1.constraint.name=Subject
Name Constraint.

policyset.policyset_id.policy_number.constraint.para
ms.attribute

Specifies a value for an allowed attribute for the
constraint. The possible attributes vary depending on
the type of constraint. For example,
policyset.serverCertSet.1.constraint.params.pattern=
CN=.*.

policyset.policyset_id.policy_number.default.class_id Gives the java class name for the default set in the
profile rule. For example,
policyset.serverCertSet.1.default.class_id=userSubjec
tNameDefaultImpl

policyset.policyset_id.policy_number.default.name Gives the user-defined name of the default. For
example,
policyset.serverCertSet.1.default.name=Subject
Name Default

Parameter Description

Red Hat Enterprise Linux 9 Managing certificates in IdM

42

policyset.policyset_id.policy_number.default.params.
attribute

Specifies a value for an allowed attribute for the
default. The possible attributes vary depending on
the type of default. For example,
policyset.serverCertSet.1.default.params.name=CN=
(Name)$request.requestor_name$.

Parameter Description

CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

43

CHAPTER 7. MANAGING THE VALIDITY OF CERTIFICATES IN
IDM

In Identity Management (IdM), you can manage the validity of both already existing certificates and
certificates you want to issue in the future, but the methods are different.

7.1. MANAGING THE VALIDITY OF AN EXISTING CERTIFICATE THAT
WAS ISSUED BY IDM CA

In IdM, the following methods of viewing the expiry date of a certificate are available:

Viewing the expiry date in IdM WebUI .

Viewing the expiry date in the CLI .

You can manage the validity of an already existing certificate that was issued by IdM CA in the following
ways:

Renew a certificate by requesting a new certificate using either the original certificate signing
request (CSR) or a new CSR generated from the private key. You can request a new certificate
using the following utilities:

certmonger

You can use certmonger to request a service certificate. Before the certificate is due to
expire, certmonger will automatically renew the certificate, thereby ensuring a continuing
validity of the service certificate. For details, see Obtaining an IdM certificate for a service
using certmonger;

certutil

You can use certutil to renew user, host, and service certificates. For details on requesting a
user certificate, see Requesting a new user certificate and exporting it to the client ;

openssl

You can use openssl to renew user, host, and service certificates.

Revoke a certificate. For details, see:

Revoking certificates with the integrated IdM CAs using IdM WebUI ;

Revoking certificates with the integrated IdM CAs using IdM CLI ;

Restore a certificate if it has been temporarily revoked. For details, see:

Restoring certificates with the integrated IdM CAs using IdM WebUI ;

Restoring certificates with the integrated IdM CAs using IdM CLI .

7.2. MANAGING THE VALIDITY OF FUTURE CERTIFICATES ISSUED BY
IDM CA

To manage the validity of future certificates issued by IdM CA, modify, import, or create a certificate
profile. For details, see Creating and managing certificate profiles in Identity Management .

7.3. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN IDM WEBUI

Red Hat Enterprise Linux 9 Managing certificates in IdM

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/using-certmonger_managing-certificates-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/dc-web-ui-auth_managing-certificates-in-idm#requesting-and-exporting-a-user-certificate_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/creating-and-managing-certificate-profiles-in-identity-management_configuring-and-managing-idm

You can use IdM WebUI to view the expiry date of all the certificates that have been issued by IdM CA.

Prerequisites

Ensure that you have obtained the administrator’s credentials.

Procedure

1. In the Authentication menu, click Certificates > Certificates.

2. Click the serial number of the certificate to open the certificate information page.

Figure 7.1. List of Certificates

3. In the certificate information page, locate the Expires On information.

7.4. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN THE CLI

You can use the command-line interface (CLI) to view the expiry date of a certificate.

Procedure

Use the openssl utility to open the file in a human-readable format:

$ openssl x509 -noout -text -in ca.pem
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O = IDM.EXAMPLE.COM, CN = Certificate Authority
 Validity
 Not Before: Oct 30 19:39:14 2017 GMT
 Not After : Oct 30 19:39:14 2037 GMT

7.5. REVOKING CERTIFICATES WITH THE INTEGRATED IDM CAS

7.5.1. Certificate revocation reasons

A revoked certificate is invalid and cannot be used for authentication. All revocations are permanent,
except for reason 6: Certificate Hold.

CHAPTER 7. MANAGING THE VALIDITY OF CERTIFICATES IN IDM

45

The default revocation reason is 0: unspecified.

Table 7.1. Revocation Reasons

ID Reason Explanation

0 Unspecified

1 Key Compromised The key that issued the certificate is no longer trusted.

Possible causes: lost token, improperly accessed file.

2 CA Compromised The CA that issued the certificate is no longer trusted.

3 Affiliation Changed Possible causes:

* A person has left the company or moved to another
department.

* A host or service is being retired.

4 Superseded A newer certificate has replaced the current certificate.

5 Cessation of Operation The host or service is being decommissioned.

6 Certificate Hold The certificate is temporarily revoked. You can restore the
certificate later.

8 Remove from CRL The certificate is not included in the certificate revocation list
(CRL).

9 Privilege Withdrawn The user, host, or service is no longer permitted to use the
certificate.

10 Attribute Authority (AA)
Compromise

The AA certificate is no longer trusted.

7.5.2. Revoking certificates with the integrated IdM CAs using IdM WebUI

If you know you have lost the private key for your certificate, you must revoke the certificate to prevent
its abuse. Complete this procedure to use the IdM WebUI to revoke a certificate issued by the IdM CA.

Procedure

1. Click Authentication > Certificates > Certificates.

2. Click the serial number of the certificate to open the certificate information page.

Figure 7.2. List of Certificates

Red Hat Enterprise Linux 9 Managing certificates in IdM

46

Figure 7.2. List of Certificates

3. In the certificate information page, click Actions → Revoke Certificate.

4. Select the reason for revoking and click Revoke. See Certificate revocation reasons for details.

7.5.3. Revoking certificates with the integrated IdM CAs using IdM CLI

If you know you have lost the private key for your certificate, you must revoke the certificate to prevent
its abuse. Complete this procedure to use the IdM CLI to revoke a certificate issued by the IdM CA.

Procedure

Use the ipa cert-revoke command, and specify:

the certificate serial number

the ID number for the revocation reason; see Certificate revocation reasons for details

For example, to revoke the certificate with serial number 1032 because of reason 1: Key Compromised,
enter:

$ ipa cert-revoke 1032 --revocation-reason=1

For details on requesting a new certificate, see the following documentation:

Requesting a new user certificate and exporting it to the client

Obtaining an IdM certificate for a service using certmonger .

7.6. RESTORING CERTIFICATES WITH THE INTEGRATED IDM CAS

If you have revoked a certificate because of reason 6: Certificate Hold, you can restore it again if the
private key for the certificate has not been compromised. To restore a certificate, use one of the
following procedures:

Restore certificates with the integrated IdM CAs using IdM WebUI ;

Restore certificates with the integrated IdM CAs using IdM CLI .

7.6.1. Restoring certificates with the integrated IdM CAs using IdM WebUI

Complete this procedure to use the IdM WebUI to restore an IdM certificate that has been revoked

CHAPTER 7. MANAGING THE VALIDITY OF CERTIFICATES IN IDM

47

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/dc-web-ui-auth_managing-certificates-in-idm#requesting-and-exporting-a-user-certificate_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/using-certmonger_managing-certificates-in-idm

Complete this procedure to use the IdM WebUI to restore an IdM certificate that has been revoked
because of Reason 6: Certificate Hold.

Procedure

1. In the Authentication menu, click Certificates > Certificates.

2. Click the serial number of the certificate to open the certificate information page.

Figure 7.3. List of Certificates

3. In the certificate information page, click Actions → Restore Certificate.

7.6.2. Restoring certificates with the integrated IdM CAs using IdM CLI

Complete this procedure to use the IdM CLI to restore an IdM certificate that has been revoked because
of Reason 6: Certificate Hold.

Procedure

Use the ipa cert-remove-hold command and specify the certificate serial number. For example:

$ ipa cert-remove-hold 1032

Red Hat Enterprise Linux 9 Managing certificates in IdM

48

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR
SMART CARD AUTHENTICATION

Identity Management (IdM) supports smart card authentication with:

User certificates issued by the IdM certificate authority

User certificates issued by an external certificate authority

You can configure smart card authentication in IdM for both types of certificates. In this scenario, the
rootca.pem CA certificate is the file containing the certificate of a trusted external certificate authority.

For information about smart card authentication in IdM, see Understanding smart card authentication .

For more details on configuring smart card authentication:

Configuring the IdM server for smart card authentication

Configuring the IdM client for smart card authentication

Adding a certificate to a user entry in the IdM Web UI

Adding a certificate to a user entry in the IdM CLI

Installing tools for managing and using smart cards

Storing a certificate on a smart card

Logging in to IdM with smart cards

Configuring GDM access using smart card authentication

Configuring su access using smart card authentication

8.1. CONFIGURING THE IDM SERVER FOR SMART CARD
AUTHENTICATION

If you want to enable smart card authentication for users whose certificates have been issued by the
certificate authority (CA) of the <EXAMPLE.ORG> domain that your Identity Management (IdM) CA
trusts, you must obtain the following certificates so that you can add them when running the ipa-advise
script that configures the IdM server:

The certificate of the root CA that has either issued the certificate for the <EXAMPLE.ORG> CA
directly, or through one or more of its sub-CAs. You can download the certificate chain from a
web page whose certificate has been issued by the authority. For details, see Steps 1 - 4a in
Configuring a browser to enable certificate authentication .

The IdM CA certificate. You can obtain the CA certificate from the /etc/ipa/ca.crt file on the
IdM server on which an IdM CA instance is running.

The certificates of all of the intermediate CAs; that is, intermediate between the
<EXAMPLE.ORG> CA and the IdM CA.

To configure an IdM server for smart card authentication:

1. Obtain files with the CA certificates in the PEM format.

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

49

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-cli_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#storing-a-certificate-on-the-smart-card_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#logging-in-to-idm-with-smart-cards_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#configuring-gdm-access-using-smart-card-authentication_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#configuring-su-access-using-smart-card-authentication_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/dc-web-ui-auth_managing-certificates-in-idm#configuring-browser-for-cert-auth_dc-web-ui-auth

2. Run the built-in ipa-advise script.

3. Reload the system configuration.

Prerequisites

You have root access to the IdM server.

You have the root CA certificate and all the intermediate CA certificates.

Procedure

1. Create a directory in which you will do the configuration:

[root@server]# mkdir ~/SmartCard/

2. Navigate to the directory:

[root@server]# cd ~/SmartCard/

3. Obtain the relevant CA certificates stored in files in PEM format. If your CA certificate is stored
in a file of a different format, such as DER, convert it to PEM format. The IdM Certificate
Authority certificate is in PEM format and is located in the /etc/ipa/ca.crt file.
Convert a DER file to a PEM file:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

4. For convenience, copy the certificates to the directory in which you want to do the
configuration:

[root@server SmartCard]# cp /tmp/rootca.pem ~/SmartCard/
[root@server SmartCard]# cp /tmp/subca.pem ~/SmartCard/
[root@server SmartCard]# cp /tmp/issuingca.pem ~/SmartCard/

5. Optionally, if you use certificates of external certificate authorities, use the openssl x509 utility
to view the contents of the files in the PEM format to check that the Issuer and Subject values
are correct:

[root@server SmartCard]# openssl x509 -noout -text -in rootca.pem | more

6. Generate a configuration script with the in-built ipa-advise utility, using the administrator’s
privileges:

[root@server SmartCard]# kinit admin
[root@server SmartCard]# ipa-advise config-server-for-smart-card-auth > config-server-
for-smart-card-auth.sh

The config-server-for-smart-card-auth.sh script performs the following actions:

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

Red Hat Enterprise Linux 9 Managing certificates in IdM

50

It configures the IdM Web UI to accept smart card authorization requests.

7. Execute the script, adding the PEM files containing the root CA and sub CA certificates as
arguments:

[root@server SmartCard]# chmod +x config-server-for-smart-card-auth.sh
[root@server SmartCard]# ./config-server-for-smart-card-auth.sh rootca.pem subca.pem
issuingca.pem
Ticket cache:KEYRING:persistent:0:0
Default principal: admin@IDM.EXAMPLE.COM
[...]
Systemwide CA database updated.
The ipa-certupdate command was successful

NOTE

Ensure that you add the root CA’s certificate as an argument before any sub CA
certificates and that the CA or sub CA certificates have not expired.

8. Optionally, if the certificate authority that issued the user certificate does not provide any
Online Certificate Status Protocol (OCSP) responder, you may need to disable OCSP check for
authentication to the IdM Web UI:

a. Set the SSLOCSPEnable parameter to off in the /etc/httpd/conf.d/ssl.conf file:

SSLOCSPEnable off

b. Restart the Apache daemon (httpd) for the changes to take effect immediately:

[root@server SmartCard]# systemctl restart httpd

WARNING

Do not disable the OCSP check if you only use user certificates issued by
the IdM CA. OCSP responders are part of IdM.

For instructions on how to keep the OCSP check enabled, and yet prevent a user certificate
from being rejected by the IdM server if it does not contain the information about the location at
which the CA that issued the user certificate listens for OCSP service requests, see the
SSLOCSPDefaultResponder directive in Apache mod_ssl configuration options .

The server is now configured for smart card authentication.

NOTE

To enable smart card authentication in the whole topology, run the procedure on each
IdM server.

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

51

http://httpd.apache.org/docs/trunk/en/mod/mod_ssl.html

8.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART
CARD AUTHENTICATION

You can use Ansible to enable smart card authentication for users whose certificates have been issued
by the certificate authority (CA) of the <EXAMPLE.ORG> domain that your Identity Management (IdM)
CA trusts. To do that, you must obtain the following certificates so that you can use them when running
an Ansible playbook with the ipasmartcard_server ansible-freeipa role script:

The certificate of the root CA that has either issued the certificate for the <EXAMPLE.ORG> CA
directly, or through one or more of its sub-CAs. You can download the certificate chain from a
web page whose certificate has been issued by the authority. For details, see Step 4 in
Configuring a browser to enable certificate authentication .

The IdM CA certificate. You can obtain the CA certificate from the /etc/ipa/ca.crt file on any
IdM CA server.

The certificates of all of the CAs that are intermediate between the <EXAMPLE.ORG> CA and
the IdM CA.

Prerequisites

You have root access to the IdM server.

You know the IdM admin password.

You have the root CA certificate, the IdM CA certificate, and all the intermediate CA
certificates.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

Procedure

1. If your CA certificates are stored in files of a different format, such as DER, convert them to
PEM format:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

The IdM Certificate Authority certificate is in PEM format and is located in the /etc/ipa/ca.crt
file.

2. Optionally, use the openssl x509 utility to view the contents of the files in the PEM format to
check that the Issuer and Subject values are correct:

openssl x509 -noout -text -in root-ca.pem | more

3. Navigate to your ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 9 Managing certificates in IdM

52

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/dc-web-ui-auth_managing-certificates-in-idm#configuring-browser-for-cert-auth_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-identity-management

$ cd ~/MyPlaybooks/

4. Create a subdirectory dedicated to the CA certificates:

$ mkdir SmartCard/

5. For convenience, copy all the required certificates to the ~/MyPlaybooks/SmartCard/
directory:

cp /tmp/root-ca.pem ~/MyPlaybooks/SmartCard/
cp /tmp/intermediate-ca.pem ~/MyPlaybooks/SmartCard/
cp /etc/ipa/ca.crt ~/MyPlaybooks/SmartCard/ipa-ca.crt

6. In your Ansible inventory file, specify the following:

The IdM servers that you want to configure for smart card authentication.

The IdM administrator password.

The paths to the certificates of the CAs in the following order:

The root CA certificate file

The intermediate CA certificates files

The IdM CA certificate file

The file can look as follows:

[ipaserver]
ipaserver.idm.example.com

[ipareplicas]
ipareplica1.idm.example.com
ipareplica2.idm.example.com

[ipacluster:children]
ipaserver
ipareplicas

[ipacluster:vars]
ipaadmin_password= "{{ ipaadmin_password }}"
ipasmartcard_server_ca_certs=/home/<user_name>/MyPlaybooks/SmartCard/root-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/intermediate-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/ipa-ca.crt

7. Create an install-smartcard-server.yml playbook with the following content:

- name: Playbook to set up smart card authentication for an IdM server
 hosts: ipaserver
 become: true

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

53

 roles:
 - role: ipasmartcard_server
 state: present

8. Save the file.

9. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory install-
smartcard-server.yml

The ipasmartcard_server Ansible role performs the following actions:

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

It configures the IdM Web UI to accept smart card authorization requests.

10. Optionally, if the certificate authority that issued the user certificate does not provide any
Online Certificate Status Protocol (OCSP) responder, you may need to disable OCSP check for
authentication to the IdM Web UI:

a. Connect to the IdM server as root:

ssh root@ipaserver.idm.example.com

b. Set the SSLOCSPEnable parameter to off in the /etc/httpd/conf.d/ssl.conf file:

SSLOCSPEnable off

c. Restart the Apache daemon (httpd) for the changes to take effect immediately:

systemctl restart httpd

WARNING

Do not disable the OCSP check if you only use user certificates issued by
the IdM CA. OCSP responders are part of IdM.

For instructions on how to keep the OCSP check enabled, and yet prevent a user certificate
from being rejected by the IdM server if it does not contain the information about the location at
which the CA that issued the user certificate listens for OCSP service requests, see the
SSLOCSPDefaultResponder directive in Apache mod_ssl configuration options .

The server listed in the inventory file is now configured for smart card authentication.

NOTE

Red Hat Enterprise Linux 9 Managing certificates in IdM

54

http://httpd.apache.org/docs/trunk/en/mod/mod_ssl.html

NOTE

To enable smart card authentication in the whole topology, set the hosts variable in the
Ansible playbook to ipacluster:

- name: Playbook to setup smartcard for IPA server and replicas
 hosts: ipacluster
[...]

Additional resources

Sample playbooks using the ipasmartcard_server role in the /usr/share/doc/ansible-
freeipa/playbooks/ directory

8.3. CONFIGURING THE IDM CLIENT FOR SMART CARD
AUTHENTICATION

Follow this procedure to configure IdM clients for smart card authentication. The procedure needs to be
run on each IdM system, a client or a server, to which you want to connect while using a smart card for
authentication. For example, to enable an ssh connection from host A to host B, the script needs to be
run on host B.

As an administrator, run this procedure to enable smart card authentication using

The ssh protocol
For details see Configuring SSH access using smart card authentication .

The console login

The GNOME Display Manager (GDM)

The su command

This procedure is not required for authenticating to the IdM Web UI. Authenticating to the IdM Web UI
involves two hosts, neither of which needs to be an IdM client:

The machine on which the browser is running. The machine can be outside of the IdM domain.

The IdM server on which httpd is running.

The following procedure assumes that you are configuring smart card authentication on an IdM client,
not an IdM server. For this reason you need two computers: an IdM server to generate the configuration
script, and the IdM client on which to run the script.

Prerequisites

Your IdM server has been configured for smart card authentication, as described in Configuring
the IdM server for smart card authentication.

You have root access to the IdM server and the IdM client.

You have the root CA certificate and all the intermediate CA certificates.

You installed the IdM client with the --mkhomedir option to ensure remote users can log in

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication#configuring-ssh-access-using-smart-card-authentication_configuring-and-importing-local-certificates-to-a-smart-card
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth

You installed the IdM client with the --mkhomedir option to ensure remote users can log in
successfully. If you do not create a home directory, the default login location is the root of the
directory structure, /.

Procedure

1. On an IdM server, generate a configuration script with ipa-advise using the administrator’s
privileges:

[root@server SmartCard]# kinit admin
[root@server SmartCard]# ipa-advise config-client-for-smart-card-auth > config-client-
for-smart-card-auth.sh

The config-client-for-smart-card-auth.sh script performs the following actions:

It configures the smart card daemon.

It sets the system-wide truststore.

It configures the System Security Services Daemon (SSSD) to allow users to authenticate
with either their user name and password or with their smart card. For more details on SSSD
profile options for smart card authentication, see Smart card authentication options in
RHEL.

2. From the IdM server, copy the script to a directory of your choice on the IdM client machine:

[root@server SmartCard]# scp config-client-for-smart-card-auth.sh
root@client.idm.example.com:/root/SmartCard/
Password:
config-client-for-smart-card-auth.sh 100% 2419 3.5MB/s 00:00

3. From the IdM server, copy the CA certificate files in PEM format for convenience to the same
directory on the IdM client machine as used in the previous step:

[root@server SmartCard]# scp {rootca.pem,subca.pem,issuingca.pem}
root@client.idm.example.com:/root/SmartCard/
Password:
rootca.pem 100% 1237 9.6KB/s 00:00
subca.pem 100% 2514 19.6KB/s 00:00
issuingca.pem 100% 2514 19.6KB/s 00:00

4. On the client machine, execute the script, adding the PEM files containing the CA certificates as
arguments:

[root@client SmartCard]# kinit admin
[root@client SmartCard]# chmod +x config-client-for-smart-card-auth.sh
[root@client SmartCard]# ./config-client-for-smart-card-auth.sh rootca.pem subca.pem
issuingca.pem
Ticket cache:KEYRING:persistent:0:0
Default principal: admin@IDM.EXAMPLE.COM
[...]
Systemwide CA database updated.
The ipa-certupdate command was successful

NOTE

Red Hat Enterprise Linux 9 Managing certificates in IdM

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication#con_smart-card-authentication-options-in-rhel_assembly_understanding-smart-card-authentication

NOTE

Ensure that you add the root CA’s certificate as an argument before any sub CA
certificates and that the CA or sub CA certificates have not expired.

The client is now configured for smart card authentication.

8.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD
AUTHENTICATION

Follow this procedure to use the ansible-freeipa ipasmartcard_client module to configure specific
Identity Management (IdM) clients to permit IdM users to authenticate with a smart card. Run this
procedure to enable smart card authentication for IdM users that use any of the following to access
IdM:

The ssh protocol
For details see Configuring SSH access using smart card authentication .

The console login

The GNOME Display Manager (GDM)

The su command

NOTE

This procedure is not required for authenticating to the IdM Web UI. Authenticating to
the IdM Web UI involves two hosts, neither of which needs to be an IdM client:

The machine on which the browser is running. The machine can be outside of the
IdM domain.

The IdM server on which httpd is running.

Prerequisites

Your IdM server has been configured for smart card authentication, as described in Using
Ansible to configure the IdM server for smart card authentication.

You have root access to the IdM server and the IdM client.

You have the root CA certificate, the IdM CA certificate, and all the intermediate CA
certificates.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

Procedure

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication#configuring-ssh-access-using-smart-card-authentication_configuring-and-importing-local-certificates-to-a-smart-card
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-identity-management

Procedure

1. If your CA certificates are stored in files of a different format, such as DER, convert them to
PEM format:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

The IdM CA certificate is in PEM format and is located in the /etc/ipa/ca.crt file.

2. Optionally, use the openssl x509 utility to view the contents of the files in the PEM format to
check that the Issuer and Subject values are correct:

openssl x509 -noout -text -in root-ca.pem | more

3. On your Ansible control node, navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

4. Create a subdirectory dedicated to the CA certificates:

$ mkdir SmartCard/

5. For convenience, copy all the required certificates to the ~/MyPlaybooks/SmartCard/
directory, for example:

cp /tmp/root-ca.pem ~/MyPlaybooks/SmartCard/
cp /tmp/intermediate-ca.pem ~/MyPlaybooks/SmartCard/
cp /etc/ipa/ca.crt ~/MyPlaybooks/SmartCard/ipa-ca.crt

6. In your Ansible inventory file, specify the following:

The IdM clients that you want to configure for smart card authentication.

The IdM administrator password.

The paths to the certificates of the CAs in the following order:

The root CA certificate file

The intermediate CA certificates files

The IdM CA certificate file

The file can look as follows:

[ipaclients]
ipaclient1.example.com
ipaclient2.example.com

[ipaclients:vars]
ipaadmin_password=SomeADMINpassword
ipasmartcard_client_ca_certs=/home/<user_name>/MyPlaybooks/SmartCard/root-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/intermediate-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/ipa-ca.crt

Red Hat Enterprise Linux 9 Managing certificates in IdM

58

7. Create an install-smartcard-clients.yml playbook with the following content:

- name: Playbook to set up smart card authentication for an IdM client
 hosts: ipaclients
 become: true

 roles:
 - role: ipasmartcard_client
 state: present

8. Save the file.

9. Run the Ansible playbook. Specify the playbook and inventory files:

$ ansible-playbook --vault-password-file=password_file -v -i inventory install-
smartcard-clients.yml

The ipasmartcard_client Ansible role performs the following actions:

It configures the smart card daemon.

It sets the system-wide truststore.

It configures the System Security Services Daemon (SSSD) to allow users to authenticate
with either their user name and password or their smart card. For more details on SSSD
profile options for smart card authentication, see Smart card authentication options in
RHEL.

The clients listed in the ipaclients section of the inventory file are now configured for smart card
authentication.

NOTE

If you have installed the IdM clients with the --mkhomedir option, remote users will be
able to log in to their home directories. Otherwise, the default login location is the root of
the directory structure, /.

Additional resources

Sample playbooks using the ipasmartcard_server role in the /usr/share/doc/ansible-
freeipa/playbooks/ directory

8.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI

Follow this procedure to add an external certificate to a user entry in IdM Web UI.

NOTE

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

59

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication#con_smart-card-authentication-options-in-rhel_assembly_understanding-smart-card-authentication

NOTE

Instead of uploading the whole certificate, it is also possible to upload certificate mapping
data to a user entry in IdM. User entries containing either full certificates or certificate
mapping data can be used in conjunction with corresponding certificate mapping rules to
facilitate the configuration of smart card authentication for system administrators. For
details, see

Certificate mapping rules for configuring authentication .

NOTE

If the user’s certificate has been issued by the IdM Certificate Authority, the certificate is
already stored in the user entry, and you do not need to follow this procedure.

Prerequisites

You have the certificate that you want to add to the user entry at your disposal.

Procedure

1. Log into the IdM Web UI as an administrator if you want to add a certificate to another user. For
adding a certificate to your own profile, you do not need the administrator’s credentials.

2. Navigate to Users → Active users → sc_user.

3. Find the Certificate option and click Add.

4. In the command-line interface, display the certificate in the PEM format using the cat utility or a
text editor:

[user@client SmartCard]$ cat testuser.crt

5. Copy and paste the certificate from the CLI into the window that has opened in the Web UI.

6. Click Add.

Figure 8.1. Adding a new certificate in the IdM Web UI

Red Hat Enterprise Linux 9 Managing certificates in IdM

60

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#con-idm-certmapdata_conf-certmap-idm

Figure 8.1. Adding a new certificate in the IdM Web UI

The sc_user entry now contains an external certificate.

8.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI

Follow this procedure to add an external certificate to a user entry in IdM CLI.

NOTE

Instead of uploading the whole certificate, it is also possible to upload certificate mapping
data to a user entry in IdM. User entries containing either full certificates or certificate
mapping data can be used in conjunction with corresponding certificate mapping rules to
facilitate the configuration of smart card authentication for system administrators. For
details, see Certificate mapping rules for configuring authentication .

NOTE

If the user’s certificate has been issued by the IdM Certificate Authority, the certificate is
already stored in the user entry, and you do not need to follow this procedure.

Prerequisites

You have the certificate that you want to add to the user entry at your disposal.

Procedure

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

61

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#con-idm-certmapdata_conf-certmap-idm

1. Log into the IdM CLI as an administrator if you want to add a certificate to another user:

[user@client SmartCard]$ kinit admin

For adding a certificate to your own profile, you do not need the administrator’s credentials:

[user@client SmartCard]$ kinit sc_user

2. Create an environment variable containing the certificate with the header and footer removed
and concatenated into a single line, which is the format expected by the ipa user-add-cert
command:

[user@client SmartCard]$ export CERT=`openssl x509 -outform der -in testuser.crt |
base64 -w0 -`

Note that certificate in the testuser.crt file must be in the PEM format.

3. Add the certificate to the profile of sc_user using the ipa user-add-cert command:

[user@client SmartCard]$ ipa user-add-cert sc_user --certificate=$CERT

The sc_user entry now contains an external certificate.

8.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

{PackageManagerCommand} -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification steps

Verify that the pcscd service is up and running

systemctl status pcscd

Red Hat Enterprise Linux 9 Managing certificates in IdM

62

8.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

8.9. LOGGING IN TO IDM WITH SMART CARDS

Follow this procedure to use smart cards for logging in to the IdM Web UI.

Prerequisites

The web browser is configured for using smart card authentication.

Red Hat Enterprise Linux 9 Managing certificates in IdM

64

The IdM server is configured for smart card authentication.

The certificate installed on your smart card is either issued by the IdM server or has been added
to the user entry in IdM.

You know the PIN required to unlock the smart card.

The smart card has been inserted into the reader.

Procedure

1. Open the IdM Web UI in the browser.

2. Click Log In Using Certificate.

3. If the Password Required dialog box opens, add the PIN to unlock the smart card and click the
OK button.
The User Identification Request dialog box opens.

If the smart card contains more than one certificate, select the certificate you want to use for
authentication in the drop down list below Choose a certificate to present as identification.

4. Click the OK button.

Now you are successfully logged in to the IdM Web UI.

8.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

65

8.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION
ON AN IDM CLIENT

The GNOME Desktop Manager (GDM) requires authentication. You can use your password; however,
you can also use a smart card for authentication.

Follow this procedure to use smart card authentication to access GDM.

Prerequisites

The system has been configured for smart card authentication. For details, see Configuring the
IdM client for smart card authentication.

The smart card contains your certificate and private key.

The user account is a member of the IdM domain.

The certificate on the smart card maps to the user entry through:

Assigning the certificate to a particular user entry. For details, see, Adding a certificate to a
user entry in the IdM Web UI or Adding a certificate to a user entry in the IdM CLI .

The certificate mapping data being applied to the account. For details, see Certificate
mapping rules for configuring authentication on smart cards.

Procedure

1. Insert the smart card in the reader.

2. Enter the smart card PIN.

3. Click Sign In.

You are successfully logged in to the RHEL system and you have a TGT provided by the IdM server.

Verification steps

In the Terminal window, enter klist and check the result:

$ klist
Ticket cache: KEYRING:persistent:1358900015:krb_cache_TObtNMd
Default principal: example.user@REDHAT.COM

Valid starting Expires Service principal
04/20/2020 13:58:24 04/20/2020 23:58:24 krbtgt/EXAMPLE.COM@EXAMPLE.COM
 renew until 04/27/2020 08:58:15

8.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

Changing to a different user requires authentication. You can use a password or a certificate. Follow this
procedure to use your smart card with the su command. It means that after entering the su command,
you are prompted for the smart card PIN.

Prerequisites

Red Hat Enterprise Linux 9 Managing certificates in IdM

66

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-cli_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

Your IdM server and client have been configured for smart card authentication.

See Configuring the IdM server for smart card authentication

See Configuring the IdM client for smart card authentication

The smart card contains your certificate and private key. See Storing a certificate on a smart
card

The card is inserted in the reader and connected to the computer.

Procedure

In a terminal window, change to a different user with the su command:

$ su - example.user
PIN for smart_card

If the configuration is correct, you are prompted to enter the smart card PIN.

CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#storing-a-certificate-on-the-smart-card_configuring-idm-for-smart-card-auth

CHAPTER 9. CONFIGURING CERTIFICATES ISSUED BY ADCS
FOR SMART CARD AUTHENTICATION IN IDM

To configure smart card authentication in IdM for users whose certificates are issued by Active
Directory (AD) certificate services:

Your deployment is based on cross-forest trust between Identity Management (IdM) and Active
Directory (AD).

You want to allow smart card authentication for users whose accounts are stored in AD.

Certificates are created and stored in Active Directory Certificate Services (ADCS).

For an overview of smart card authentication, see Understanding smart card authentication .

Configuration will be accomplished in the following steps:

Copying CA and user certificates from Active Directory to the IdM server and client

Configuring the IdM server and clients for smart card authentication using ADCS certificates

Converting a PFX (PKCS#12) file to be able to store the certificate and private key into the
smart card

Configuring timeouts in the sssd.conf file

Creating certificate mapping rules for smart card authentication

Prerequisites

Identity Management (IdM) and Active Directory (AD) trust is installed
For details, see Installing trust between IdM and AD .

Active Directory Certificate Services (ADCS) is installed and certificates for users are generated

9.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST
CONFIGURATION AND CERTIFICATE USAGE

You must configure the following on the Windows Server:

Active Directory Certificate Services (ADCS) is installed

Certificate Authority is created

[Optional] If you are using Certificate Authority Web Enrollment, the Internet Information
Services (IIS) must be configured

Export the certificate:

Key must have 2048 bits or more

Include a private key

You will need a certificate in the following format: Personal Information Exchange — PKCS
#12(.PFX)

Enable certificate privacy

Red Hat Enterprise Linux 9 Managing certificates in IdM

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#copying-certificates-from-active-directory-using-sftp_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-the-idm-server-and-clients-for-smart-card-authentication-using-adcs-certificates_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#converting-the-pfx-file_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-timeouts-in-sssd-conf_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#certificate-mapping-rules-for-smart-card-authentication_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_trust_between_idm_and_ad/index

Enable certificate privacy

9.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP

To be able to use smart card authetication, you need to copy the following certificate files:

A root CA certificate in the CER format: adcs-winserver-ca.cer on your IdM server.

A user certificate with a private key in the PFX format: aduser1.pfx on an IdM client.

NOTE

This procedure expects SSH access is allowed. If SSH is unavailable the user must copy
the file from the AD Server to the IdM server and client.

Procedure

1. Connect from the IdM server and copy the adcs-winserver-ca.cer root certificate to the IdM
server:

root@idmserver ~]# sftp Administrator@winserver.ad.example.com
Administrator@winserver.ad.example.com's password:
Connected to Administrator@winserver.ad.example.com.
sftp> cd <Path to certificates>
sftp> ls
adcs-winserver-ca.cer aduser1.pfx
sftp>
sftp> get adcs-winserver-ca.cer
Fetching <Path to certificates>/adcs-winserver-ca.cer to adcs-winserver-ca.cer
<Path to certificates>/adcs-winserver-ca.cer 100% 1254 15KB/s 00:00
sftp quit

2. Connect from the IdM client and copy the aduser1.pfx user certificate to the client:

[root@client1 ~]# sftp Administrator@winserver.ad.example.com
Administrator@winserver.ad.example.com's password:
Connected to Administrator@winserver.ad.example.com.
sftp> cd /<Path to certificates>
sftp> get aduser1.pfx
Fetching <Path to certificates>/aduser1.pfx to aduser1.pfx
<Path to certificates>/aduser1.pfx 100% 1254 15KB/s 00:00
sftp quit

Now the CA certificate is stored in the IdM server and the user certificates is stored on the client
machine.

9.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD
AUTHENTICATION USING ADCS CERTIFICATES

You must configure the IdM (Identity Management) server and clients to be able to use smart card
authentication in the IdM environment. IdM includes the ipa-advise scripts which makes all necessary
changes:

CHAPTER 9. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

69

install necessary packages

configure IdM server and clients

copy the CA certificates into the expected locations

You can run ipa-advise on your IdM server.

Follow this procedure to configure your server and clients for smart card authentication:

On an IdM server: Preparing the ipa-advise script to configure your IdM server for smart card
authentication.

On an IdM server: Preparing the ipa-advise script to configure your IdM client for smart card
authentication.

On an IdM server: Applying the the ipa-advise server script on the IdM server using the AD
certificate.

Moving the client script to the IdM client machine.

On an IdM client: Applying the the ipa-advise client script on the IdM client using the AD
certificate.

Prerequisites

The certificate has been copied to the IdM server.

Obtain the Kerberos ticket.

Log in as a user with administration rights.

Procedure

1. On the IdM server, use the ipa-advise script for configuring a client:

[root@idmserver ~]# ipa-advise config-client-for-smart-card-auth > sc_client.sh

2. On the IdM server, use the ipa-advise script for configuring a server:

[root@idmserver ~]# ipa-advise config-server-for-smart-card-auth > sc_server.sh

3. On the IdM server, execute the script:

[root@idmserver ~]# sh -x sc_server.sh adcs-winserver-ca.cer

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

It configures the IdM Web UI to accept smart card authorization requests.

4. Copy the sc_client.sh script to the client system:

Red Hat Enterprise Linux 9 Managing certificates in IdM

70

[root@idmserver ~]# scp sc_client.sh root@client1.idm.example.com:/root
Password:
sc_client.sh 100% 2857 1.6MB/s 00:00

5. Copy the Windows certificate to the client system:

[root@idmserver ~]# scp adcs-winserver-ca.cer root@client1.idm.example.com:/root
Password:
adcs-winserver-ca.cer 100% 1254 952.0KB/s 00:00

6. On the client system, run the client script:

[root@idmclient1 ~]# sh -x sc_client.sh adcs-winserver-ca.cer

The CA certificate is installed in the correct format on the IdM server and client systems and next step is
to copy the user certificates onto the smart card itself.

9.4. CONVERTING THE PFX FILE

Before you store the PFX (PKCS#12) file into the smart card, you must:

convert the file to the PEM format

extract the private key and the certificate to two different files

Prerequisites

The PFX file is copied into the IdM client machine.

Procedure

1. On the IdM client, into the PEM format:

[root@idmclient1 ~]# openssl pkcs12 -in aduser1.pfx -out aduser1_cert_only.pem -clcerts -
nodes
Enter Import Password:

2. Extract the key into the separate file:

[root@idmclient1 ~]# openssl pkcs12 -in adduser1.pfx -nocerts -out adduser1.pem >
aduser1.key

3. Extract the public certificate into the separate file:

[root@idmclient1 ~]# openssl pkcs12 -in adduser1.pfx -clcerts -nokeys -out
aduser1_cert_only.pem > aduser1.crt

At this point, you can store the aduser1.key and aduser1.crt into the smart card.

9.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

CHAPTER 9. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

71

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

{PackageManagerCommand} -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification steps

Verify that the pcscd service is up and running

systemctl status pcscd

9.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

Red Hat Enterprise Linux 9 Managing certificates in IdM

72

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

CHAPTER 9. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

73

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

9.7. CONFIGURING TIMEOUTS IN SSSD.CONF

Authentication with a smart card certificate might take longer than the default timeouts used by SSSD.
Time out expiration can be caused by:

slow reader

a forwarding form a physical device into a virtual environment

too many certificates stored on the smart card

slow response from the OCSP (Online Certificate Status Protocol) responder if OCSP is used to
verify the certificates

In this case you can prolong the following timeouts in the sssd.conf file, for example, to 60 seconds:

p11_child_timeout

krb5_auth_timeout

Prerequisites

You must be logged in as root.

Procedure

1. Open the sssd.conf file:

[root@idmclient1 ~]# vim /etc/sssd/sssd.conf

2. Change the value of p11_child_timeout:

[pam]
p11_child_timeout = 60

3. Change the value of krb5_auth_timeout:

Red Hat Enterprise Linux 9 Managing certificates in IdM

74

[domain/IDM.EXAMPLE.COM]
krb5_auth_timeout = 60

4. Save the settings.

Now, the interaction with the smart card is allowed to run for 1 minute (60 seconds) before
authentication will fail with a timeout.

9.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD
AUTHENTICATION

If you want to use one certificate for a user who has accounts in AD (Active Directory) and in IdM
(Identity Management), you can create a certificate mapping rule on the IdM server.

After creating such a rule, the user is able to authenticate with their smart card in both domains.

For details about certificate mapping rules, see Certificate mapping rules for configuring authentication .

CHAPTER 9. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

75

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES
IN IDENTITY MANAGEMENT

Certificate mapping rules are a convenient way of allowing users to authenticate using certificates in
scenarios when the Identity Management (IdM) administrator does not have access to certain users'
certificates. This is typically because the certificates have been issued by an external certificate
authority.

10.1. CERTIFICATE MAPPING RULES FOR CONFIGURING
AUTHENTICATION

You might need to configure certificate mapping rules in the following scenarios:

Certificates have been issued by the Certificate System of the Active Directory (AD) with which
the IdM domain is in a trust relationship.

Certificates have been issued by an external certificate authority.

The IdM environment is large with many users using smart cards. In this case, adding full
certificates can be complicated. The subject and issuer are predictable in most scenarios and
therefore easier to add ahead of time than the full certificate.

As a system administrator, you can create a certificate mapping rule and add certificate mapping data to
a user entry even before a certificate is issued to a particular user. Once the certificate is issued, the
user can log in using the certificate even though the full certificate has not yet been uploaded to the
user entry.

In addition, as certificates are renewed at regular intervals, certificate mapping rules reduce
administrative overhead. When a user’s certificate is renewed, the administrator does not have to update
the user entry. For example, if the mapping is based on the Subject and Issuer values, and if the new
certificate has the same subject and issuer as the old one, the mapping still applies. If, in contrast, the
full certificate was used, then the administrator would have to upload the new certificate to the user
entry to replace the old one.

To set up certificate mapping:

1. An administrator has to load the certificate mapping data or the full certificate into a user
account.

2. An administrator has to create a certificate mapping rule to allow successful logging into IdM for
a user whose account contains a certificate mapping data entry that matches the information
on the certificate.

Once the certificate mapping rules have been created, when the end-user presents the certificate,
stored either on a filesystem or a smart card, authentication is successful.

NOTE

The Key Distribution Center (KDC) has a cache for certificate mapping rules. The cache is
populated on the first certauth request and it has a hard-coded timeout of 300 seconds.
KDC will not see any changes to certificate mapping rules unless it is restarted or the
cache expires.

For details on the individual components that make up a mapping rule and how to obtain and use them,

Red Hat Enterprise Linux 9 Managing certificates in IdM

76

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/dc-web-ui-auth_managing-certificates-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#logging-in-to-idm-with-smart-cards_configuring-idm-for-smart-card-auth

For details on the individual components that make up a mapping rule and how to obtain and use them,
see Components of an identity mapping rule in IdM and Obtaining the issuer from a certificate for use in
a matching rule.

NOTE

Your certificate mapping rules can depend on the use case for which you are using the
certificate. For example, if you are using SSH with certificates, you must have the full
certificate to extract the public key from the certificate.

10.2. COMPONENTS OF AN IDENTITY MAPPING RULE IN IDM

You configure different components when creating an identity mapping rule in IdM. Each component
has a default value that you can override. You can define the components in either the web UI or the
CLI. In the CLI, the identity mapping rule is created using the ipa certmaprule-add command.

Mapping rule

The mapping rule component associates (or maps) a certificate with one or more user accounts. The
rule defines an LDAP search filter that associates a certificate with the intended user account.
Certificates issued by different certificate authorities (CAs) might have different properties and
might be used in different domains. Therefore, IdM does not apply mapping rules unconditionally, but
only to the appropriate certificates. The appropriate certificates are defined using matching rules.

Note that if you leave the mapping rule option empty, the certificates are searched in the
userCertificate attribute as a DER encoded binary file.

Define the mapping rule in the CLI using the --maprule option.

Matching rule

The matching rule component selects a certificate to which you want to apply the mapping rule. The
default matching rule matches certificates with the digitalSignature key usage and clientAuth
extended key usage.
Define the matching rule in the CLI using the --matchrule option.

Domain list

The domain list specifies the identity domains in which you want IdM to search the users when
processing identity mapping rules. If you leave the option unspecified, IdM searches the users only in
the local domain to which the IdM client belongs.
Define the domain in the CLI using the --domain option.

Priority

When multiple rules are applicable to a certificate, the rule with the highest priority takes precedence.
All other rules are ignored.

The lower the numerical value, the higher the priority of the identity mapping rule. For
example, a rule with a priority 1 has higher priority than a rule with a priority 2.

If a rule has no priority value defined, it has the lowest priority.

Define the mapping rule priority in the CLI using the --priority option.

Certificate mapping rule example

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

77

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#sc-id-mapping_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#sc-id-issuer-obtain-example_conf-certmap-idm

To define, using the CLI, a certificate mapping rule called simple_rule that allows authentication for a
certificate issued by the Smart Card CA of the EXAMPLE.ORG organization if the Subject on that
certificate matches a certmapdata entry in a user account in IdM:

ipa certmaprule-add simple_rule --matchrule '<ISSUER>CN=Smart Card
CA,O=EXAMPLE.ORG' --maprule '(ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>
{subject_dn!nss_x500})'

10.3. OBTAINING DATA FROM A CERTIFICATE FOR USE IN A
MATCHING RULE

This procedure describes how to obtain data from a certificate so that you can copy and paste it into the
matching rule of a certificate mapping rule. To get data required by a matching rule, use the sssctl cert-
show or sssctl cert-eval-rule commands.

Prerequisites

You have the user certificate in PEM format.

Procedure

1. Create a variable pointing to your certificate that also ensures it is correctly encoded so you can
retrieve the required data.

CERT=$(openssl x509 -in /path/to/certificate -outform der|base64 -w0)

2. Use the sssctl cert-eval-rule to determine the matching data. In the following example the
certificate serial number is used.

sssctl cert-eval-rule $CERT --match='<ISSUER>CN=adcs19-WIN1-
CA,DC=AD,DC=EXAMPLE,DC=COM' --map='LDAPU1:(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<SR>{serial_number!hex_ur})'
Certificate matches rule.
Mapping filter:

 (altSecurityIdentities=X509:<I>DC=com,DC=example,DC=ad,CN=adcs19-WIN1-
CA<SR>0F0000000000DB8852DD7B246C9C0F0000003B)

In this case, add everything after altSecurityIdentities= to the altSecurityIdentities attribute in
AD for the user. If using SKI mapping, use --map='LDAPU1:(altSecurityIdentities=X509:<SKI>
{subject_key_id!hex_u})'.

3. Optionally, to create a new mapping rule in the CLI based on a matching rule which specifies that
the certificate issuer must match adcs19-WIN1-CA of the ad.example.com domain and the
serial number of the certificate must match the altSecurityIdentities entry in a user account:

ipa certmaprule-add simple_rule --matchrule '<ISSUER>CN=adcs19-WIN1-
CA,DC=AD,DC=EXAMPLE,DC=COM' --maprule 'LDAPU1:(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<SR>{serial_number!hex_ur})'

10.4. CONFIGURING CERTIFICATE MAPPING FOR USERS STORED IN
IDM

Red Hat Enterprise Linux 9 Managing certificates in IdM

78

To enable certificate mapping in IdM if the user for whom certificate authentication is being configured
is stored in IdM, a system administrator must complete the following tasks:

Set up a certificate mapping rule so that IdM users with certificates that match the conditions
specified in the mapping rule and in their certificate mapping data entries can authenticate to
IdM.

Enter certificate mapping data to an IdM user entry so that the user can authenticate using
multiple certificates provided that they all contain the values specified in the certificate mapping
data entry.

Prerequisites

The user has an account in IdM.

The administrator has either the whole certificate or the certificate mapping data to add to the
user entry.

10.4.1. Adding a certificate mapping rule in the IdM web UI

1. Log in to the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 10.1. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. For example, to make IdM search for the Issuer and Subject entries in
any certificate presented to them, and base its decision to authenticate or not on the
information found in these two entries of the presented certificate:

(ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})

6. Enter the matching rule. For example, to only allow certificates issued by the Smart Card CA of
the EXAMPLE.ORG organization to authenticate users to IdM:

<ISSUER>CN=Smart Card CA,O=EXAMPLE.ORG

Figure 10.2. Entering the details for a certificate mapping rule in the IdM web UI

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

79

Figure 10.2. Entering the details for a certificate mapping rule in the IdM web UI

7. Click Add at the bottom of the dialog box to add the rule and close the box.

8. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

Now you have a certificate mapping rule set up that compares the type of data specified in the mapping
rule that it finds on a smart card certificate with the certificate mapping data in your IdM user entries.
Once it finds a match, it authenticates the matching user.

10.4.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. For example, to
make IdM search for the Issuer and Subject entries in any certificate presented, and base its
decision to authenticate or not on the information found in these two entries of the presented
certificate, recognizing only certificates issued by the Smart Card CA of the EXAMPLE.ORG
organization:

ipa certmaprule-add rule_name --matchrule '<ISSUER>CN=Smart Card
CA,O=EXAMPLE.ORG' --maprule '(ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>
{subject_dn!nss_x500})'

Added Certificate Identity Mapping Rule "rule_name"

 Rule name: rule_name
 Mapping rule: (ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})
 Matching rule: <ISSUER>CN=Smart Card CA,O=EXAMPLE.ORG
 Enabled: TRUE

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

Red Hat Enterprise Linux 9 Managing certificates in IdM

80

systemctl restart sssd

Now you have a certificate mapping rule set up that compares the type of data specified in the mapping
rule that it finds on a smart card certificate with the certificate mapping data in your IdM user entries.
Once it finds a match, it authenticates the matching user.

10.4.3. Adding certificate mapping data to a user entry in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Users → Active users → idm_user.

3. Find the Certificate mapping data option and click Add.

4. Choose one of the following options:

If you have the certificate of idm_user:

a. In the command-line interface, display the certificate using the cat utility or a text
editor:

[root@server ~]# cat idm_user_certificate.pem
-----BEGIN CERTIFICATE-----
MIIFFTCCA/2gAwIBAgIBEjANBgkqhkiG9w0BAQsFADA6MRgwFgYDVQQKDA9JRE0
u
RVhBTVBMRS5DT00xHjAcBgNVBAMMFUNlcnRpZmljYXRlIEF1dGhvcml0eTAeFw0x

ODA5MDIxODE1MzlaFw0yMDA5MDIxODE1MzlaMCwxGDAWBgNVBAoMD0lETS5F
WEFN
[...output truncated...]

b. Copy the certificate.

c. In the IdM web UI, click Add next to Certificate and paste the certificate into the
window that opens up.

Figure 10.3. Adding a user’s certificate mapping data: certificate

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

81

Figure 10.3. Adding a user’s certificate mapping data: certificate

If you do not have the certificate of idm_user at your disposal but know the Issuer
and the Subject of the certificate, check the radio button of Issuer and subject
and enter the values in the two respective boxes.

Figure 10.4. Adding a user’s certificate mapping data: issuer and subject

5. Click Add.

Verification steps

If you have access to the whole certificate in the .pem format, verify that the user and certificate are
linked:

1. Use the sss_cache utility to invalidate the record of idm_user in the SSSD cache and force a
reload of the idm_user information:

sss_cache -u idm_user

Red Hat Enterprise Linux 9 Managing certificates in IdM

82

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
IdM user:

ipa certmap-match idm_user_cert.pem

1 user matched

 Domain: IDM.EXAMPLE.COM
 User logins: idm_user

Number of entries returned 1

The output confirms that now you have certificate mapping data added to idm_user and that a
corresponding mapping rule exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as idm_user.

10.4.4. Adding certificate mapping data to a user entry in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Choose one of the following options:

If you have the certificate of idm_user, add the certificate to the user account using the ipa
user-add-cert command:

CERT=$(openssl x509 -in idm_user_cert.pem -outform der|base64 -w0)
ipa user-add-certmapdata idm_user --certificate $CERT

If you do not have the certificate of idm_user but know the Issuer and the Subject of the
user’s certificate:

ipa user-add-certmapdata idm_user --subject "O=EXAMPLE.ORG,CN=test" --
issuer "CN=Smart Card CA,O=EXAMPLE.ORG"
--
Added certificate mappings to user "idm_user"
--
 User login: idm_user
 Certificate mapping data: X509:<I>O=EXAMPLE.ORG,CN=Smart Card
CA<S>CN=test,O=EXAMPLE.ORG

Verification steps

If you have access to the whole certificate in the .pem format, verify that the user and certificate are
linked:

1. Use the sss_cache utility to invalidate the record of idm_user in the SSSD cache and force a
reload of the idm_user information:

sss_cache -u idm_user

2. Run the ipa certmap-match command with the name of the file containing the certificate of the

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

83

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
IdM user:

ipa certmap-match idm_user_cert.pem

1 user matched

 Domain: IDM.EXAMPLE.COM
 User logins: idm_user

Number of entries returned 1

The output confirms that now you have certificate mapping data added to idm_user and that a
corresponding mapping rule exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as idm_user.

10.5. CERTIFICATE MAPPING RULES FOR TRUSTS WITH ACTIVE
DIRECTORY DOMAINS

Different certificate mapping use cases are possible if an IdM deployment is in a trust relationship with
an Active Directory (AD) domain.

Depending on the AD configuration, the following scenarios are possible:

If the certificate is issued by AD Certificate System but the user and the certificate are stored in
IdM, the mapping and the whole processing of the authentication request takes place on the
IdM side. For details of configuring this scenario, see Configuring certificate mapping for users
stored in IdM

If the user is stored in AD, the processing of the authentication request takes place in AD. There
are three different subcases:

The AD user entry contains the whole certificate. For details how to configure IdM in this
scenario, see Configuring certificate mapping for users whose AD user entry contains the
whole certificate.

AD is configured to map user certificates to user accounts. In this case, the AD user entry
does not contain the whole certificate but instead contains an attribute called
altSecurityIdentities. For details how to configure IdM in this scenario, see Configuring
certificate mapping if AD is configured to map user certificates to user accounts.

The AD user entry contains neither the whole certificate nor the mapping data. In this case,
there are two options:

If the user certificate is issued by AD Certificate System, the certificate either contains
the user principal name as the Subject Alternative Name (SAN) or, if the latest updates
are applied to AD, the SID of the user in the SID extension of the certificate. Both of
these can be used to map the certificate to the user.

If the user certificate is on a smart card, to enable SSH with smart cards, SSSD must
derive the public SSH key from the certificate and therefore the full certificate is
required. The only solution is to use the ipa idoverrideuser-add command to add the
whole certificate to the AD user’s ID override in IdM. For details, see Configuring
certificate mapping if AD user entry contains no certificate or mapping data.

AD domain administrators can manually map certificates to a user in AD using the altSecurityIdentities

Red Hat Enterprise Linux 9 Managing certificates in IdM

84

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-for-users-in-idm_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-for-ad-certs_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-for-ad-map_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-ad-no-cert-no-map_conf-certmap-for-ad-map

AD domain administrators can manually map certificates to a user in AD using the altSecurityIdentities
attribute. There are six supported values for this attribute, though three mappings are considered
insecure. As part of May 10,2022 security update , once it is installed, all devices are in compatibility
mode and if a certificate is weakly mapped to a user, authentication occurs as expected. However,
warning messages are logged identifying any certificates that are not compatible with full enforcement
mode. As of November 14, 2023 or later, all devices will be updated to full enforcement mode and if a
certificate fails the strong mapping criteria, authentication will be denied.

For example, when an AD user requests an IdM Kerberos ticket with a certificate (PKINIT), AD needs to
map the certificate to a user internally and uses the new mapping rules for this. However in IdM, the
previous rules continue to work if IdM is used to map a certificate to a user on an IdM client, .

IdM supports the new mapping templates, making it easier for an AD administrator to use the new rules
and not maintain both. IdM now supports the new mapping templates added to Active Directory to
include:

Serial Number: LDAPU1:(altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<SR>
{serial_number!hex_ur})

Subject Key Id: LDAPU1:(altSecurityIdentities=X509:<SKI>{subject_key_id!hex_u})

User SID: LDAPU1:(objectsid={sid})

If you do not want to reissue certificates with the new SID extension, you can create a manual mapping
by adding the appropriate mapping string to a user’s altSecurityIdentities attribute in AD.

10.6. CONFIGURING CERTIFICATE MAPPING FOR USERS WHOSE AD
USER ENTRY CONTAINS THE WHOLE CERTIFICATE

This user story describes the steps necessary for enabling certificate mapping in IdM if the IdM
deployment is in trust with Active Directory (AD), the user is stored in AD and the user entry in AD
contains the whole certificate.

Prerequisites

The user does not have an account in IdM.

The user has an account in AD which contains a certificate.

The IdM administrator has access to data on which the IdM certificate mapping rule can be
based.

NOTE

To ensure PKINIT works for a user, one of the following conditions must apply:

The certificate in the user entry includes the user principal name or the SID
extension for the user.

The user entry in AD has a suitable entry in the altSecurityIdentities attribute.

10.6.1. Adding a certificate mapping rule in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

85

https://support.microsoft.com/en-us/topic/kb5014754-certificate-based-authentication-changes-on-windows-domain-controllers-ad2c23b0-15d8-4340-a468-4d4f3b188f16

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 10.5. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. To have the whole certificate that is presented to IdM for
authentication compared to what is available in AD:

(userCertificate;binary={cert!bin})

NOTE

If mapping using the full certificate, if you renew the certificate, you must ensure
that you add the new certificate to the AD user object.

6. Enter the matching rule. For example, to only allow certificates issued by the AD-ROOT-CA of
the AD.EXAMPLE.COM domain to authenticate:

<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com

Figure 10.6. Certificate mapping rule for a user with a certificate stored in AD

7. Click Add.

8. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD in the CLI::

systemctl restart sssd

Red Hat Enterprise Linux 9 Managing certificates in IdM

86

10.6.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. To have the whole
certificate that is presented for authentication compared to what is available in AD, only allowing
certificates issued by the AD-ROOT-CA of the AD.EXAMPLE.COM domain to authenticate:

ipa certmaprule-add simpleADrule --matchrule '<ISSUER>CN=AD-ROOT-
CA,DC=ad,DC=example,DC=com' --maprule '(userCertificate;binary={cert!bin})' --
domain ad.example.com

Added Certificate Identity Mapping Rule "simpleADrule"

 Rule name: simpleADrule
 Mapping rule: (userCertificate;binary={cert!bin})
 Matching rule: <ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com
 Domain name: ad.example.com
 Enabled: TRUE

NOTE

If mapping using the full certificate, if you renew the certificate, you must ensure
that you add the new certificate to the AD user object.

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

10.7. CONFIGURING CERTIFICATE MAPPING IF AD IS CONFIGURED TO
MAP USER CERTIFICATES TO USER ACCOUNTS

This user story describes the steps necessary for enabling certificate mapping in IdM if the IdM
deployment is in trust with Active Directory (AD), the user is stored in AD, and the user entry in AD
contains certificate mapping data.

Prerequisites

The user does not have an account in IdM.

The user has an account in AD which contains the altSecurityIdentities attribute, the AD
equivalent of the IdM certmapdata attribute.

The IdM administrator has access to data on which the IdM certificate mapping rule can be
based.

10.7.1. Adding a certificate mapping rule in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

87

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 10.7. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. For example, to make AD DC search for the Issuer and Subject entries
in any certificate presented, and base its decision to authenticate or not on the information
found in these two entries of the presented certificate:

(altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500})

6. Enter the matching rule. For example, to only allow certificates issued by the AD-ROOT-CA of
the AD.EXAMPLE.COM domain to authenticate users to IdM:

<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com

7. Enter the domain:

ad.example.com

Figure 10.8. Certificate mapping rule if AD is configured for mapping

8. Click Add.

9. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD in the CLI::

systemctl restart sssd

Red Hat Enterprise Linux 9 Managing certificates in IdM

88

10.7.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. For example, to
make AD search for the Issuer and Subject entries in any certificate presented, and only allow
certificates issued by the AD-ROOT-CA of the AD.EXAMPLE.COM domain:

ipa certmaprule-add ad_configured_for_mapping_rule --matchrule
'<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com' --maprule
'(altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500})' --
domain=ad.example.com

Added Certificate Identity Mapping Rule "ad_configured_for_mapping_rule"

 Rule name: ad_configured_for_mapping_rule
 Mapping rule: (altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>
{subject_dn!ad_x500})
 Matching rule: <ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com
 Domain name: ad.example.com
 Enabled: TRUE

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

10.7.3. Checking certificate mapping data on the AD side

The altSecurityIdentities attribute is the Active Directory (AD) equivalent of certmapdata user
attribute in IdM. When configuring certificate mapping in IdM in the scenario when a trusted AD domain
is configured to map user certificates to user accounts, the IdM system administrator needs to check
that the altSecurityIdentities attribute is set correctly in the user entries in AD.

Prerequisites

The user account must have user administration access.

Procedure

To check that AD contains the right information for the user stored in AD, use the ldapsearch
command. For example, enter the command below to check with the
adserver.ad.example.com server that the following conditions apply:

The altSecurityIdentities attribute is set in the user entry of ad_user.

The matchrule stipulates that the following conditions apply:

The certificate that ad_user uses to authenticate to AD was issued by AD-ROOT-CA
of the ad.example.com domain.

The subject is <S>DC=com,DC=example,DC=ad,CN=Users,CN=ad_user:

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

89

$ ldapsearch -o ldif-wrap=no -LLL -h adserver.ad.example.com \
-p 389 -D cn=Administrator,cn=users,dc=ad,dc=example,dc=com \
-W -b cn=users,dc=ad,dc=example,dc=com "(cn=ad_user)" \
altSecurityIdentities
Enter LDAP Password:
dn: CN=ad_user,CN=Users,DC=ad,DC=example,DC=com
altSecurityIdentities: X509:<I>DC=com,DC=example,DC=ad,CN=AD-ROOT-
CA<S>DC=com,DC=example,DC=ad,CN=Users,CN=ad_user

10.8. CONFIGURING CERTIFICATE MAPPING IF AD USER ENTRY
CONTAINS NO CERTIFICATE OR MAPPING DATA

This user story describes the steps necessary for enabling certificate mapping in IdM if the IdM
deployment is in trust with Active Directory (AD), the user is stored in AD and the user entry in AD
contains neither the whole certificate nor certificate mapping data.

Prerequisites

The user does not have an account in IdM.

The user has an account in AD which contains neither the whole certificate nor the
altSecurityIdentities attribute, the AD equivalent of the IdM certmapdata attribute.

The IdM administrator has done one of the following:

Added the whole AD user certificate to the AD user’s user ID override in IdM.

Created a certificate mapping rule that maps to an alternative field in the certificate, such as
Subject Alternative Name or the SID of the user.

10.8.1. Adding a certificate mapping rule in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 10.9. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. To have the whole certificate that is presented to IdM for
authentication compared to the certificate stored in the user ID override entry of the AD user
entry in IdM:

(userCertificate;binary={cert!bin})

Red Hat Enterprise Linux 9 Managing certificates in IdM

90

NOTE

As the certificate also contains the user principal name as the SAN, or with the
latest updates, the SID of the user in the SID extension of the certificate, you can
also use these fields to map the certificate to the user. For example, if using the
SID of the user, replace this mapping rule with LDAPU1:(objectsid={sid}). For
more information on certificate mapping, see the sss-certmap man page.

6. Enter the matching rule. For example, to only allow certificates issued by the AD-ROOT-CA of
the AD.EXAMPLE.COM domain to authenticate:

<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com

7. Enter the domain name. For example, to search for users in the ad.example.com domain:

Figure 10.10. Certificate mapping rule for a user with no certificate or mapping data stored
in AD

8. Click Add.

9. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD in the CLI:

systemctl restart sssd

10.8.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. To have the whole
certificate that is presented for authentication compared to the certificate stored in the user ID
override entry of the AD user entry in IdM, only allowing certificates issued by the AD-ROOT-
CA of the AD.EXAMPLE.COM domain to authenticate:

ipa certmaprule-add simpleADrule --matchrule '<ISSUER>CN=AD-ROOT-
CA,DC=ad,DC=example,DC=com' --maprule '(userCertificate;binary={cert!bin})' --

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

91

domain ad.example.com

Added Certificate Identity Mapping Rule "simpleADrule"

 Rule name: simpleADrule
 Mapping rule: (userCertificate;binary={cert!bin})
 Matching rule: <ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com
 Domain name: ad.example.com
 Enabled: TRUE

NOTE

As the certificate also contains the user principal name as the SAN, or with the
latest updates, the SID of the user in the SID extension of the certificate, you can
also use these fields to map the certificate to the user. For example, if using the
SID of the user, replace this mapping rule with LDAPU1:(objectsid={sid}). For
more information on certificate mapping, see the sss-certmap man page.

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

10.8.3. Adding a certificate to an AD user’s ID override in the IdM web UI

1. Navigate to Identity → ID Views → Default Trust View.

2. Click Add.

Figure 10.11. Adding a new user ID override in the IdM web UI

3. In the User to override field, enter ad_user@ad.example.com.

4. Copy and paste the certificate of ad_user into the Certificate field.

Figure 10.12. Configuring the User ID override for an AD user

Red Hat Enterprise Linux 9 Managing certificates in IdM

92

Figure 10.12. Configuring the User ID override for an AD user

5. Click Add.

Verification steps

Verify that the user and certificate are linked:

1. Use the sss_cache utility to invalidate the record of ad_user@ad.example.com in the SSSD
cache and force a reload of the ad_user@ad.example.com information:

sss_cache -u ad_user@ad.example.com

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
AD user:

ipa certmap-match ad_user_cert.pem

1 user matched

 Domain: AD.EXAMPLE.COM
 User logins: ad_user@ad.example.com

Number of entries returned 1

The output confirms that you have certificate mapping data added to ad_user@ad.example.com and
that a corresponding mapping rule defined in Adding a certificate mapping rule if the AD user entry
contains no certificate or mapping data exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as ad_user@ad.example.com.

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

93

Additional resources

Using ID views for Active Directory users

10.8.4. Adding a certificate to an AD user’s ID override in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Store the certificate blob in a new variable called CERT:

CERT=$(openssl x509 -in /path/to/certificate -outform der|base64 -w0)

3. Add the certificate of ad_user@ad.example.com to the user account using the ipa
idoverrideuser-add-cert command:

ipa idoverrideuser-add-cert ad_user@ad.example.com --certificate $CERT

Verification steps

Verify that the user and certificate are linked:

1. Use the sss_cache utility to invalidate the record of ad_user@ad.example.com in the SSSD
cache and force a reload of the ad_user@ad.example.com information:

sss_cache -u ad_user@ad.example.com

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
AD user:

ipa certmap-match ad_user_cert.pem

1 user matched

 Domain: AD.EXAMPLE.COM
 User logins: ad_user@ad.example.com

Number of entries returned 1

The output confirms that you have certificate mapping data added to ad_user@ad.example.com and
that a corresponding mapping rule defined in Adding a certificate mapping rule if the AD user entry
contains no certificate or mapping data exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as ad_user@ad.example.com.

Additional resources

Using ID views for Active Directory users

10.9. COMBINING SEVERAL IDENTITY MAPPING RULES INTO ONE

To combine several identity mapping rules into one combined rule, use the | (or) character to precede

Red Hat Enterprise Linux 9 Managing certificates in IdM

94

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_idm_users_groups_hosts_and_access_control_rules/assembly_using-id-views-for-active-directory-users_managing-users-groups-hosts
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_idm_users_groups_hosts_and_access_control_rules/assembly_using-id-views-for-active-directory-users_managing-users-groups-hosts

To combine several identity mapping rules into one combined rule, use the | (or) character to precede
the individual mapping rules, and separate them using () brackets, for example:

Certificate mapping filter example 1

$ ipa certmaprule-add ad_cert_for_ipa_and_ad_users \ --maprule='(|(ipacertmapdata=X509:<I>
{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<S>{subject_dn!ad_x500}))' \ --matchrule='<ISSUER>CN=AD-ROOT-
CA,DC=ad,DC=example,DC=com' \ --domain=ad.example.com

In the above example, the filter definition in the --maprule option includes these criteria:

ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the ipacertmapdata
attribute in an IdM user account, as described in Adding a certificate mapping rule in IdM

altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the
altSecurityIdentities attribute in an AD user account, as described in Adding a certificate
mapping rule if the trusted AD domain is configured to map user certificates

The addition of the --domain=ad.example.com option means that users mapped to a given
certificate are not only searched in the local idm.example.com domain but also in the
ad.example.com domain

The filter definition in the --maprule option accepts the logical operator | (or), so that you can specify
multiple criteria. In this case, the rule maps all user accounts that meet at least one of the criteria.

Certificate mapping filter example 2

$ ipa certmaprule-add ipa_cert_for_ad_users \
 --maprule='(|(userCertificate;binary={cert!bin})(ipacertmapdata=X509:<I>
{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<S>{subject_dn!ad_x500}))' \
 --matchrule='<ISSUER>CN=Certificate Authority,O=REALM.EXAMPLE.COM' \
 --domain=idm.example.com --domain=ad.example.com

In the above example, the filter definition in the --maprule option includes these criteria:

userCertificate;binary={cert!bin} is a filter that returns user entries that include the whole
certificate. For AD users, creating this type of filter is described in detail in Adding a certificate
mapping rule if the AD user entry contains no certificate or mapping data.

ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the ipacertmapdata
attribute in an IdM user account, as described in Adding a certificate mapping rule in IdM .

altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the
altSecurityIdentities attribute in an AD user account, as described in Adding a certificate
mapping rule if the trusted AD domain is configured to map user certificates.

The filter definition in the --maprule option accepts the logical operator | (or), so that you can specify
multiple criteria. In this case, the rule maps all user accounts that meet at least one of the criteria.

CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

95

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#proc-add-maprule-cli_conf-certmap-for-users-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-for-ad-map_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-ad-no-cert-no-map_conf-certmap-for-ad-map
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-for-users-in-idm_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/conf-certmap-idm_managing-certificates-in-idm#conf-certmap-for-ad-map_conf-certmap-idm

10.10. ADDITIONAL RESOURCES

See the sss-certmap(5) man page.

Red Hat Enterprise Linux 9 Managing certificates in IdM

96

CHAPTER 11. CONFIGURING AUTHENTICATION WITH A
CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

By configuring Identity Management (IdM), IdM system administrators can enable users to authenticate
to the IdM web UI and command-line interface (CLI) using a certificate that a Certificate Authority (CA)
has issued to the users. The certificate is stored on the desktop of an IdM client.

The web browser can run on a system that is not part of the IdM domain.

Note the following while configuring authentication with a certificate:

you can skip Requesting a new user certificate and exporting it to the client if the user you want
to authenticate using a certificate already has a certificate;

you can skip Making sure the certificate and user are linked together if the user’s certificate has
been issued by the IdM CA.

NOTE

Only Identity Management users can log into the web UI using a certificate. Active
Directory users can log in with their user name and password.

11.1. CONFIGURING THE IDENTITY MANAGEMENT SERVER FOR
CERTIFICATE AUTHENTICATION IN THE WEB UI

As an Identity Management (IdM) administrator, you can allow users to use certificates to authenticate
to your IdM environment.

Procedure

As the Identity Management administrator:

1. On an Identity Management server, obtain administrator privileges and create a shell script to
configure the server.

a. Run the ipa-advise config-server-for-smart-card-auth command, and save its output to a
file, for example server_certificate_script.sh:

kinit admin
ipa-advise config-server-for-smart-card-auth > server_certificate_script.sh

b. Add execute permissions to the file using the chmod utility:

chmod +x server_certificate_script.sh

2. On all the servers in the Identity Management domain, run the server_certificate_script.sh
script

a. with the path of the IdM Certificate Authority certificate, /etc/ipa/ca.crt, as input if the IdM
CA is the only certificate authority that has issued the certificates of the users you want to
enable certificate authentication for:

./server_certificate_script.sh /etc/ipa/ca.crt

b. with the paths leading to the relevant CA certificates as input if different external CAs

CHAPTER 11. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

97

b. with the paths leading to the relevant CA certificates as input if different external CAs
signed the certificates of the users who you want to enable certificate authentication for:

./server_certificate_script.sh /tmp/ca1.pem /tmp/ca2.pem

NOTE

Do not forget to run the script on each new replica that you add to the system in the
future if you want to have certificate authentication for users enabled in the whole
topology.

11.2. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO
THE CLIENT

As an Identity Management (IdM) administrator, you can create certificates for users in your IdM
environment and export them to the IdM clients on which you want to enable certificate authentication
for users.

NOTE

You do not need to follow this procedure if the user you want to authenticate using a
certificate already has a certificate.

Procedure

1. Optionally, create a new directory, for example ~/certdb/, and make it a temporary certificate
database. When asked, create an NSS Certificate DB password to encrypt the keys to the
certificate to be generated in a subsequent step:

mkdir ~/certdb/
certutil -N -d ~/certdb/
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,
and should contain at least one non-alphabetic character.

Enter new password:
Re-enter password:

2. Create the certificate signing request (CSR) and redirect the output to a file. For example, to
create a CSR with the name certificate_request.csr for a 4096 bit certificate for the idm_user
user in the IDM.EXAMPLE.COM realm, setting the nickname of the certificate private keys to
idm_user for easy findability, and setting the subject to
CN=idm_user,O=IDM.EXAMPLE.COM:

certutil -R -d ~/certdb/ -a -g 4096 -n idm_user -s "CN=idm_user,O=IDM.EXAMPLE.COM"
> certificate_request.csr

3. When prompted, enter the same password that you entered when using certutil to create the
temporary database. Then continue typing randlomly until told to stop:

Enter Password or Pin for "NSS Certificate DB":

A random seed must be generated that will be used in the

Red Hat Enterprise Linux 9 Managing certificates in IdM

98

creation of your key. One of the easiest ways to create a
random seed is to use the timing of keystrokes on a keyboard.

To begin, type keys on the keyboard until this progress meter
is full. DO NOT USE THE AUTOREPEAT FUNCTION ON YOUR KEYBOARD!

Continue typing until the progress meter is full:

4. Submit the certificate request file to the server. Specify the Kerberos principal to associate with
the newly-issued certificate, the output file to store the certificate, and optionally the certificate
profile. For example, to obtain a certificate of the IECUserRoles profile, a profile with added
user roles extension, for the idm_user@IDM.EXAMPLE.COM principal, and save it in the
~/idm_user.pem file:

ipa cert-request certificate_request.csr --principal=idm_user@IDM.EXAMPLE.COM --
profile-id=IECUserRoles --certificate-out=~/idm_user.pem

5. Add the certificate to the NSS database. Use the -n option to set the same nickname that you
used when creating the CSR previously so that the certificate matches the private key in the
NSS database. The -t option sets the trust level. For details, see the certutil(1) man page. The -i
option specifies the input certificate file. For example, to add to the NSS database a certificate
with the idm_user nickname that is stored in the ~/idm_user.pem file in the ~/certdb/
database:

certutil -A -d ~/certdb/ -n idm_user -t "P,," -i ~/idm_user.pem

6. Verify that the key in the NSS database does not show (orphan) as its nickname. For example,
to verify that the certificate stored in the ~/certdb/ database is not orphaned:

certutil -K -d ~/certdb/
< 0> rsa 5ad14d41463b87a095b1896cf0068ccc467df395 NSS Certificate
DB:idm_user

7. Use the pk12util command to export the certificate from the NSS database to the PKCS12
format. For example, to export the certificate with the idm_user nickname from the
/root/certdb NSS database into the ~/idm_user.p12 file:

pk12util -d ~/certdb -o ~/idm_user.p12 -n idm_user
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL

8. Transfer the certificate to the host on which you want the certificate authentication for
idm_user to be enabled:

scp ~/idm_user.p12 idm_user@client.idm.example.com:/home/idm_user/

9. On the host to which the certificate has been transferred, make the directory in which the
.pkcs12 file is stored inaccessible to the 'other' group for security reasons:

chmod o-rwx /home/idm_user/

CHAPTER 11. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

99

10. For security reasons, remove the temporary NSS database and the .pkcs12 file from the server:

rm ~/certdb/
rm ~/idm_user.p12

11.3. MAKING SURE THE CERTIFICATE AND USER ARE LINKED
TOGETHER

NOTE

You do not need to follow this procedure if the user’s certificate has been issued by the
IdM CA.

For certificate authentication to work, you need to make sure that the certificate is linked to the user
that will use it to authenticate to Identity Management (IdM).

If the certificate is provided by a Certificate Authority that is not part of your
Identity Management environment, link the user and the certificate following the procedure
described in Linking User Accounts to Certificates .

If the certificate is provided by Identity Management CA, the certificate is already automatically
added in the user entry and you do not have to link the certificate to the user account. For
details on creating a new certificate in IdM, see Requesting a new user certificate and exporting
it to the client.

11.4. CONFIGURING A BROWSER TO ENABLE CERTIFICATE
AUTHENTICATION

To be able to authenticate with a certificate when using the WebUI to log into Identity Management
(IdM), you need to import the user and the relevant certificate authority (CA) certificates into the
Mozilla Firefox or Google Chrome browser. The host itself on which the browser is running does not have
to be part of the IdM domain.

IdM supports the following browsers for connecting to the WebUI:

Mozilla Firefox 38 and later

Google Chrome 46 and later

The following procedure shows how to configure the Mozilla Firefox 57.0.1 browser.

Prerequisites

You have the user certificate that you want to import to the browser at your disposal in the
PKCS#12 format.

Procedure

1. Open Firefox, then navigate to Preferences → Privacy & Security.

Figure 11.1. Privacy and Security section in Preferences

Red Hat Enterprise Linux 9 Managing certificates in IdM

100

Figure 11.1. Privacy and Security section in Preferences

2. Click View Certificates.

Figure 11.2. View Certificates in Privacy and Security

3. In the Your Certificates tab, click Import. Locate and open the certificate of the user in the
PKCS12 format, then click OK and OK.

4. Make sure that the Identity Management Certificate Authority is recognized by Firefox as a
trusted authority:

a. Save the IdM CA certificate locally:

Navigate to the IdM web UI by writing the name of your IdM server in the Firefox
address bar. Click Advanced on the Insecure Connection warning page.

Figure 11.3. Insecure Connection

Add Exception. Click View.

Figure 11.4. View the Details of a Certificate

CHAPTER 11. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

101

Figure 11.4. View the Details of a Certificate

In the Details tab, highlight the Certificate Authority fields.

Figure 11.5. Exporting the CA Certificate

Click Export. Save the CA certificate, for example as the CertificateAuthority.crt file,
then click Close, and Cancel.

Red Hat Enterprise Linux 9 Managing certificates in IdM

102

b. Import the IdM CA certificate to Firefox as a trusted certificate authority certificate:

Open Firefox, navigate to Preferences and click Privacy & Security.

Figure 11.6. Privacy and Security section in Preferences

Click View Certificates.

Figure 11.7. View Certificates in Privacy and Security

In the Authorities tab, click Import. Locate and open the CA certificate that you saved
in the previous step in the CertificateAuthority.crt file. Trust the certificate to identify
websites, then click OK and OK.

5. Continue to Authenticating to the Identity Management Web UI with a Certificate as an Identity
Management User.

11.5. AUTHENTICATING TO THE IDENTITY MANAGEMENT WEB UI WITH
A CERTIFICATE AS AN IDENTITY MANAGEMENT USER

Follow this procedure to authenticate as a user to the Identity Management (IdM) web UI using a
certificate stored on the desktop of an Identity Management client.

Procedure

1. In the browser, navigate to the Identity Management web UI at, for example,
https://server.idm.example.com/ipa/ui.

2. Click Login Using Certificate.

Figure 11.8. Login Using Certificate in the Identity Management web UI

CHAPTER 11. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

103

Figure 11.8. Login Using Certificate in the Identity Management web UI

3. The user’s certificate should already be selected. Uncheck Remember this decision, then click
OK.

You are now authenticated as the user who corresponds to the certificate.

Additional resources

See Configuring Identity Management for smart card authentication .

11.6. CONFIGURING AN IDM CLIENT TO ENABLE AUTHENTICATING TO
THE CLI USING A CERTIFICATE

To make certificate authentication work for an IdM user in the Command Line Interface (CLI) of your
IdM client, import the IdM user’s certificate and the private key to the IdM client. For details on creating
and transferring the user certificate, see Requesting a new user certificate and exporting it to the client .

Procedure

Log into the IdM client and have the .p12 file containing the user’s certificate and the private key
ready. To obtain and cache the Kerberos ticket granting ticket (TGT), run the kinit command
with the user’s principal, using the -X option with the X509_username:/path/to/file.p12
attribute to specify where to find the user’s X509 identity information. For example, to obtain
the TGT for idm_user using the user’s identity information stored in the ~/idm_user.p12 file:

$ kinit -X X509_idm_user='PKCS12:~/idm_user.p12' idm_user

NOTE

The command also supports the .pem file format: kinit -X
X509_username='FILE:/path/to/cert.pem,/path/to/key' user_principal

Red Hat Enterprise Linux 9 Managing certificates in IdM

104

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication

CHAPTER 12. USING IDM CA RENEWAL SERVER

12.1. EXPLANATION OF IDM CA RENEWAL SERVER

In an Identity Management (IdM) deployment that uses an embedded certificate authority (CA), the CA
renewal server maintains and renews IdM system certificates. It ensures robust IdM deployments.

IdM system certificates include:

IdM CA certificate

OCSP signing certificate

IdM CA subsystem certificates

IdM CA audit signing certificate

IdM renewal agent (RA) certificate

KRA transport and storage certificates

What characterizes system certificates is that their keys are shared by all CA replicas. In contrast, the
IdM service certificates (for example, LDAP, HTTP and PKINIT certificates), have different keypairs and
subject names on different IdM CA servers.

In IdM topology, by default, the first IdM CA server is the CA renewal server.

NOTE

In upstream documentation, the IdM CA is called Dogtag.

The role of the CA renewal server

The IdM CA, IdM CA subsystem, and IdM RA certificates are crucial for IdM deployment. Each
certificate is stored in an NSS database in the /etc/pki/pki-tomcat/ directory and also as an LDAP
database entry. The certificate stored in LDAP must match the certificate stored in the NSS database. If
they do not match, authentication failures occur between the IdM framework and IdM CA, and between
IdM CA and LDAP.

All IdM CA replicas have tracking requests for every system certificate. If an IdM deployment with
integrated CA does not contain a CA renewal server, each IdM CA server requests the renewal of system
certificates independently. This results in different CA replicas having various system certificates and
authentication failures occurring.

Appointing one CA replica as the renewal server allows the system certificates to be renewed exactly
once, when required, and thus prevents authentication failures.

The role of the certmonger service on CA replicas

The certmonger service running on all IdM CA replicas uses the dogtag-ipa-ca-renew-agent renewal
helper to keep track of IdM system certificates. The renewal helper program reads the CA renewal
server configuration. On each CA replica that is not the CA renewal server, the renewal helper retrieves
the latest system certificates from the ca_renewal LDAP entries. Due to non-determinism in when
exactly certmonger renewal attempts occur, the dogtag-ipa-ca-renew-agent helper sometimes
attempts to update a system certificate before the CA renewal server has actually renewed the
certificate. If this happens, the old, soon-to-expire certificate is returned to the certmonger service on

CHAPTER 12. USING IDM CA RENEWAL SERVER

105

the CA replica. The certmonger service, realizing it is the same certificate that is already stored in its
database, keeps attempting to renew the certificate with some delay between individual attempts until
it can retrieve the updated certificate from the CA renewal server.

The correct functioning of IdM CA renewal server

An IdM deployment with an embedded CA is an IdM deployment that was installed with an IdM CA - or
whose IdM CA server was installed later. An IdM deployment with an embedded CA must at all times
have exactly one CA replica configured as the renewal server. The renewal server must be online and
fully functional, and must replicate properly with the other servers.

If the current CA renewal server is being deleted using the ipa server-del, ipa-replica-manage del, ipa-
csreplica-manage del or ipa-server-install --uninstall commands, another CA replica is automatically
assigned as the CA renewal server. This policy ensures that the renewal server configuration remains
valid.

This policy does not cover the following situations:

Offline renewal server
If the renewal server is offline for an extended duration, it may miss a renewal window. In this
situation, all nonrenewal CA servers keep reinstalling the current system certificates until the
certificates expire. When this occurs, the IdM deployment is disrupted because even one expired
certificate can cause renewal failures for other certificates.

Replication problems
If replication problems exist between the renewal server and other CA replicas, renewal might
succeed, but the other CA replicas might not be able to retrieve the updated certificates before
they expire.

To prevent this situation, make sure that your replication agreements are working correctly. For
details, see general or specific replication troubleshooting guidelines in the RHEL 7 Linux
Domain Identity, Authentication, and Policy Guide.

12.2. CHANGING AND RESETTING IDM CA RENEWAL SERVER

When a certificate authority (CA) renewal server is being decommissioned, Identity Management (IdM)
automatically selects a new CA renewal server from the list of IdM CA servers. The system administrator
cannot influence the selection.

To be able to select the new IdM CA renewal server, the system administrator must perform the
replacement manually. Choose the new CA renewal server before starting the process of
decommissioning the current renewal server.

If the current CA renewal server configuration is invalid, reset the IdM CA renewal server.

Complete this procedure to change or reset the CA renewal server.

Prerequisites

You have the IdM administrator credentials.

Procedure

1. Obtain the IdM administrator credentials:

Red Hat Enterprise Linux 9 Managing certificates in IdM

106

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/trouble-gen-replication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/trouble-replica

~]$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

2. Optionally, to find out which IdM servers in the deployment have the CA role necessary to be
eligible to become the new CA renewal server:

~]$ ipa server-role-find --role 'CA server'

2 server roles matched

 Server name: server.idm.example.com
 Role name: CA server
 Role status: enabled

 Server name: replica.idm.example.com
 Role name: CA server
 Role status: enabled

Number of entries returned 2

There are two CA servers in the deployment.

3. Optionally, to find out which CA server is the current CA renewal server, enter:

~]$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: server.idm.example.com

The current renewal server is server.idm.example.com.

4. To change the renewal server configuration, use the ipa config-mod utility with the --ca-
renewal-master-server option:

~]$ ipa config-mod --ca-renewal-master-server replica.idm.example.com | grep 'CA
renewal'
 IPA CA renewal master: replica.idm.example.com

IMPORTANT

You can also switch to a new CA renewal server using:

the ipa-cacert-manage --renew command. This command both renews the
CA certificate and makes the CA server on which you execute the command
the new CA renewal server.

the ipa-cert-fix command. This command recovers the deployment when
expired certificates are causing failures. It also makes the CA server on which
you execute the command the new CA renewal server.
For details, see Renewing expired system certificates when IdM is offline .

12.3. SWITCHING FROM AN EXTERNALLY TO SELF-SIGNED CA IN IDM

Complete this procedure to switch from an externally-signed to a self-signed certificate of the Identity
Management (IdM) certificate authority (CA). With a self-signed CA, the renewal of the CA certificate is

CHAPTER 12. USING IDM CA RENEWAL SERVER

107

managed automatically: a system administrator does not need to submit a certificate signing request
(CSR) to an external authority.

Switching from an externally-signed to a self-signed CA replaces only the CA certificate. The
certificates signed by the previous CA are still valid and still in use. For example, the certificate chain for
the LDAP certificate remains unchanged even after you have moved to a self-signed CA:

external_CA certificate > IdM CA certificate > LDAP certificate

Prerequisites

You have root access to the IdM CA renewal server and all IdM clients and servers.

Procedure

1. On the IdM CA renewal server, renew the CA certificate as self-signed:

ipa-cacert-manage renew --self-signed
Renewing CA certificate, please wait
CA certificate successfully renewed
The ipa-cacert-manage command was successful

2. SSH to all the remaining IdM servers and clients as root. For example:

ssh root@idmclient01.idm.example.com

3. On the IdM client, update the local IdM certificate databases with the certificates from the
server:

[idmclient01 ~]# ipa-certupdate
Systemwide CA database updated.
Systemwide CA database updated.
The ipa-certupdate command was successful

4. Optionally, to check if your update has been successful and the new CA certificate has been
added to the /etc/ipa/ca.crt file:

[idmclient01 ~]$ openssl crl2pkcs7 -nocrl -certfile /etc/ipa/ca.crt | openssl pkcs7 -
print_certs -text -noout
[...]
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 39 (0x27)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O=IDM.EXAMPLE.COM, CN=Certificate Authority
 Validity
 Not Before: Jul 1 16:32:45 2019 GMT
 Not After : Jul 1 16:32:45 2039 GMT
 Subject: O=IDM.EXAMPLE.COM, CN=Certificate Authority
[...]

The output shows that the update has been successful as the new CA certificate is listed with
the older CA certificates.

Red Hat Enterprise Linux 9 Managing certificates in IdM

108

12.4. RENEWING THE IDM CA RENEWAL SERVER CERTIFICATE USING
AN EXTERNAL CA

Follow this procedure to renew the Identity Management (IdM) certificate authority (CA) certificate
using an external CA to sign the certificate signing request (CSR). In this configuration, your IdM CA
server is a subCA of the external CA. The external CA can, but does not have to, be an Active Directory
Certificate Server (AD CS).

If the external certificate authority is AD CS, you can specify the template you want for the IdM CA
certificate in the CSR. A certificate template defines the policies and rules that a CA uses when a
certificate request is received. Certificate templates in AD correspond to certificate profiles in IdM.

You can define a specific AD CS template by its Object Identifier (OID). OIDs are unique numeric values
issued by various issuing authorities to uniquely identify data elements, syntaxes, and other parts of
distributed applications.

Alternatively, you can define a specific AD CS template by its name. For example, the name of the
default profile used in a CSR submitted by an IdM CA to an AD CS is subCA.

To define a profile by specifying its OID or name in the CSR, use the external-ca-profile option. For
details, see the ipa-cacert-manage man page.

Apart from using a ready-made certificate template, you can also create a custom certificate template in
the AD CS, and use it in the CSR.

Prerequisites

You have root access to the IdM CA renewal server.

Procedure

Complete this procedure to renew the certificate of the IdM CA with external signing, regardless of
whether current CA certificate is self-signed or externally-signed.

1. Create a CSR to be submitted to the external CA:

If the external CA is an AD CS, use the --external-ca-type=ms-cs option. If you want a
different template than the default subCA template, specify it using the --external-ca-
profile option:

~]# ipa-cacert-manage renew --external-ca --external-ca-type=ms-cs [--external-ca-
profile=PROFILE]
Exporting CA certificate signing request, please wait
The next step is to get /var/lib/ipa/ca.csr signed by your CA and re-run ipa-cacert-manage
as:
ipa-cacert-manage renew --external-cert-file=/path/to/signed_certificate --external-cert-
file=/path/to/external_ca_certificate
The ipa-cacert-manage command was successful

If the external CA is not an AD CS:

~]# ipa-cacert-manage renew --external-ca
Exporting CA certificate signing request, please wait
The next step is to get /var/lib/ipa/ca.csr signed by your CA and re-run ipa-cacert-manage
as:

CHAPTER 12. USING IDM CA RENEWAL SERVER

109

ipa-cacert-manage renew --external-cert-file=/path/to/signed_certificate --external-cert-
file=/path/to/external_ca_certificate
The ipa-cacert-manage command was successful

The output shows that a CSR has been created and is stored in the /var/lib/ipa/ca.csr file.

2. Submit the CSR located in /var/lib/ipa/ca.csr to the external CA. The process differs depending
on the service to be used as the external CA.

3. Retrieve the issued certificate and the CA certificate chain for the issuing CA in a base 64-
encoded blob, which is:

a PEM file if the external CA is not an AD CS.

a Base_64 certificate if the external CA is an AD CS.
The process differs for every certificate service. Usually, a download link on a web page or in
the notification email allows the administrator to download all the required certificates.

If the external CA is an AD CS and you have submitted the CSR with a known template
through the Microsoft Windows Certification Authority management window, the AD CS
issues the certificate immediately and the Save Certificate dialog appears in the AD CS web
interface, asking where to save the issued certificate.

4. Run the ipa-cacert-manage renew command again, adding all the CA certificate files required
to supply a full certificate chain. Specify as many files as you need, using the --external-cert-file
option multiple times:

~]# ipa-cacert-manage renew --external-cert-file=/path/to/signed_certificate --external-
cert-file=/path/to/external_ca_certificate_1 --external-cert-
file=/path/to/external_ca_certificate_2

5. On all the IdM servers and clients, update the local IdM certificate databases with the
certificates from the server:

[client ~]$ ipa-certupdate
Systemwide CA database updated.
Systemwide CA database updated.
The ipa-certupdate command was successful

6. Optionally, to check if your update has been successful and the new CA certificate has been
added to the /etc/ipa/ca.crt file:

[client ~]$ openssl crl2pkcs7 -nocrl -certfile /etc/ipa/ca.crt | openssl pkcs7 -print_certs -
text -noout
[...]
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 39 (0x27)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O=IDM.EXAMPLE.COM, CN=Certificate Authority
 Validity
 Not Before: Jul 1 16:32:45 2019 GMT
 Not After : Jul 1 16:32:45 2039 GMT
 Subject: O=IDM.EXAMPLE.COM, CN=Certificate Authority
[...]

Red Hat Enterprise Linux 9 Managing certificates in IdM

110

The output shows that the update has been successful as the new CA certificate is listed with
the older CA certificates.

CHAPTER 12. USING IDM CA RENEWAL SERVER

111

CHAPTER 13. RENEWING EXPIRED SYSTEM CERTIFICATES
WHEN IDM IS OFFLINE

If a system certificate has expired, Identity Management (IdM) fails to start. IdM supports renewing
system certificates even in this situation by using the ipa-cert-fix tool.

Ensure that the LDAP service is running by entering the ipactl start --ignore-service-failures
command on the host.

13.1. RENEWING EXPIRED SYSTEM CERTIFICATES ON A CA RENEWAL
SERVER

Follow this procedure to apply the ipa-cert-fix tool on expired IdM certificates.

IMPORTANT

If you run the ipa-cert-fix tool on a CA (Certificate Authority) host that is not the CA
renewal server, and the utility renews shared certificates, that host automatically
becomes the new CA renewal server in the domain. There must always be only one CA
renewal server in the domain to avoid inconsistencies.

Prerequisites

Log in to the server with administration rights

Procedure

1. (Optional) Backup the system. This is heavily recommended, as ipa-cert-fix makes irreversible
changes to nssdbs. Because ipa-cert-fix also makes changes to the LDAP, it is recommended
to backup the entire cluster as well.

2. Start the ipa-cert-fix tool to analyze the system and list expired certificates that require
renewal:

ipa-cert-fix
...
The following certificates will be renewed:

Dogtag sslserver certificate:
 Subject: CN=ca1.example.com,O=EXAMPLE.COM 201905222205
 Serial: 13
 Expires: 2019-05-12 05:55:47
...
Enter "yes" to proceed:

3. Enter yes to start the renewal process:

Enter "yes" to proceed: yes
Proceeding.
Renewed Dogtag sslserver certificate:
 Subject: CN=ca1.example.com,O=EXAMPLE.COM 201905222205
 Serial: 268369925
 Expires: 2021-08-14 02:19:33

Red Hat Enterprise Linux 9 Managing certificates in IdM

112

...

Becoming renewal master.
The ipa-cert-fix command was successful

It can take up to one minute before ipa-cert-fix renews all expired certificates.

4. Optionally, verify that all services are now running:

ipactl status
Directory Service: RUNNING
krb5kdc Service: RUNNING
kadmin Service: RUNNING
httpd Service: RUNNING
ipa-custodia Service: RUNNING
pki-tomcatd Service: RUNNING
ipa-otpd Service: RUNNING
ipa: INFO: The ipactl command was successful

At this point, certificates have been renewed and services are running. The next step is to check other
servers in the IdM domain.

NOTE

If you need to repair certificates across multiple CA servers:

1. After ensuring that LDAP replication is working across the topology, first run ipa-
cert-fix on one CA server, according to the above procedure.

2. Before you run ipa-cert-fix on another CA server, trigger Certmonger renewals
for shared certificates via getcert-resubmit (on the other CA server), to avoid
unnecessary renewal of shared certificates.

13.2. VERIFYING OTHER IDM SERVERS IN THE IDM DOMAIN AFTER
RENEWAL

After the renewing the CA renewal server’s certificates with the ipa-cert-fix tool, you must:

Restart all other Identity Management (IdM) servers in the domain.

Check if certmonger renewed certificates.

If there are other Certificate Authority (CA) replicas with expired system certificates, renew
those certificates with the ipa-cert-fix tool as well.

Prerequisites

Log in to the server with administration rights.

Procedure

1. Restart IdM with the --force parameter:

ipactl restart --force

CHAPTER 13. RENEWING EXPIRED SYSTEM CERTIFICATES WHEN IDM IS OFFLINE

113

With the --force parameter, the ipactl utility ignores individual service startup failures. For
example, if the server is also a CA with expired certificates, the pki-tomcat service fails to start.
This is expected and ignored because of using the --force parameter.

2. After the restart, verify that the certmonger service renewed the certificates (certificate status
says MONITORING):

getcert list | egrep '^Request|status:|subject:'
Request ID '20190522120745':
 status: MONITORING
 subject: CN=IPA RA,O=EXAMPLE.COM 201905222205
Request ID '20190522120834':
 status: MONITORING
 subject: CN=Certificate Authority,O=EXAMPLE.COM 201905222205
...

It can take some time before certmonger renews the shared certificates on the replica.

3. If the server is also a CA, the previous command reports CA_UNREACHABLE for the
certificate the pki-tomcat service uses:

Request ID '20190522120835':
 status: CA_UNREACHABLE
 subject: CN=ca2.example.com,O=EXAMPLE.COM 201905222205
...

4. To renew this certificate, use the ipa-cert-fix utility:

ipa-cert-fix
Dogtag sslserver certificate:
 Subject: CN=ca2.example.com,O=EXAMPLE.COM
 Serial: 3
 Expires: 2019-05-11 12:07:11

Enter "yes" to proceed: yes
Proceeding.
Renewed Dogtag sslserver certificate:
 Subject: CN=ca2.example.com,O=EXAMPLE.COM 201905222205
 Serial: 15
 Expires: 2019-08-14 04:25:05

The ipa-cert-fix command was successful

Now, all IdM certificates have been renewed and work correctly.

Red Hat Enterprise Linux 9 Managing certificates in IdM

114

CHAPTER 14. REPLACING THE WEB SERVER AND LDAP
SERVER CERTIFICATES IF THEY HAVE NOT YET EXPIRED ON

AN IDM REPLICA
As an Identity Management (IdM) system administrator, you can manually replace the certificates for
the web (or httpd) and LDAP (or Directory) services running on an IdM server. For example, this might
be necessary if the certificates are nearing expiration and if the certmonger utility is either not
configured to renew the certificates automatically or if the certificates are signed by an external
certificate authority (CA).

The example installs the certificates for the services running on the server.idm.example.com IdM
server. You obtain the certificates from an external CA.

NOTE

The HTTP and LDAP service certificates have different keypairs and subject names on
different IdM servers and so you must renew the certificates on each IdM server
individually.

Prerequisites

On at least one other IdM replica in the topology with which the IdM server has a replication
agreement, the web and LDAP certificates are still valid. This is a prerequisite for the ipa-
server-certinstall command. The command requires a TLS connection to communicate with
other IdM replicas. However, with invalid certificates, such a connection could not be
established, and the ipa-server-certinstall command would fail. In that case, see Replacing the
web server and LDAP server certificates if they have expired in the whole IdM deployment.

You have root access to the IdM server.

You know the Directory Manager password.

You have access to a file storing the CA certificate chain of the external CA,
ca_certificate_chain_file.crt.

Procedure

1. Install the certificates contained in ca_certificate_chain_file.crt as additional CA certificates to
IdM:

ipa-cacert-manage install

2. Update the local IdM certificate databases with certificates from ca_certicate_chain_file.crt:

ipa-certupdate

3. Generate a private key and a certificate signing request (CSR) using the OpenSSL utility:

$ openssl req -new -newkey rsa:4096 -days 365 -nodes -keyout new.key -out new.csr -
addext "subjectAltName = DNS:server.idm.example.com" -subj
'/CN=server.idm.example.com,O=IDM.EXAMPLE.COM'

Submit the CSR to the external CA. The process differs depending on the service to be used as

CHAPTER 14. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE NOT YET EXPIRED ON AN IDM REPLICA

115

Submit the CSR to the external CA. The process differs depending on the service to be used as
the external CA. After the CA signs the certificate, import the certificate to the IdM server.

4. On the IdM server, replace the Apache web server’s old private key and certificate with the new
key and the newly-signed certificate:

ipa-server-certinstall -w --pin=password new.key new.crt

In the command above:

The -w option specifies that you are installing a certificate into the web server.

The --pin option specifies the password protecting the private key.

5. When prompted, enter the Directory Manager password.

6. Replace the LDAP server’s old private key and certificate with the new key and the newly-
signed certificate:

ipa-server-certinstall -d --pin=password new.key new.cert

In the command above:

The -d option specifies that you are installing a certificate into the LDAP server.

The --pin option specifies the password protecting the private key.

7. When prompted, enter the Directory Manager password.

8. Restart the httpd service:

systemctl restart httpd.service

9. Restart the Directory service:

systemctl restart dirsrv@IDM.EXAMPLE.COM.service

10. If a subCA has been removed or replaced on the servers, update the clients:

ipa-certupdate

Additional resources

Converting certificate formats to work with IdM

The ipa-server-certinstall(1) man page

Red Hat Enterprise Linux 9 Managing certificates in IdM

116

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/convert-cert-formats-idm_managing-certificates-in-idm

CHAPTER 15. REPLACING THE WEB SERVER AND LDAP
SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE

WHOLE IDM DEPLOYMENT
Identity Management (IdM) uses the following service certificates:

The LDAP (or Directory) server certificate

The web (or httpd) server certificate

The PKINIT certificate

In an IdM deployment without a CA, certmonger does not by default track IdM service certificates or
notify of their expiration. If the IdM system administrator does not manually set up notifications for
these certificates, or configure certmonger to track them, the certificates will expire without notice.

Follow this procedure to manually replace expired certificates for the httpd and LDAP services running
on the server.idm.example.com IdM server.

NOTE

The HTTP and LDAP service certificates have different keypairs and subject names on
different IdM servers. Therefore, you must renew the certificates on each IdM server
individually.

Prerequisites

The HTTP and LDAP certificates have expired on all IdM replicas in the topology. If not, see
Replacing the web server and LDAP server certificates if they have not yet expired on an IdM
replica.

You have root access to the IdM server and replicas.

You know the Directory Manager password.

You have created backups of the following directories and files:

/etc/dirsrv/slapd-IDM-EXAMPLE-COM/

/etc/httpd/alias

/var/lib/certmonger

/var/lib/ipa/certs/

Procedure

1. If you are not using the same CA to sign the new certificates or if the already
installed CA certificate is no longer valid, update the information about the external CA in your
local database with a file that contains a valid CA certificate chain of the external CA. The file is
accepted in PEM and DER certificate, PKCS#7 certificate chain, PKCS#8 and raw private key
and PKCS#12 formats.

a. Install the certificates available in ca_certificate_chain_file.crt as additional CA certificates
into IdM:

CHAPTER 15. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE WHOLE IDM DEPLOYMENT

117

ipa-cacert-manage install ca_certificate_chain_file.crt

b. Update the local IdM certificate databases with certificates from ca_certicate_chain_file.crt:

ipa-certupdate

2. Request the certificates for httpd and LDAP:

a. Create a certificate signing request (CSR) for the Apache web server running on your IdM
instances to your third party CA using the OpenSSL utility:

$ openssl req -new -newkey rsa:2048 -nodes -keyout /var/lib/ipa/private/httpd.key -
out /tmp/http.csr -addext 'subjectAltName = DNS:server.idm.example.com,
otherName:1.3.6.1.4.1.311.20.2.3;UTF8:HTTP/server.idm.example.com@IDM.EXAM
PLE.COM' -subj '/O=IDM.EXAMPLE.COM/CN=server.idm.example.com'

The creation of a new private key is optional. If you still have the original private key, you can
use the -in option with the openssl req command to specify the input file name to read the
request from.

b. Create a certificate signing request (CSR) for the LDAP server running on your IdM
instances to your third party CA using the OpenSSL utility:

$ openssl req -new -newkey rsa:2048 -nodes -keyout ~/ldap.key -out /tmp/ldap.csr -
addext 'subjectAltName = DNS:server.idm.example.com,
otherName:1.3.6.1.4.1.311.20.2.3;UTF8:ldap/server.idm.example.com@IDM.EXAMP
LE.COM' -subj '/O=IDM.EXAMPLE.COM/CN=server.idm.example.com'

The creation of a new private key is optional. If you still have the original private key, you can
use the -in option with the openssl req command to specify the input file name to read the
request from.

c. Submit the CSRs, /tmp/http.csr and tmp/ldap.csr, to the external CA, and obtain a
certificate for httpd and a certificate for LDAP. The process differs depending on the
service to be used as the external CA.

3. Install the certificate for httpd :

cp /path/to/httpd.crt /var/lib/ipa/certs/

4. Install the LDAP certificate into an NSS database:

a. [Optional] List the available certificates:

certutil -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/ -L
Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

Server-Cert u,u,u

The default certificate nickname is Server-Cert, but it is possible that a different name was
applied.

b. Remove the old invalid certificate from the NSS database (NSSDB) by using the certificate
nickname from the previous step:

Red Hat Enterprise Linux 9 Managing certificates in IdM

118

certutil -D -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/ -n 'Server-Cert' -f
/etc/dirsrv/slapd-IDM-EXAMPLE-COM/pwdfile.txt

c. Create a PKCS12 file to ease the import process into NSSDB:

openssl pkcs12 -export -in ldap.crt -inkey ldap.key -out ldap.p12 -name Server-
Cert

d. Install the created PKCS#12 file into the NSSDB:

pk12util -i ldap.p12 -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/ -k
/etc/dirsrv/slapd-IDM-EXAMPLE-COM/pwdfile.txt

e. Check that the new certificate has been successfully imported:

certutil -L -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/

5. Restart the httpd service:

systemctl restart httpd.service

6. Restart the Directory service:

systemctl restart dirsrv@IDM-EXAMPLE-COM.service

7. Perform all the previous steps on all your IdM replicas. This is a prerequisite for establishing TLS
connections between the replicas.

8. Enroll the new certificates to LDAP storage:

a. Replace the Apache web server’s old private key and certificate with the new key and the
newly-signed certificate:

ipa-server-certinstall -w --pin=password /var/lib/ipa/private/httpd.key
/var/lib/ipa/certs/httpd.crt

In the command above:

The -w option specifies that you are installing a certificate into the web server.

The --pin option specifies the password protecting the private key.

b. When prompted, enter the Directory Manager password.

c. Replace the LDAP server’s old private key and certificate with the new key and the newly-
signed certificate:

ipa-server-certinstall -d --pin=password /etc/dirsrv/slapd-IDM-EXAMPLE-
COM/ldap.key /path/to/ldap.crt

In the command above:

The -d option specifies that you are installing a certificate into the LDAP server.

CHAPTER 15. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE WHOLE IDM DEPLOYMENT

119

The --pin option specifies the password protecting the private key.

d. When prompted, enter the Directory Manager password.

e. Restart the httpd service:

systemctl restart httpd.service

f. Restart the Directory service:

systemctl restart dirsrv@IDM-EXAMPLE-COM.service

9. Execute the commands from the previous step on all the other affected replicas.

Additional resources

Converting certificate formats to work with IdM

man ipa-server-certinstall(1)

How do I manually renew Identity Management (IPA) certificates on RHEL 8 after they have
expired? (CA-less IPA)

Red Hat Enterprise Linux 9 Managing certificates in IdM

120

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/convert-cert-formats-idm_managing-certificates-in-idm
https://access.redhat.com/solutions/6765131

CHAPTER 16. GENERATING CRL ON THE IDM CA SERVER
If your IdM deployment uses an embedded certificate authority (CA), you may need to move generating
the Certificate Revocation List (CRL) from one Identity Management (IdM) server to another. It can be
necessary, for example, when you want to migrate the server to another system.

Only configure one server to generate the CRL. The IdM server that performs the CRL publisher role is
usually the same server that performs the CA renewal server role, but this is not mandatory. Before you
decommission the CRL publisher server, select and configure another server to perform the CRL
publisher server role.

16.1. STOPPING CRL GENERATION ON AN IDM SERVER

To stop generating the Certificate Revocation List (CRL) on the IdM CRL publisher server, use the ipa-
crlgen-manage command. Before you disable the generation, verify that the server really generates
CRL. You can then disable it.

Prerequisites

You must be logged in as root.

Procedure

1. Check if your server is generating the CRL:

[root@server ~]# ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:00:00
Last CRL Number: 6
The ipa-crlgen-manage command was successful

2. Stop generating the CRL on the server:

[root@server ~]# ipa-crlgen-manage disable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd
Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
CRL generation disabled on the local host. Please make sure to configure CRL generation on
another master with ipa-crlgen-manage enable.
The ipa-crlgen-manage command was successful

3. Check if the server stopped generating CRL:

[root@server ~]# ipa-crlgen-manage status

The server stopped generating the CRL. The next step is to enable CRL generation on the IdM replica.

16.2. STARTING CRL GENERATION ON AN IDM REPLICA SERVER

You can start generating the Certificate Revocation List (CRL) on an IdM CA server with the ipa-
crlgen-manage command.

CHAPTER 16. GENERATING CRL ON THE IDM CA SERVER

121

Prerequisites

The RHEL system must be an IdM Certificate Authority server.

You must be logged in as root.

Procedure

1. Start generating the CRL:

[root@replica1 ~]# ipa-crlgen-manage enable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd
Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
Forcing CRL update
CRL generation enabled on the local host. Please make sure to have only a single CRL
generation master.
The ipa-crlgen-manage command was successful

2. Check if the CRL is generated:

[root@replica1 ~]# ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:10:00
Last CRL Number: 7
The ipa-crlgen-manage command was successful

Red Hat Enterprise Linux 9 Managing certificates in IdM

122

CHAPTER 17. DECOMMISSIONING A SERVER THAT
PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER

ROLES
You might have one server performing both the Certificate Authority (CA) renewal server role and the
Certificate Revocation List (CRL) publisher role. If you need to take this server offline or decommission
it, select and configure another CA server to perform these roles.

In this example, the host server.idm.example.com, which fulfills the CA renewal server and CRL
publisher roles, must be decommissioned. This procedure transfers the CA renewal server and CRL
publisher roles to the host replica.idm.example.com and removes server.idm.example.com from the
IdM environment.

NOTE

You do not need to configure the same server to perform both CA renewal server and
CRL publisher roles.

Prerequisites

You have the IdM administrator credentials.

You have the root password for the server you are decommissioning.

You have at least two CA replicas in your IdM environment.

Procedure

1. Obtain the IdM administrator credentials:

[user@server ~]$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

2. (Optional) If you are not sure which servers perform the CA renewal server and CRL publisher
roles:

a. Display the current CA renewal server. You can run the following command from any IdM
server:

[user@server ~]$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: server.idm.example.com

b. Test if a host is the current CRL publisher.

[user@server ~]$ ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:00:00
Last CRL Number: 6
The ipa-crlgen-manage command was successful

A CA server that does not generate the CRL displays CRL generation: disabled.

CHAPTER 17. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER ROLES

123

[user@replica ~]$ ipa-crlgen-manage status
CRL generation: disabled
The ipa-crlgen-manage command was successful

Continue entering this command on CA servers until you find the CRL publisher server.

c. Display all other CA servers you can promote to fulfill these roles. This environment has two
CA servers.

[user@server ~]$ ipa server-role-find --role 'CA server'

2 server roles matched

 Server name: server.idm.example.com
 Role name: CA server
 Role status: enabled
 Server name: replica.idm.example.com
 Role name: CA server
 Role status: enabled

Number of entries returned 2

3. Set replica.idm.example.com as the CA renewal server.

[user@server ~]$ ipa config-mod --ca-renewal-master-server replica.idm.example.com

4. On server.idm.example.com:

a. Disable the certificate updater task:

[root@server ~]# pki-server ca-config-set ca.certStatusUpdateInterval 0

b. Restart IdM services:

[user@server ~]$ ipactl restart

5. On replica.idm.example.com:

a. Enable the certificate updater task:

[root@server ~]# pki-server ca-config-unset ca.certStatusUpdateInterval

b. Restart IdM services:

[user@replica ~]$ ipactl restart

6. On server.idm.example.com, stop generating the CRL.

[user@server ~]$ ipa-crlgen-manage disable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd

Red Hat Enterprise Linux 9 Managing certificates in IdM

124

Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
CRL generation disabled on the local host. Please make sure to configure CRL generation on
another master with ipa-crlgen-manage enable.
The ipa-crlgen-manage command was successful

7. On replica.idm.example.com, start generating the CRL.

[user@replica ~]$ ipa-crlgen-manage enable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd
Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
Forcing CRL update
CRL generation enabled on the local host. Please make sure to have only a single CRL
generation master.
The ipa-crlgen-manage command was successful

8. Stop IdM services on server.idm.example.com:

[user@server ~]$ ipactl stop

9. On replica.idm.example.com, delete server.idm.example.com from the IdM environment.

[user@replica ~]$ ipa server-del server.idm.example.com

10. On server.idm.example.com, use the ipa-server-install --uninstall command as the root
account:

[root@server ~]# ipa-server-install --uninstall
...
Are you sure you want to continue with the uninstall procedure? [no]: yes

Verification steps

Display the current CA renewal server.

[user@replica ~]$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: replica.idm.example.com

Confirm that the replica.idm.example.com host is generating the CRL.

[user@replica ~]$ ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:10:00
Last CRL Number: 7
The ipa-crlgen-manage command was successful

Additional resources

Changing and resetting IdM CA renewal server

CHAPTER 17. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER ROLES

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/ipa-ca-renewal_managing-certificates-in-idm#changing-ca-renewal_ipa-ca-renewal

Generating CRL on the IdM CA server

Uninstalling an IdM replica

Red Hat Enterprise Linux 9 Managing certificates in IdM

126

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/generating-crl-on-the-idm-ca-server_managing-certificates-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/uninstalling-an-idm-replica_installing-identity-management

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A
SERVICE USING CERTMONGER

18.1. CERTMONGER OVERVIEW

When Identity Management (IdM) is installed with an integrated IdM Certificate Authority (CA), it uses
the certmonger service to track and renew system and service certificates. When the certificate is
reaching its expiration date, certmonger manages the renewal process by:

regenerating a certificate-signing request (CSR) using the options provided in the original
request.

submitting the CSR to the IdM CA using the IdM API cert-request command.

receiving the certificate from the IdM CA.

executing a pre-save command if specified by the original request.

installing the new certificate in the location specified in the renewal request: either in an NSS
database or in a file.

executing a post-save command if specified by the original request. For example, the post-save
command can instruct certmonger to restart a relevant service, so that the service picks up the
new certificate.

Types of certificates certmonger tracks

Certificates can be divided into system and service certificates.

Unlike service certificates (for example, for HTTP, LDAP and PKINIT), which have different keypairs and
subject names on different servers, IdM system certificates and their keys are shared by all CA replicas.
The IdM system certificates include:

IdM CA certificate

OCSP signing certificate

IdM CA subsystem certificates

IdM CA audit signing certificate

IdM renewal agent (RA) certificate

KRA transport and storage certificates

The certmonger service tracks the IdM system and service certificates that were requested during the
installation of IdM environment with an integrated CA. Certmonger also tracks certificates that have
been requested manually by the system administrator for other services running on the IdM host.
Certmonger does not track external CA certificates or user certificates.

Certmonger components

The certmonger service consists of two main components:

The certmonger daemon, which is the engine tracking the list of certificates and launching
renewal commands

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

127

The getcert utility for the command-line interface (CLI), which allows the system
administrator to actively send commands to the certmonger daemon.

More specifically, the system administrator can use the getcert utility to:

Request a new certificate

View the list of certificates that certmonger tracks

Start or stop tracking a certificate

Renew a certificate

18.2. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING
CERTMONGER

To ensure that communication between browsers and the web service running on your Identity
Management (IdM) client is secure and encrypted, use a TLS certificate. Obtain the TLS certificate for
your web service from the IdM Certificate Authority (CA).

Follow this procedure to use certmonger to obtain an IdM certificate for a service
(HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM) running on an IdM client.

Using certmonger to request the certificate automatically means that certmonger manages and
renews the certificate when it is due for a renewal.

For a visual representation of what happens when certmonger requests a service certificate, see
Section 18.3, “Communication flow for certmonger requesting a service certificate” .

Prerequisites

The web server is enrolled as an IdM client.

You have root access to the IdM client on which you are running the procedure.

The service for which you are requesting a certificate does not have to pre-exist in IdM.

Procedure

1. On the my_company.idm.example.com IdM client on which the HTTP service is running,
request a certificate for the service corresponding to the
HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM principal, and specify that

The certificate is to be stored in the local /etc/pki/tls/certs/httpd.pem file

The private key is to be stored in the local /etc/pki/tls/private/httpd.key file

That an extensionRequest for a SubjectAltName be added to the signing request with the
DNS name of my_company.idm.example.com:

ipa-getcert request -K HTTP/my_company.idm.example.com -k
/etc/pki/tls/private/httpd.key -f /etc/pki/tls/certs/httpd.pem -g 2048 -D
my_company.idm.example.com -C "systemctl restart httpd"
New signing request "20190604065735" added.

In the command above:

Red Hat Enterprise Linux 9 Managing certificates in IdM

128

The ipa-getcert request command specifies that the certificate is to be obtained from
the IdM CA. The ipa-getcert request command is a shortcut for getcert request -c
IPA.

The -g option specifies the size of key to be generated if one is not already in place.

The -D option specifies the SubjectAltName DNS value to be added to the request.

The -C option instructs certmonger to restart the httpd service after obtaining the
certificate.

To specify that the certificate be issued with a particular profile, use the -T option.

To request a certificate using the named issuer from the specified CA, use the -X
ISSUER option.

2. Optionally, to check the status of your request:

ipa-getcert list -f /etc/pki/tls/certs/httpd.pem
Number of certificates and requests being tracked: 3.
Request ID '20190604065735':
 status: MONITORING
 stuck: no
 key pair storage: type=FILE,location='/etc/pki/tls/private/httpd.key'
 certificate: type=FILE,location='/etc/pki/tls/certs/httpd.crt'
 CA: IPA
[...]

The output shows that the request is in the MONITORING status, which means that a certificate
has been obtained. The locations of the key pair and the certificate are those requested.

18.3. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A
SERVICE CERTIFICATE

These diagrams show the stages of what happens when certmonger requests a service certificate from
Identity Management (IdM) certificate authority (CA) server. The sequence consists of these diagrams:

Unencrypted communication

Certmonger requesting a service certificate

IdM CA issuing the service certificate

Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration

Unencrypted communication shows the initial situation: without an HTTPS certificate, the
communication between the web server and the browser is unencrypted.

Figure 18.1. Unencrypted communication

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

129

Figure 18.1. Unencrypted communication

Certmonger requesting a service certificate shows the system administrator using certmonger to
manually request an HTTPS certificate for the Apache web server. Note that when requesting a web
server certificate, certmonger does not communicate directly with the CA. It proxies through IdM.

Figure 18.2. Certmonger requesting a service certificate

IdM CA issuing the service certificate shows an IdM CA issuing an HTTPS certificate for the web server.

Figure 18.3. IdM CA issuing the service certificate

Red Hat Enterprise Linux 9 Managing certificates in IdM

130

Figure 18.3. IdM CA issuing the service certificate

Certmonger applying the service certificate shows certmonger placing the HTTPS certificate in
appropriate locations on the IdM client and, if instructed to do so, restarting the httpd service. The
Apache server subsequently uses the HTTPS certificate to encrypt the traffic between itself and the
browser.

Figure 18.4. Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration shows certmonger

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

131

Certmonger requesting a new certificate when the old one is nearing expiration shows certmonger
automatically requesting a renewal of the service certificate from the IdM CA before the expiration of
the certificate. The IdM CA issues a new certificate.

Figure 18.5. Certmonger requesting a new certificate when the old one is nearing expiration

18.4. VIEWING THE DETAILS OF A CERTIFICATE REQUEST TRACKED
BY CERTMONGER

The certmonger service monitors certificate requests. When a request for a certificate is successfully
signed, it results in a certificate. Certmonger manages certificate requests including the resulting
certificates. Follow this procedure to view the details of a particular certificate request managed by
certmonger.

Procedure

If you know how to specify the certificate request, list the details of only that particular
certificate request. You can, for example, specify:

The request ID

The location of the certificate

The certificate nickname
For example, to view the details of the certificate whose request ID is 20190408143846,
using the -v option to view all the details of errors in case your request for a certificate was
unsuccessful:

getcert list -i 20190408143846 -v
Number of certificates and requests being tracked: 16.

Red Hat Enterprise Linux 9 Managing certificates in IdM

132

Request ID '20190408143846':
 status: MONITORING
 stuck: no
 key pair storage: type=NSSDB,location='/etc/dirsrv/slapd-IDM-EXAMPLE-
COM',nickname='Server-Cert',token='NSS Certificate DB',pinfile='/etc/dirsrv/slapd-IDM-
EXAMPLE-COM/pwdfile.txt'
 certificate: type=NSSDB,location='/etc/dirsrv/slapd-IDM-EXAMPLE-
COM',nickname='Server-Cert',token='NSS Certificate DB'
 CA: IPA
 issuer: CN=Certificate Authority,O=IDM.EXAMPLE.COM
 subject: CN=r8server.idm.example.com,O=IDM.EXAMPLE.COM
 expires: 2021-04-08 16:38:47 CEST
 dns: r8server.idm.example.com
 principal name: ldap/server.idm.example.com@IDM.EXAMPLE.COM
 key usage: digitalSignature,nonRepudiation,keyEncipherment,dataEncipherment
 eku: id-kp-serverAuth,id-kp-clientAuth
 pre-save command:
 post-save command: /usr/libexec/ipa/certmonger/restart_dirsrv IDM-EXAMPLE-COM
 track: yes
 auto-renew: yes

The output displays several pieces of information about the certificate, for example:

the certificate location; in the example above, it is the NSS database in the
/etc/dirsrv/slapd-IDM-EXAMPLE-COM directory

the certificate nickname; in the example above, it is Server-Cert

the file storing the pin; in the example above, it is /etc/dirsrv/slapd-IDM-EXAMPLE-
COM/pwdfile.txt

the Certificate Authority (CA) that will be used to renew the certificate; in the example
above, it is the IPA CA

the expiration date; in the example above, it is 2021-04-08 16:38:47 CEST

the status of the certificate; in the example above, the MONITORING status means that the
certificate is valid and it is being tracked

the post-save command; in the example above, it is the restart of the LDAP service

If you do not know how to specify the certificate request, list the details of all the certificates
that certmonger is monitoring or attempting to obtain:

getcert list

Additional resources

See the getcert list man page.

18.5. STARTING AND STOPPING CERTIFICATE TRACKING

Follow this procedure to use the getcert stop-tracking and getcert start-tracking commands to
monitor certificates. The two commands are provided by the certmonger service. Enabling certificate
tracking is especially useful if you have imported a certificate issued by the Identity Management (IdM)

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

133

certificate authority (CA) onto the machine from a different IdM client. Enabling certificate tracking can
also be the final step of the following provisioning scenario:

1. On the IdM server, you create a certificate for a system that does not exist yet.

2. You create the new system.

3. You enroll the new system as an IdM client.

4. You import the certificate and the key from the IdM server on to the IdM client.

5. You start tracking the certificate using certmonger to ensure that it gets renewed when it is due
to expire.

Procedure

To disable the monitoring of a certificate with the Request ID of 20190408143846:

getcert stop-tracking -i 20190408143846

For more options, see the getcert stop-tracking man page.

To enable the monitoring of a certificate stored in the /tmp/some_cert.crt file, whose private
key is stored in the /tmp/some_key.key file:

getcert start-tracking -c IPA -f /tmp/some_cert.crt -k /tmp/some_key.key

Certmonger cannot automatically identify the CA type that issued the certificate. For this
reason, add the -c option with the IPA value to the getcert start-tracking command if the
certificate was issued by the IdM CA. Omitting to add the -c option results in certmonger
entering the NEED_CA state.

For more options, see the getcert start-tracking man page.

NOTE

The two commands do not manipulate the certificate. For example, getcert stop-
tracking does not delete the certificate or remove it from the NSS database or from the
filesystem but simply removes the certificate from the list of monitored certificates.
Similarly, getcert start-tracking only adds a certificate to the list of monitored
certificates.

18.6. RENEWING A CERTIFICATE MANUALLY

When a certificate is near its expiration date, the certmonger daemon automatically issues a renewal
command using the certificate authority (CA) helper, obtains a renewed certificate and replaces the
previous certificate with the new one.

You can also manually renew a certificate in advance by using the getcert resubmit command. This way,
you can update the information the certificate contains, for example, by adding a Subject Alternative
Name (SAN).

Follow this procedure to renew a certificate manually.

Procedure

Red Hat Enterprise Linux 9 Managing certificates in IdM

134

To renew a certificate with the Request ID of 20190408143846:

getcert resubmit -i 20190408143846

To obtain the Request ID for a specific certificate, use the getcert list command. For details,
see the getcert list man page.

18.7. MAKING CERTMONGER RESUME TRACKING OF IDM
CERTIFICATES ON A CA REPLICA

This procedure shows how to make certmonger resume the tracking of Identity Management (IdM)
system certificates that are crucial for an IdM deployment with an integrated certificate authority after
the tracking of certificates was interrupted. The interruption may have been caused by the IdM host
being unenrolled from IdM during the renewal of the system certificates or by replication topology not
working properly. The procedure also shows how to make certmonger resume the tracking of the IdM
service certificates, namely the HTTP, LDAP and PKINIT certificates.

Prerequisites

The host on which you want to resume tracking system certificates is an IdM server that is also
an IdM certificate authority (CA) but not the IdM CA renewal server.

Procedure

1. Get the PIN for the subsystem CA certificates:

grep 'internal=' /var/lib/pki/pki-tomcat/conf/password.conf

2. Add tracking to the subsystem CA certificates, replacing [internal PIN] in the commands below
with the PIN obtained in the previous step:

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "caSigningCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"caSigningCert cert-pki-ca"' -T caCACert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "auditSigningCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"auditSigningCert cert-pki-ca"' -T caSignedLogCert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "ocspSigningCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"ocspSigningCert cert-pki-ca"' -T caOCSPCert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "subsystemCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"subsystemCert cert-pki-ca"' -T caSubsystemCert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "Server-Cert cert-pki-ca" -c

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

135

'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"Server-Cert cert-pki-ca"' -T caServerCert

3. Add tracking for the remaining IdM certificates, the HTTP, LDAP, IPA renewal agent and
PKINIT certificates:

getcert start-tracking -f /var/lib/ipa/certs/httpd.crt -k /var/lib/ipa/private/httpd.key -p
/var/lib/ipa/passwds/idm.example.com-443-RSA -c IPA -C
/usr/libexec/ipa/certmonger/restart_httpd -T caIPAserviceCert

getcert start-tracking -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM -n "Server-Cert" -c IPA
-p /etc/dirsrv/slapd-IDM-EXAMPLE-COM/pwdfile.txt -C
'/usr/libexec/ipa/certmonger/restart_dirsrv "IDM-EXAMPLE-COM"' -T caIPAserviceCert

getcert start-tracking -f /var/lib/ipa/ra-agent.pem -k /var/lib/ipa/ra-agent.key -c
dogtag-ipa-ca-renew-agent -B /usr/libexec/ipa/certmonger/renew_ra_cert_pre -C
/usr/libexec/ipa/certmonger/renew_ra_cert -T caSubsystemCert

getcert start-tracking -f /var/kerberos/krb5kdc/kdc.crt -k
/var/kerberos/krb5kdc/kdc.key -c dogtag-ipa-ca-renew-agent -B
/usr/libexec/ipa/certmonger/renew_ra_cert_pre -C
/usr/libexec/ipa/certmonger/renew_kdc_cert -T KDCs_PKINIT_Certs

4. Restart certmonger:

systemctl restart certmonger

5. Wait for one minute after certmonger has started and then check the statuses of the new
certificates:

getcert list

Additional resources

If your IdM system certificates have all expired, see this Knowledge Centered Support (KCS)
solution to manually renew IdM system certificates on the IdM CA server that is also the CA
renewal server and the CRL publisher server. Then follow the procedure described in this KCS
solution to manually renew IdM system certificates on all the other CA servers in the topology.

18.8. USING SCEP WITH CERTMONGER

The Simple Certificate Enrollment Protocol (SCEP) is a certificate management protocol that you can
use across different devices and operating systems. If you are using a SCEP server as an external
certificate authority (CA) in your environment, you can use certmonger to obtain a certificate for an
Identity Management (IdM) client.

18.8.1. SCEP overview

The Simple Certificate Enrollment Protocol (SCEP) is a certificate management protocol that you can
use across different devices and operating systems. You can use a SCEP server as an external certificate
authority (CA).

You can configure an Identity Management (IdM) client to request and retrieve a certificate over HTTP

Red Hat Enterprise Linux 9 Managing certificates in IdM

136

https://access.redhat.com/solutions/3357261
https://access.redhat.com/solutions/3357331

You can configure an Identity Management (IdM) client to request and retrieve a certificate over HTTP
directly from the CA SCEP service. This process is secured by a shared secret that is usually valid only
for a limited time.

On the client side, SCEP requires you to provide the following components:

SCEP URL: the URL of the CA SCEP interface.

SCEP shared secret: a challengePassword PIN shared between the CA and the SCEP client,
used to obtain the certificate.

The client then retrieves the CA certificate chain over SCEP and sends a certificate signing request to
the CA.

When configuring SCEP with certmonger, you create a new CA configuration profile that specifies the
issued certificate parameters.

18.8.2. Requesting an IdM CA-signed certificate through SCEP

The following example adds a SCEP_example SCEP CA configuration to certmonger and requests a
new certificate on the client.idm.example.com IdM client. certmonger supports both the NSS
certificate database format and file-based (PEM) formats, such as OpenSSL.

Prerequisites

You know the SCEP URL.

You have the challengePassword PIN shared secret.

Procedure

1. Add the CA configuration to certmonger:

[root@client.idm.example.com ~]# getcert add-scep-ca -c SCEP_example -u SCEP_URL

-c: Mandatory nickname for the CA configuration. The same value can later be used with
other getcert commands.

-u: URL of the server’s SCEP interface.

IMPORTANT

When using an HTTPS URL, you must also specify the location of the PEM-
formatted copy of the SCEP server CA certificate using the -R option.

2. Verify that the CA configuration has been successfully added:

[root@client.idm.example.com ~]# getcert list-cas -c SCEP_example
CA 'SCEP_example':
 is-default: no
 ca-type: EXTERNAL
 helper-location: /usr/libexec/certmonger/scep-submit -u
http://SCEP_server_enrollment_interface_URL

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

137

 SCEP CA certificate thumbprint (MD5): A67C2D4B 771AC186 FCCA654A 5E55AAF7
 SCEP CA certificate thumbprint (SHA1): FBFF096C 6455E8E9 BD55F4A5 5787C43F
1F512279

If the configuration was successfully added, certmonger retrieves the CA chain from the remote
CA. The CA chain then appears as thumbprints in the command output. When accessing the
server over unencrypted HTTP, manually compare the thumbprints with the ones displayed at
the SCEP server to prevent a man-in-the-middle attack.

3. Request a certificate from the CA:

If you are using NSS:

[root@client.idm.example.com ~]# getcert request -I Example_Task -c SCEP_example -
d /etc/pki/nssdb -n ExampleCert -N cn="client.idm.example.com" -L one-time_PIN -D
client.idm.example.com

You can use the options to specify the following parameters of the certificate request:

-I: (Optional) Name of the task: the tracking ID for the request. The same value can later
be used with the getcert list command.

-c: CA configuration to submit the request to.

-d: Directory with the NSS database to store the certificate and key.

-n: Nickname of the certificate, used in the NSS database.

-N: Subject name in the CSR.

-L: Time-limited one-time challengePassword PIN issued by the CA.

-D: Subject Alternative Name for the certificate, usually the same as the host name.

If you are using OpenSSL:

[root@client.idm.example.com ~]# getcert request -I Example_Task -c SCEP_example -f
/etc/pki/tls/certs/server.crt -k /etc/pki/tls/private/private.key -N
cn="client.idm.example.com" -L one-time_PIN -D client.idm.example.com

You can use the options to specify the following parameters of the certificate request:

-I: (Optional) Name of the task: the tracking ID for the request. The same value can later
be used with the getcert list command.

-c: CA configuration to submit the request to.

-f: Storage path to the certificate.

-k: Storage path to the key.

-N: Subject name in the CSR.

-L: Time-limited one-time challengePassword PIN issued by the CA.

-D: Subject Alternative Name for the certificate, usually the same as the host name.

Red Hat Enterprise Linux 9 Managing certificates in IdM

138

Verification

1. Verify that a certificate was issued and correctly stored in the local database:

If you used NSS, enter:

[root@client.idm.example.com ~]# getcert list -I Example_Task
 Request ID 'Example_Task':
 status: MONITORING
 stuck: no
 key pair storage:
type=NSSDB,location='/etc/pki/nssdb',nickname='ExampleCert',token='NSS Certificate
DB'
 certificate:
type=NSSDB,location='/etc/pki/nssdb',nickname='ExampleCert',token='NSS Certificate
DB'
 signing request thumbprint (MD5): 503A8EDD DE2BE17E 5BAA3A57 D68C9C1B
 signing request thumbprint (SHA1): B411ECE4 D45B883A 75A6F14D 7E3037F1
D53625F4
 CA: IPA
 issuer: CN=Certificate Authority,O=EXAMPLE.COM
 subject: CN=client.idm.example.com,O=EXAMPLE.COM
 expires: 2018-05-06 10:28:06 UTC
 key usage: digitalSignature,keyEncipherment
 eku: iso.org.dod.internet.security.mechanisms.8.2.2
 certificate template/profile: IPSECIntermediateOffline
 pre-save command:
 post-save command:
 track: yes
 auto-renew: yes

If you used OpenSSL, enter:

[root@client.idm.example.com ~]# getcert list -I Example_Task
Request ID 'Example_Task':
 status: MONITORING
 stuck: no
 key pair storage: type=FILE,location='/etc/pki/tls/private/private.key'
 certificate: type=FILE,location='/etc/pki/tls/certs/server.crt'
 CA: IPA
 issuer: CN=Certificate Authority,O=EXAMPLE.COM
 subject: CN=client.idm.example.com,O=EXAMPLE.COM
 expires: 2018-05-06 10:28:06 UTC
 eku: id-kp-serverAuth,id-kp-clientAuth
 pre-save command:
 post-save command:
 track: yes
 auto-renew: yes

The status MONITORING signifies a successful retrieval of the issued certificate. The
getcert-list(1) man page lists other possible states and their meanings.

Additional resources

For more options when requesting a certificate, see the getcert-request(1) man page.

CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

139

18.8.3. Automatically renewing AD SCEP certificates with certmonger

When certmonger sends a SCEP certificate renewal request, this request is signed using the existing
certificate private key. However, renewal requests sent by certmonger by default also include the
challengePassword PIN that was used to originally obtain the certificates.

An Active Directory (AD) Network Device Enrollment Service (NDES) server that works as the SCEP
server automatically rejects any requests for renewal that contain the original challengePassword PIN.
Consequently, the renewal fails.

For renewal with AD to work, you need to configure certmonger to send the signed renewal requests
without the challengePassword PIN. You also need to configure the AD server so that it does not
compare the subject name at renewal.

NOTE

There may be SCEP servers other than AD that also refuse requests containing the
challengePassword. In those cases, you may also need to change the certmonger
configuration in this way.

Prerequisites

The RHEL server has to be running RHEL 8.6 or newer.

Procedure

1. Open regedit on the AD server.

2. In the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MSCEP subkey, add
a new 32-bit REG_DWORD entry DisableRenewalSubjectNameMatch and set its value to 1.

3. On the server where certmonger is running, open the /etc/certmonger/certmonger.conf file
and add the following section:

[scep]
challenge_password_otp = yes

4. Restart certmonger:

systemctl restart certmonger

Red Hat Enterprise Linux 9 Managing certificates in IdM

140

CHAPTER 19. DEPLOYING AND MANAGING THE ACME
SERVICE IN IDM

IMPORTANT

This feature is a technology preview.

Automated Certificate Management Environment (ACME) is a protocol for automated identifier
validation and certificate issuance. Its goal is to improve security by reducing certificate lifetimes and
avoiding manual processes in certificate lifecycle management.

Using RHEL Identity Management (IdM), the administrator can easily deploy and manage the ACME
service topology-wide from a single system.

19.1. THE ACME SERVICE IN IDM

IMPORTANT

This feature is a technology preview.

NOTE

IdM currently supports ACME only in RHEL 9.2 or newer with Random Certificate Serial
Numbers (RSNv3) enabled.

ACME uses a challenge and response authentication mechanism to prove that a client has control of an
identifier. In ACME, an identifier is a proof of ownership used to obtain a certificate by solving a
challenge. In Identity Management (IdM), ACME currently supports the following challenges:

dns-01 where the client creates DNS records to prove it has control of the identifier

http-01 where the client provisions an HTTP resource to prove it has control of the identifier

In IdM, the ACME service uses the PKI ACME responder. The ACME subsystem is automatically
deployed on every CA server in the IdM deployment, but it will not service requests until the
administrator enables it. The servers are discovered using the name ipa-ca.DOMAIN. All IdM CA servers
are registered with this DNS name so requests are load balanced via round-robin to them.

ACME is also deployed, but disabled, when the administrator upgrades a server using the ipa-server-
upgrade command.

ACME runs as a separate service within Apache Tomcat. The ACME configuration files are stored in
/etc/pki/pki-tomcat/acme and PKI logs ACME information to /var/log/pki/pki-tomcat/acme/.

IdM uses the acmeIPAServerCert profile when issuing ACME certificates. The validity period of issued
certificates is 90 days. For this reason, it is strongly recommended to set ACME to automatically remove
expired certificates so that they do not accumulate in the CA, as this could negatively affect
performance.

There are different ACME clients available. For use with RHEL, the chosen client must support either of
the dns-01 and http-01 challenges. Currently, the following clients have been tested and are known to
work with ACME in RHEL:

CHAPTER 19. DEPLOYING AND MANAGING THE ACME SERVICE IN IDM

141

certbot with both the http-01 and dns-01 challenges

mod_md, which supports only the http-01 challenge

19.2. ENABLING THE ACME SERVICE IN IDM

IMPORTANT

This feature is a technology preview.

By default, the ACME service is deployed, but disabled. Enabling the ACME service enables it on all IdM
CA servers across the entire IdM deployment. This is handled via replication.

In this example, you enable ACME and set it to automatically remove expired certificates on the first day
of every month at midnight.

Prerequisites

Servers in the IdM deployment are running RHEL 9.2 or newer with Random Certificate Serial
Numbers (RSNv3) enabled.

You have root privileges on the IdM server on which you are running the procedure.

Procedure

1. Enable ACME across the whole IdM deployment:

ipa-acme-manage enable
The ipa-acme-manage command was successful

2. Set ACME to automatically remove expired certificates from the CA:

ipa-acme-manage pruning --enable --cron "0 0 1 * *"

NOTE

Expired certificates are removed after their retention period. By default, this is 30
days after expiry.

Verification steps

To check if the ACME service is installed and enabled, use the ipa-acme-manage status
command:

ipa-acme-manage status
ACME is enabled
The ipa-acme-manage command was successful

19.3. DISABLING THE ACME SERVICE IN IDM

IMPORTANT

Red Hat Enterprise Linux 9 Managing certificates in IdM

142

IMPORTANT

This feature is a technology preview.

Disabling the ACME service disables it across the entire IdM deployment. This is handled via replication.

Prerequisites

Servers in the IdM deployment are running RHEL 9.2 or newer with Random Certificate Serial
Numbers (RSNv3) enabled.

You have root privileges on the IdM server on which you are running the procedure.

Procedure

1. Disable ACME across the whole IdM deployment:

ipa-acme-manage disable
The ipa-acme-manage command was successful

2. (Optional) Disable automatic removal of expired certificates:

ipa-acme-manage pruning --disable

Verification steps

To check if the ACME service is installed, but disabled, use the ipa-acme-manage status
command:

ipa-acme-manage status
ACME is disabled
The ipa-acme-manage command was successful

CHAPTER 19. DEPLOYING AND MANAGING THE ACME SERVICE IN IDM

143

CHAPTER 20. REQUESTING CERTIFICATES USING
RHEL SYSTEM ROLES

You can use the certificate System Role to issue and manage certificates.

This chapter covers the following topics:

The certificate System Role

Requesting a new self-signed certificate using the certificate System Role

Requesting a new certificate from IdM CA using the certificate System Role

20.1. THE CERTIFICATE SYSTEM ROLE

Using the certificate System Role, you can manage issuing and renewing TLS and SSL certificates using
Ansible Core.

The role uses certmonger as the certificate provider, and currently supports issuing and renewing self-
signed certificates and using the IdM integrated certificate authority (CA).

You can use the following variables in your Ansible playbook with the certificate System Role:

certificate_wait

to specify if the task should wait for the certificate to be issued.

certificate_requests

to represent each certificate to be issued and its parameters.

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

Preparing a control node and managed nodes to use RHEL System Roles

20.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE USING THE
CERTIFICATE SYSTEM ROLE

With the certificate System Role, you can use Ansible Core to issue self-signed certificates.

This process uses the certmonger provider and requests the certificate through the getcert command.

NOTE

By default, certmonger automatically tries to renew the certificate before it expires. You
can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

Red Hat Enterprise Linux 9 Managing certificates in IdM

144

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Procedure

1. Optional: Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open your inventory file and define the hosts on which you want to request the certificate, for
example:

[webserver]
server.idm.example.com

3. Create a playbook file, for example request-certificate.yml:

Set hosts to include the hosts on which you want to request the certificate, such as
webserver.

Set the certificate_requests variable to include the following:

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
*.example.com.

Set the ca parameter to self-sign.

Set the rhel-system-roles.certificate role under roles.
This is the playbook file for this example:

- hosts: webserver

 vars:
 certificate_requests:
 - name: mycert
 dns: "*.example.com"
 ca: self-sign

 roles:
 - rhel-system-roles.certificate

4. Save the file.

5. Run the playbook:

$ ansible-playbook -i inventory.file request-certificate.yml

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

See the ansible-playbook(1) man page.

20.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE

CHAPTER 20. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES

145

20.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE
CERTIFICATE SYSTEM ROLE

With the certificate System Role, you can use anible-core to issue certificates while using an IdM server
with an integrated certificate authority (CA). Therefore, you can efficiently and consistently manage the
certificate trust chain for multiple systems when using IdM as the CA.

This process uses the certmonger provider and requests the certificate through the getcert command.

NOTE

By default, certmonger automatically tries to renew the certificate before it expires. You
can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

Procedure

1. Optional: Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open your inventory file and define the hosts on which you want to request the certificate, for
example:

[webserver]
server.idm.example.com

3. Create a playbook file, for example request-certificate.yml:

Set hosts to include the hosts on which you want to request the certificate, such as
webserver.

Set the certificate_requests variable to include the following:

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
www.example.com.

Set the principal parameter to specify the Kerberos principal, such as
HTTP/www.example.com@EXAMPLE.COM.

Set the ca parameter to ipa.

Set the rhel-system-roles.certificate role under roles.
This is the playbook file for this example:

- hosts: webserver

Red Hat Enterprise Linux 9 Managing certificates in IdM

146

 vars:
 certificate_requests:
 - name: mycert
 dns: www.example.com
 principal: HTTP/www.example.com@EXAMPLE.COM
 ca: ipa

 roles:
 - rhel-system-roles.certificate

4. Save the file.

5. Run the playbook:

$ ansible-playbook -i inventory.file request-certificate.yml

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

See the ansible-playbook(1) man page.

20.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER
CERTIFICATE ISSUANCE USING THE CERTIFICATE SYSTEM ROLE

With the certificate Role, you can use Ansible Core to execute a command before and after a certificate
is issued or renewed.

In the following example, the administrator ensures stopping the httpd service before a self-signed
certificate for www.example.com is issued or renewed, and restarting it afterwards.

NOTE

By default, certmonger automatically tries to renew the certificate before it expires. You
can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

Procedure

1. Optional: Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open your inventory file and define the hosts on which you want to request the certificate, for
example:

CHAPTER 20. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES

147

[webserver]
server.idm.example.com

3. Create a playbook file, for example request-certificate.yml:

Set hosts to include the hosts on which you want to request the certificate, such as
webserver.

Set the certificate_requests variable to include the following:

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
www.example.com.

Set the ca parameter to the CA you want to use to issue the certificate, such as self-
sign.

Set the run_before parameter to the command you want to execute before this
certificate is issued or renewed, such as systemctl stop httpd.service.

Set the run_after parameter to the command you want to execute after this certificate
is issued or renewed, such as systemctl start httpd.service.

Set the rhel-system-roles.certificate role under roles.
This is the playbook file for this example:

- hosts: webserver
 vars:
 certificate_requests:
 - name: mycert
 dns: www.example.com
 ca: self-sign
 run_before: systemctl stop httpd.service
 run_after: systemctl start httpd.service

 roles:
 - rhel-system-roles.certificate

4. Save the file.

5. Run the playbook:

$ ansible-playbook -i inventory.file request-certificate.yml

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

See the ansible-playbook(1) man page.

Red Hat Enterprise Linux 9 Managing certificates in IdM

148

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST
ONLY A SUBSET OF CERTIFICATES

If your Identity Management (IdM) installation is configured with the integrated Certificate System (CS)
certificate authority (CA), you are able to create lightweight sub-CAs. All sub-CAs you create are
subordinated to the primary CA of the certificate system, the ipa CA.

A lightweight sub-CA in this context means a sub-CA issuing certificates for a specific purpose . For
example, a lightweight sub-CA enables you to configure a service, such as a virtual private network
(VPN) gateway and a web browser, to accept only certificates issued by sub-CA A. By configuring other
services to accept certificates only issued by sub-CA B, you prevent them from accepting certificates
issued by sub-CA A, the primary CA, that is the ipa CA, and any intermediate sub-CA between the two.

If you revoke the intermediate certificate of a sub-CA, all certificates issued by this sub-CA are
automatically considered invalid by correctly configured clients. All the other certificates issued directly
by the root CA, ipa, or another sub-CA, remain valid.

This section uses the example of the Apache web server to illustrate how to restrict an application to
trust only a subset of certificates. Complete this section to restrict the web server running on your IdM
client to use a certificate issued by the webserver-ca IdM sub-CA, and to require the users to
authenticate to the web server using user certificates issued by the webclient-ca IdM sub-CA.

The steps you need to take are:

1. Create an IdM sub-CA

2. Download the sub-CA certificate from IdM WebUI

3. Create a CA ACL specifying the correct combination of users, services and CAs, and the
certificate profile used

4. Request a certificate for the web service running on an IdM client from the IdM sub-CA

5. Set up a single-instance Apache HTTP Server

6. Add TLS encryption to the Apache HTTP Server

7. Set the supported TLS protocol versions on an Apache HTTP Server

8. Set the supported ciphers on the Apache HTTP Server

9. Configure TLS client certificate authentication on the web server

10. Request a certificate for the user from the IdM sub-CA and export it to the client

11. Import the user certificate into the browser and configure the browser to trust the sub-CA
certificate

21.1. MANAGING LIGHTWEIGHT SUB-CAS

This section describes how to manage lightweight subordinate certificate authorities (sub-CAs). All sub-
CAs you create are subordinated to the primary CA of the certificate system, the ipa CA. You can also
disable and delete sub-CAs.

NOTE

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

149

NOTE

If you delete a sub-CA, revocation checking for that sub-CA will no longer work.
Only delete a sub-CA when there are no more certificates that were issued by
that sub-CA whose notAfter expiration time is in the future.

You should only disable sub-CAs while there are still non-expired certificates that
were issued by that sub-CA. If all certificates that were issued by a sub-CA have
expired, you can delete that sub-CA.

You cannot disable or delete the IdM CA.

For details on managing sub-CAs, see:

Creating a sub-CA from the IdM WebUI

Deleting a sub-CA from the IdM WebUI

Creating a sub-CA from the IdM CLI

Disabling a sub-CA from the IdM CLI

Deleting a sub-CA from the IdM CLI

21.1.1. Creating a sub-CA from the IdM WebUI

Follow this procedure to use the IdM WebUI to create new sub-CAs named webserver-ca and
webclient-ca.

Prerequisites

Make sure you have obtained the administrator’s credentials.

Procedure

1. In the Authentication menu, click Certificates.

2. Select Certificate Authorities and click Add.

3. Enter the name of the webserver-ca sub-CA. Enter the Subject DN, for example
CN=WEBSERVER,O=IDM.EXAMPLE.COM, in the Subject DN field. Note that the Subject DN
must be unique in the IdM CA infrastructure.

4. Enter the name of the webclient-ca sub-CA. Enter the Subject DN
CN=WEBCLIENT,O=IDM.EXAMPLE.COM in the Subject DN field.

5. In the command-line interface, run the ipa-certupdate command to create a certmonger
tracking request for the webserver-ca and webclient-ca sub-CA certificates:

[root@ipaserver ~]# ipa-certupdate

IMPORTANT

Red Hat Enterprise Linux 9 Managing certificates in IdM

150

IMPORTANT

Forgetting to run the ipa-certupdate command after creating a sub-CA means
that if the sub-CA certificate expires, end-entity certificates issued by the sub-
CA are considered invalid even if the end-entity certificate has not expired.

Verification

Verify that the signing certificate of the new sub-CA has been added to the IdM database:

[root@ipaserver ~]# certutil -d /etc/pki/pki-tomcat/alias/ -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

caSigningCert cert-pki-ca CTu,Cu,Cu
Server-Cert cert-pki-ca u,u,u
auditSigningCert cert-pki-ca u,u,Pu
caSigningCert cert-pki-ca ba83f324-5e50-4114-b109-acca05d6f1dc u,u,u
ocspSigningCert cert-pki-ca u,u,u
subsystemCert cert-pki-ca u,u,u

NOTE

The new sub-CA certificate is automatically transferred to all the replicas that
have a certificate system instance installed.

21.1.2. Deleting a sub-CA from the IdM WebUI

Follow this procedure to delete lightweight sub-CAs in the IdM WebUI.

NOTE

If you delete a sub-CA, revocation checking for that sub-CA will no longer work.
Only delete a sub-CA when there are no more certificates that were issued by
that sub-CA whose notAfter expiration time is in the future.

You should only disable sub-CAs while there are still non-expired certificates that
were issued by that sub-CA. If all certificates that were issued by a sub-CA have
expired, you can delete that sub-CA.

You cannot disable or delete the IdM CA.

Prerequisites

Make sure you have obtained the administrator’s credentials.

You have disabled the sub-CA in the IdM CLI. See Disabling a sub-CA from the IdM CLI

Procedure

1. In the IdM WebUI, open the Authentication tab, and select the Certificates subtab.

2. Select Certificate Authorities.

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

151

3. Select the sub-CA to remove and click Delete.

Figure 21.1. Deleting a sub-CA in the IdM Web UI

4. Click Delete to confirm.

The sub-CA is removed from the list of Certificate Authorities.

21.1.3. Creating a sub-CA from the IdM CLI

Follow this procedure to use the IdM CLI to create new sub-CAs named webserver-ca and webclient-
ca.

Prerequisites

Make sure that you have obtained the administrator’s credentials.

Make sure you are logged in to an IdM server that is a CA server.

Procedure

1. Enter the ipa ca-add command, and specify the name of the webserver-ca sub-CA and its
Subject Distinguished Name (DN):

[root@ipaserver ~]# ipa ca-add webserver-ca --
subject="CN=WEBSERVER,O=IDM.EXAMPLE.COM"

Created CA "webserver-ca"

 Name: webserver-ca
 Authority ID: ba83f324-5e50-4114-b109-acca05d6f1dc
 Subject DN: CN=WEBSERVER,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IDM.EXAMPLE.COM

Name

Name of the CA.

Authority ID

Automatically created, individual ID for the CA.

Subject DN

Subject Distinguished Name (DN). The Subject DN must be unique in the IdM CA
infrastructure.

Red Hat Enterprise Linux 9 Managing certificates in IdM

152

Issuer DN

Parent CA that issued the sub-CA certificate. All sub-CAs are created as a child of the IdM
root CA.

2. Create the webclient-ca sub-CA for issuing certificates to web clients:

[root@ipaserver ~]# ipa ca-add webclient-ca --
subject="CN=WEBCLIENT,O=IDM.EXAMPLE.COM"

Created CA "webclient-ca"

 Name: webclient-ca
 Authority ID: 8a479f3a-0454-4a4d-8ade-fd3b5a54ab2e
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IDM.EXAMPLE.COM

3. Run the ipa-certupdate command to create a certmonger tracking request for the
webserver-ca and webclient-ca sub-CAs certificates:

[root@ipaserver ~]# ipa-certupdate

IMPORTANT

If you forget to run the ipa-certupdate command after creating a sub-CA and
the sub-CA certificate expires, end-entity certificates issued by that sub-CA are
considered invalid even though the end-entity certificate has not expired.

Verification steps

Verify that the signing certificate of the new sub-CA has been added to the IdM database:

[root@ipaserver ~]# certutil -d /etc/pki/pki-tomcat/alias/ -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

caSigningCert cert-pki-ca CTu,Cu,Cu
Server-Cert cert-pki-ca u,u,u
auditSigningCert cert-pki-ca u,u,Pu
caSigningCert cert-pki-ca ba83f324-5e50-4114-b109-acca05d6f1dc u,u,u
ocspSigningCert cert-pki-ca u,u,u
subsystemCert cert-pki-ca u,u,u

NOTE

The new sub-CA certificate is automatically transferred to all the replicas that
have a certificate system instance installed.

21.1.4. Disabling a sub-CA from the IdM CLI

Follow this procedure to disable a sub-CA from the IdM CLI. If there are still non-expired certificates
that were issued by a sub-CA, you should not delete it but you can disable it. If you delete the sub-CA,
revocation checking for that sub-CA will no longer work.

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

153

Prerequisites

Make sure you have obtained the administrator’s credentials.

Procedure

1. Run the ipa ca-find command to determine the name of the sub-CA you are deleting:

[root@ipaserver ~]# ipa ca-find

3 CAs matched

 Name: ipa
 Description: IPA CA
 Authority ID: 5195deaf-3b61-4aab-b608-317aff38497c
 Subject DN: CN=Certificate Authority,O=IPA.TEST
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webclient-ca
 Authority ID: 605a472c-9c6e-425e-b959-f1955209b092
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webserver-ca
 Authority ID: 02d537f9-c178-4433-98ea-53aa92126fc3
 Subject DN: CN=WEBSERVER,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

Number of entries returned 3

2. Run the ipa ca-disable command to disable your sub-CA, in this example, the webserver-ca:

ipa ca-disable webserver-ca

Disabled CA "webserver-ca"

21.1.5. Deleting a sub-CA from the IdM CLI

Follow this procedure to delete lightweight sub-CAs from the IdM CLI.

NOTE

If you delete a sub-CA, revocation checking for that sub-CA will no longer work.
Only delete a sub-CA when there are no more certificates that were issued by
that sub-CA whose notAfter expiration time is in the future.

You should only disable sub-CAs while there are still non-expired certificates that
were issued by that sub-CA. If all certificates that were issued by a sub-CA have
expired, you can delete that sub-CA.

You cannot disable or delete the IdM CA.

Red Hat Enterprise Linux 9 Managing certificates in IdM

154

Prerequisites

Make sure you have obtained the administrator’s credentials.

Procedure

1. To display a list of sub-CAs and CAs, run the ipa ca-find command:

ipa ca-find

3 CAs matched

 Name: ipa
 Description: IPA CA
 Authority ID: 5195deaf-3b61-4aab-b608-317aff38497c
 Subject DN: CN=Certificate Authority,O=IPA.TEST
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webclient-ca
 Authority ID: 605a472c-9c6e-425e-b959-f1955209b092
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webserver-ca
 Authority ID: 02d537f9-c178-4433-98ea-53aa92126fc3
 Subject DN: CN=WEBSERVER,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

Number of entries returned 3

2. Run the ipa ca-disable command to disable your sub-CA, in this example, the webserver-ca:

ipa ca-disable webserver-ca

Disabled CA "webserver-ca"

3. Delete the sub-CA, in this example, the webserver-ca:

ipa ca-del webserver-ca

Deleted CA "webserver-ca"

Verification

Run ipa ca-find to display the list of CAs and sub-CAs. The webserver-ca is no longer on the
list.

ipa ca-find

2 CAs matched

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

155

 Name: ipa
 Description: IPA CA
 Authority ID: 5195deaf-3b61-4aab-b608-317aff38497c
 Subject DN: CN=Certificate Authority,O=IPA.TEST
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webclient-ca
 Authority ID: 605a472c-9c6e-425e-b959-f1955209b092
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

Number of entries returned 2

21.2. DOWNLOADING THE SUB-CA CERTIFICATE FROM IDM WEBUI

Prerequisites

Make sure that you have obtained the IdM administrator’s credentials.

Procedure

1. In the Authentication menu, click Certificates > Certificates.

Figure 21.2. sub-CA certificate in the list of certificates

2. Click the serial number of the sub-CA certificate to open the certificate information page.

3. In the certificate information page, click Actions > Download.

4. In the CLI, move the sub-CA certificate to the /etc/pki/tls/private/ directory:

mv path/to/the/downloaded/certificate /etc/pki/tls/private/sub-ca.crt

21.3. CREATING CA ACLS FOR WEB SERVER AND CLIENT
AUTHENTICATION

Certificate authority access control list (CA ACL) rules define which profiles can be used to issue
certificates to which users, services, or hosts. By associating profiles, principals, and groups, CA ACLs
permit principals or groups to request certificates using particular profiles.

For example, using CA ACLs, the administrator can restrict the use of a profile intended for employees
working from an office located in London only to users that are members of the London office-related
group.

21.3.1. Viewing CA ACLs in IdM CLI

Follow this procedure to view the list of certificate authority access control lists (CA ACLs) available in
your IdM deployment and the details of a specific CA ACL.

Red Hat Enterprise Linux 9 Managing certificates in IdM

156

Procedure

1. To view all the CA ACLs in your IdM environment, enter the ipa caacl-find command:

$ ipa caacl-find

1 CA ACL matched

 ACL name: hosts_services_caIPAserviceCert
 Enabled: TRUE

2. To view the details of a CA ACL, enter the ipa caacl-show command, and specify the CA ACL
name. For example, to view the details of the hosts_services_caIPAserviceCert CA ACL, enter:

$ ipa caacl-show hosts_services_caIPAserviceCert
 ACL name: hosts_services_caIPAserviceCert
 Enabled: TRUE
 Host category: all
 Service category: all
 CAs: ipa
 Profiles: caIPAserviceCert
 Users: admin

21.3.2. Creating a CA ACL for web servers authenticating to web clients using
certificates issued by webserver-ca

Follow this procedure to create a CA ACL that requires the system administrator to use the webserver-
ca sub-CA and the caIPAserviceCert profile when requesting a certificate for the
HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM service. If the user requests a certificate
from a different sub-CA or of a different profile, the request fails. The only exception is when there is
another matching CA ACL that is enabled. To view the available CA ACLs, see Viewing CA ACLs in IdM
CLI.

Prerequisites

Make sure that the HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM service is
part of IdM.

Make sure you have obtained IdM administrator’s credentials.

Procedure

1. Create a CA ACL using the ipa caacl command, and specify its name:

$ ipa caacl-add TLS_web_server_authentication
--
Added CA ACL "TLS_web_server_authentication"
--
 ACL name: TLS_web_server_authentication
 Enabled: TRUE

2. Modify the CA ACL using the ipa caacl-mod command to specify the description of the CA
ACL:

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

157

$ ipa caacl-mod TLS_web_server_authentication --desc="CAACL for web servers
authenticating to web clients using certificates issued by webserver-ca"

Modified CA ACL "TLS_web_server_authentication"

 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE

3. Add the webserver-ca sub-CA to the CA ACL:

$ ipa caacl-add-ca TLS_web_server_authentication --ca=webserver-ca
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca

Number of members added 1

4. Use the ipa caacl-add-service to specify the service whose principal will be able to request a
certificate:

$ ipa caacl-add-service TLS_web_server_authentication --
service=HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca
 Services: HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM

Number of members added 1

5. Use the ipa caacl-add-profile command to specify the certificate profile for the requested
certificate:

$ ipa caacl-add-profile TLS_web_server_authentication --
certprofiles=caIPAserviceCert
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca
 Profiles: caIPAserviceCert
 Services: HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM

Number of members added 1

You can use the newly-created CA ACL straight away. It is enabled after its creation by default.

NOTE

Red Hat Enterprise Linux 9 Managing certificates in IdM

158

NOTE

The point of CA ACLs is to specify which CA and profile combinations are allowed for
requests coming from particular principals or groups. CA ACLs do not affect certificate
validation or trust. They do not affect how the issued certificates will be used.

21.3.3. Creating a CA ACL for user web browsers authenticating to web servers using
certificates issued by webclient-ca

Follow this procedure to create a CA ACL that requires the system administrator to use the webclient-
ca sub-CA and the IECUserRoles profile when requesting a certificate. If the user requests a certificate
from a different sub-CA or of a different profile, the request fails. The only exception is when there is
another matching CA ACL that is enabled. To view the available CA ACLs, see Viewing CA ACLs in IdM
CLI.

Prerequisites

Make sure that you have obtained IdM administrator’s credentials.

Procedure

1. Create a CA ACL using the ipa caacl command and specify its name:

$ ipa caacl-add TLS_web_client_authentication
--
Added CA ACL "TLS_web_client_authentication"
--
 ACL name: TLS_web_client_authentication
 Enabled: TRUE

2. Modify the CA ACL using the ipa caacl-mod command to specify the description of the CA
ACL:

$ ipa caacl-mod TLS_web_client_authentication --desc="CAACL for user web
browsers authenticating to web servers using certificates issued by webclient-ca"

Modified CA ACL "TLS_web_client_authentication"

 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE

3. Add the webclient-ca sub-CA to the CA ACL:

$ ipa caacl-add-ca TLS_web_client_authentication --ca=webclient-ca
 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE
 CAs: webclient-ca

Number of members added 1

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

159

4. Use the ipa caacl-add-profile command to specify the certificate profile for the requested
certificate:

$ ipa caacl-add-profile TLS_web_client_authentication --certprofiles=IECUserRoles
 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE
 CAs: webclient-ca
 Profiles: IECUserRoles

Number of members added 1

5. Modify the CA ACL using the ipa caacl-mod command to specify that the CA ACL applies to all
IdM users:

$ ipa caacl-mod TLS_web_client_authentication --usercat=all

Modified CA ACL "TLS_web_client_authentication"

 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE
 User category: all
 CAs: webclient-ca
 Profiles: IECUserRoles

You can use the newly-created CA ACL straight away. It is enabled after its creation by default.

NOTE

The point of CA ACLs is to specify which CA and profile combinations are allowed for
requests coming from particular principals or groups. CA ACLs do not affect certificate
validation or trust. They do not affect how the issued certificates will be used.

21.4. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING
CERTMONGER

To ensure that communication between browsers and the web service running on your IdM client is
secure and encrypted, use a TLS certificate. If you want to restrict web browsers to trust certificates
issued by the webserver-ca sub-CA but no other IdM sub-CA, obtain the TLS certificate for your web
service from the webserver-ca sub-CA.

Follow this procedure to use certmonger to obtain an IdM certificate for a service
(HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM) running on an IdM client.

Using certmonger to request the certificate automatically means that certmonger manages and
renews the certificate when it is due for a renewal.

For a visual representation of what happens when certmonger requests a service certificate, see
Section 21.5, “Communication flow for certmonger requesting a service certificate” .

Red Hat Enterprise Linux 9 Managing certificates in IdM

160

Prerequisites

The web server is enrolled as an IdM client.

You have root access to the IdM client on which you are running the procedure.

The service for which you are requesting a certificate does not have to pre-exist in IdM.

Procedure

1. On the my_company.idm.example.com IdM client on which the HTTP service is running,
request a certificate for the service corresponding to the
HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM principal, and specify that

The certificate is to be stored in the local /etc/pki/tls/certs/httpd.pem file

The private key is to be stored in the local /etc/pki/tls/private/httpd.key file

The webserver-ca sub-CA is to be the issuing certificate authority

That an extensionRequest for a SubjectAltName be added to the signing request with the
DNS name of my_company.idm.example.com:

ipa-getcert request -K HTTP/my_company.idm.example.com -k
/etc/pki/tls/private/httpd.key -f /etc/pki/tls/certs/httpd.pem -g 2048 -D
my_company.idm.example.com -X webserver-ca -C "systemctl restart httpd"
New signing request "20190604065735" added.

In the command above:

The ipa-getcert request command specifies that the certificate is to be obtained from
the IdM CA. The ipa-getcert request command is a shortcut for getcert request -c
IPA.

The -g option specifies the size of key to be generated if one is not already in place.

The -D option specifies the SubjectAltName DNS value to be added to the request.

The -X option specifies that the issuer of the certificate must be webserver-ca, not ipa.

The -C option instructs certmonger to restart the httpd service after obtaining the
certificate.

To specify that the certificate be issued with a particular profile, use the -T option.

2. Optionally, to check the status of your request:

ipa-getcert list -f /etc/pki/tls/certs/httpd.pem
Number of certificates and requests being tracked: 3.
Request ID '20190604065735':
 status: MONITORING
 stuck: no
 key pair storage: type=FILE,location='/etc/pki/tls/private/httpd.key'
 certificate: type=FILE,location='/etc/pki/tls/certs/httpd.crt'
 CA: IPA

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

161

 issuer: CN=WEBSERVER,O=IDM.EXAMPLE.COM

[...]

The output shows that the request is in the MONITORING status, which means that a certificate
has been obtained. The locations of the key pair and the certificate are those requested.

21.5. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A
SERVICE CERTIFICATE

These diagrams show the stages of what happens when certmonger requests a service certificate from
Identity Management (IdM) certificate authority (CA) server. The sequence consists of these diagrams:

Unencrypted communication

Certmonger requesting a service certificate

IdM CA issuing the service certificate

Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration

In the diagrams, the webserver-ca sub-CA is represented by the generic IdM CA server.

Unencrypted communication shows the initial situation: without an HTTPS certificate, the
communication between the web server and the browser is unencrypted.

Figure 21.3. Unencrypted communication

Certmonger requesting a service certificate shows the system administrator using certmonger to
manually request an HTTPS certificate for the Apache web server. Note that when requesting a web
server certificate, certmonger does not communicate directly with the CA. It proxies through IdM.

Figure 21.4. Certmonger requesting a service certificate

Red Hat Enterprise Linux 9 Managing certificates in IdM

162

Figure 21.4. Certmonger requesting a service certificate

IdM CA issuing the service certificate shows an IdM CA issuing an HTTPS certificate for the web server.

Figure 21.5. IdM CA issuing the service certificate

Certmonger applying the service certificate shows certmonger placing the HTTPS certificate in
appropriate locations on the IdM client and, if instructed to do so, restarting the httpd service. The
Apache server subsequently uses the HTTPS certificate to encrypt the traffic between itself and the
browser.

Figure 21.6. Certmonger applying the service certificate

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

163

Figure 21.6. Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration shows certmonger
automatically requesting a renewal of the service certificate from the IdM CA before the expiration of
the certificate. The IdM CA issues a new certificate.

Figure 21.7. Certmonger requesting a new certificate when the old one is nearing expiration

Red Hat Enterprise Linux 9 Managing certificates in IdM

164

21.6. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER

You can set up a single-instance Apache HTTP Server to serve static HTML content.

Follow the procedure if the web server should provide the same content for all domains associated with
the server. If you want to provide different content for different domains, set up name-based virtual
hosts. For details, see Configuring Apache name-based virtual hosts .

Procedure

1. Install the httpd package:

dnf install httpd

2. If you use firewalld, open the TCP port 80 in the local firewall:

firewall-cmd --permanent --add-port=80/tcp
firewall-cmd --reload

3. Enable and start the httpd service:

systemctl enable --now httpd

4. Optional: Add HTML files to the /var/www/html/ directory.

NOTE

When adding content to /var/www/html/, files and directories must be readable
by the user under which httpd runs by default. The content owner can be the
either the root user and root user group, or another user or group of the
administrator’s choice. If the content owner is the root user and root user group,
the files must be readable by other users. The SELinux context for all the files
and directories must be httpd_sys_content_t, which is applied by default to all
content within the /var/www directory.

Verification steps

Connect with a web browser to http://my_company.idm.example.com/ or http://server_IP/.
If the /var/www/html/ directory is empty or does not contain an index.html or index.htm file,
Apache displays the Red Hat Enterprise Linux Test Page. If /var/www/html/ contains HTML
files with a different name, you can load them by entering the URL to that file, such as
http://server_IP/example.html or http://my_company.idm.example.com/example.html.

Additional resources

Apache manual: Installing the Apache HTTP Server manual .

See the httpd.service(8) man page.

21.7. ADDING TLS ENCRYPTION TO AN APACHE HTTP SERVER

You can enable TLS encryption on the my_company.idm.example.com Apache HTTP Server for the
idm.example.com domain.

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

165

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#configuring-apache-name-based-virtual-hosts_setting-apache-http-server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server

Prerequisites

The my_company.idm.example.com Apache HTTP Server is installed and running.

You have obtained the TLS certificate from the webserver-ca sub-CA, and stored it in the
/etc/pki/tls/certs/httpd.pem file as described in Obtaining an IdM certificate for a service using
certmonger. If you use a different path, adapt the corresponding steps of the procedure.

The corresponding private key is stored in the /etc/pki/tls/private/httpd.key file. If you use a
different path, adapt the corresponding steps of the procedure.

The webserver-ca CA certificate is stored in the /etc/pki/tls/private/sub-ca.crt file. If you use a
different path, adapt the corresponding steps of the procedure.

Clients and the my_company.idm.example.com web server resolve the host name of the server
to the IP address of the web server.

If the server runs RHEL 9.2 or later and the FIPS mode is enabled, clients must either support
the Extended Master Secret (EMS) extension or use TLS 1.3. TLS 1.2 connections without EMS
fail. For more information, see the TLS extension "Extended Master Secret" enforced
Knowledgebase article.

Procedure

1. Install the mod_ssl package:

dnf install mod_ssl

2. Edit the /etc/httpd/conf.d/ssl.conf file and add the following settings to the <VirtualHost
default:443> directive:

a. Set the server name:

ServerName my_company.idm.example.com

IMPORTANT

The server name must match the entry set in the Common Name field of the
certificate.

a. Optional: If the certificate contains additional host names in the Subject Alt Names (SAN)
field, you can configure mod_ssl to provide TLS encryption also for these host names. To
configure this, add the ServerAliases parameter with corresponding names:

ServerAlias www.my_company.idm.example.com
server.my_company.idm.example.com

b. Set the paths to the private key, the server certificate, and the CA certificate:

SSLCertificateKeyFile "/etc/pki/tls/private/httpd.key"
SSLCertificateFile "/etc/pki/tls/certs/httpd.pem"
SSLCACertificateFile "/etc/pki/tls/certs/ca.crt"

3. For security reasons, configure that only the root user can access the private key file:

Red Hat Enterprise Linux 9 Managing certificates in IdM

166

https://access.redhat.com/solutions/7018256

chown root:root /etc/pki/tls/private/httpd.key
chmod 600 //etc/pki/tls/private/httpd.key

WARNING

If the private key was accessed by unauthorized users, revoke the
certificate, create a new private key, and request a new certificate.
Otherwise, the TLS connection is no longer secure.

4. If you use firewalld, open port 443 in the local firewall:

firewall-cmd --permanent --add-port=443/tcp
firewall-cmd --reload

5. Restart the httpd service:

systemctl restart httpd

NOTE

If you protected the private key file with a password, you must enter this
password each time when the httpd service starts.

Use a browser and connect to https://my_company.idm.example.com.

Additional resources

SSL/TLS Encryption.

Security considerations for TLS in RHEL 8

21.8. SETTING THE SUPPORTED TLS PROTOCOL VERSIONS ON AN
APACHE HTTP SERVER

By default, the Apache HTTP Server on RHEL uses the system-wide crypto policy that defines safe
default values, which are also compatible with recent browsers. For example, the DEFAULT policy
defines that only the TLSv1.2 and TLSv1.3 protocol versions are enabled in apache.

You can manually configure which TLS protocol versions your my_company.idm.example.com Apache
HTTP Server supports. Follow the procedure if your environment requires to enable only specific TLS
protocol versions, for example:

If your environment requires that clients can also use the weak TLS1 (TLSv1.0) or TLS1.1
protocol.

If you want to configure that Apache only supports the TLSv1.2 or TLSv1.3 protocol.

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

167

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/setting-apache-http-server_deploying-different-types-of-servers#installing-the-apache-http-server-manual_setting-apache-http-server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/planning-and-implementing-tls_securing-networks#security-considerations-for-tls-in-rhel_planning-and-implementing-tls

Prerequisites

TLS encryption is enabled on the my_company.idm.example.com server as described in
Adding TLS encryption to an Apache HTTP server .

If the server runs RHEL 9.2 or later and the FIPS mode is enabled, clients must either support
the Extended Master Secret (EMS) extension or use TLS 1.3. TLS 1.2 connections without EMS
fail. For more information, see the TLS extension "Extended Master Secret" enforced
Knowledgebase article.

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file, and add the following setting to the <VirtualHost>
directive for which you want to set the TLS protocol version. For example, to enable only the
TLSv1.3 protocol:

SSLProtocol -All TLSv1.3

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. Use the following command to verify that the server supports TLSv1.3:

openssl s_client -connect example.com:443 -tls1_3

2. Use the following command to verify that the server does not support TLSv1.2:

openssl s_client -connect example.com:443 -tls1_2

If the server does not support the protocol, the command returns an error:

140111600609088:error:1409442E:SSL routines:ssl3_read_bytes:tlsv1 alert protocol
version:ssl/record/rec_layer_s3.c:1543:SSL alert number 70

3. Optional: Repeat the command for other TLS protocol versions.

Additional resources

update-crypto-policies(8) man page

Using system-wide cryptographic policies .

For further details about the SSLProtocol parameter, refer to the mod_ssl documentation in
the Apache manual: Installing the Apache HTTP Server manual .

21.9. SETTING THE SUPPORTED CIPHERS ON AN APACHE HTTP
SERVER

By default, the Apache HTTP Server uses the system-wide crypto policy that defines safe default

Red Hat Enterprise Linux 9 Managing certificates in IdM

168

https://access.redhat.com/solutions/7018256
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server

By default, the Apache HTTP Server uses the system-wide crypto policy that defines safe default
values, which are also compatible with recent browsers. For the list of ciphers the system-wide crypto
allows, see the /etc/crypto-policies/back-ends/openssl.config file.

You can manually configure which ciphers the my_company.idm.example.com Apache HTTP server
supports. Follow the procedure if your environment requires specific ciphers.

Prerequisites

TLS encryption is enabled on the my_company.idm.example.com server as described in
Adding TLS encryption to an Apache HTTP server .

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file, and add the SSLCipherSuite parameter to the
<VirtualHost> directive for which you want to set the TLS ciphers:

SSLCipherSuite
"EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH:!SHA1:!SHA256"

This example enables only the EECDH+AESGCM, EDH+AESGCM, AES256+EECDH, and
AES256+EDH ciphers and disables all ciphers which use the SHA1 and SHA256 message
authentication code (MAC).

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. To display the list of ciphers the Apache HTTP Server supports:

a. Install the nmap package:

dnf install nmap

b. Use the nmap utility to display the supported ciphers:

nmap --script ssl-enum-ciphers -p 443 example.com
...
PORT STATE SERVICE
443/tcp open https
| ssl-enum-ciphers:
| TLSv1.2:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (dh 2048) - A
| TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
...

Additional resources

update-crypto-policies(8) man page

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

169

Using system-wide cryptographic policies .

Installing the Apache HTTP Server manual - SSLCipherSuite

21.10. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION

Client certificate authentication enables administrators to allow only users who authenticate using a
certificate to access resources on the my_company.idm.example.com web server. You can configure
client certificate authentication for the /var/www/html/Example/ directory.

IMPORTANT

If the my_company.idm.example.com Apache server uses the TLS 1.3 protocol, certain
clients require additional configuration. For example, in Firefox, set the
security.tls.enable_post_handshake_auth parameter in the about:config menu to
true. For further details, see Transport Layer Security version 1.3 in Red Hat Enterprise
Linux 8.

Prerequisites

TLS encryption is enabled on the my_company.idm.example.com server as described in
Adding TLS encryption to an Apache HTTP server .

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file and add the following settings to the <VirtualHost>
directive for which you want to configure client authentication:

<Directory "/var/www/html/Example/">
 SSLVerifyClient require
</Directory>

The SSLVerifyClient require setting defines that the server must successfully validate the
client certificate before the client can access the content in the /var/www/html/Example/
directory.

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. Use the curl utility to access the https://my_company.idm.example.com/Example/ URL
without client authentication:

$ curl https://my_company.idm.example.com/Example/
curl: (56) OpenSSL SSL_read: error:1409445C:SSL routines:ssl3_read_bytes:tlsv13 alert
certificate required, errno 0

The error indicates that the my_company.idm.example.com web server requires a client
certificate authentication.

2. Pass the client private key and certificate, as well as the CA certificate to curl to access the
same URL with client authentication:

Red Hat Enterprise Linux 9 Managing certificates in IdM

170

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server
https://www.redhat.com/en/blog/transport-layer-security-version-13-red-hat-enterprise-linux-8

$ curl --cacert ca.crt --key client.key --cert client.crt
https://my_company.idm.example.com/Example/

If the request succeeds, curl displays the index.html file stored in the /var/www/html/Example/
directory.

Additional resources

Installing the Apache HTTP Server manual - mod_ssl configuration

21.11. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO
THE CLIENT

As an Identity Management (IdM) administrator, you can configure a web server running on an IdM client
to request users that use web browsers to access the server to authenticate with certificates issued by a
specific IdM sub-CA. Follow this procedure to request a user certificate from a specific IdM sub-CA and
to export the certificate and the corresponding private key on to the host from which the user wants to
access the web server using a web browser. Afterwards, import the certificate and the private key into
the browser.

Procedure

1. Optionally, create a new directory, for example ~/certdb/, and make it a temporary certificate
database. When asked, create an NSS Certificate DB password to encrypt the keys to the
certificate to be generated in a subsequent step:

mkdir ~/certdb/
certutil -N -d ~/certdb/
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,
and should contain at least one non-alphabetic character.

Enter new password:
Re-enter password:

2. Create the certificate signing request (CSR) and redirect the output to a file. For example, to
create a CSR with the name certificate_request.csr for a 4096 bit certificate for the idm_user
user in the IDM.EXAMPLE.COM realm, setting the nickname of the certificate private keys to
idm_user for easy findability, and setting the subject to
CN=idm_user,O=IDM.EXAMPLE.COM:

certutil -R -d ~/certdb/ -a -g 4096 -n idm_user -s "CN=idm_user,O=IDM.EXAMPLE.COM"
> certificate_request.csr

3. When prompted, enter the same password that you entered when using certutil to create the
temporary database. Then continue typing randlomly until told to stop:

Enter Password or Pin for "NSS Certificate DB":

A random seed must be generated that will be used in the
creation of your key. One of the easiest ways to create a
random seed is to use the timing of keystrokes on a keyboard.

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

171

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server

To begin, type keys on the keyboard until this progress meter
is full. DO NOT USE THE AUTOREPEAT FUNCTION ON YOUR KEYBOARD!

Continue typing until the progress meter is full:

4. Submit the certificate request file to the server. Specify the Kerberos principal to associate with
the newly-issued certificate, the output file to store the certificate, and optionally the certificate
profile. Specify the IdM sub-CA that you want to issue the certificate. For example, to obtain a
certificate of the IECUserRoles profile, a profile with added user roles extension, for the
idm_user@IDM.EXAMPLE.COM principal from webclient-ca, and save the certificate in the
~/idm_user.pem file:

ipa cert-request certificate_request.csr --principal=idm_user@IDM.EXAMPLE.COM --
profile-id=IECUserRoles --ca=webclient-ca --certificate-out=~/idm_user.pem

5. Add the certificate to the NSS database. Use the -n option to set the same nickname that you
used when creating the CSR previously so that the certificate matches the private key in the
NSS database. The -t option sets the trust level. For details, see the certutil(1) man page. The -i
option specifies the input certificate file. For example, to add to the NSS database a certificate
with the idm_user nickname that is stored in the ~/idm_user.pem file in the ~/certdb/
database:

certutil -A -d ~/certdb/ -n idm_user -t "P,," -i ~/idm_user.pem

6. Verify that the key in the NSS database does not show (orphan) as its nickname. For example,
to verify that the certificate stored in the ~/certdb/ database is not orphaned:

certutil -K -d ~/certdb/
< 0> rsa 5ad14d41463b87a095b1896cf0068ccc467df395 NSS Certificate
DB:idm_user

7. Use the pk12util command to export the certificate from the NSS database to the PKCS12
format. For example, to export the certificate with the idm_user nickname from the
/root/certdb NSS database into the ~/idm_user.p12 file:

pk12util -d ~/certdb -o ~/idm_user.p12 -n idm_user
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL

8. Transfer the certificate to the host on which you want the certificate authentication for
idm_user to be enabled:

scp ~/idm_user.p12 idm_user@client.idm.example.com:/home/idm_user/

9. On the host to which the certificate has been transferred, make the directory in which the
.pkcs12 file is stored inaccessible to the 'other' group for security reasons:

chmod o-rwx /home/idm_user/

10. For security reasons, remove the temporary NSS database and the .pkcs12 file from the server:

Red Hat Enterprise Linux 9 Managing certificates in IdM

172

rm ~/certdb/
rm ~/idm_user.p12

21.12. CONFIGURING A BROWSER TO ENABLE CERTIFICATE
AUTHENTICATION

To be able to authenticate with a certificate when using the WebUI to log into Identity Management
(IdM), you need to import the user and the relevant certificate authority (CA) certificates into the
Mozilla Firefox or Google Chrome browser. The host itself on which the browser is running does not have
to be part of the IdM domain.

IdM supports the following browsers for connecting to the WebUI:

Mozilla Firefox 38 and later

Google Chrome 46 and later

The following procedure shows how to configure the Mozilla Firefox 57.0.1 browser.

Prerequisites

You have the user certificate that you want to import to the browser at your disposal in the
PKCS#12 format.

You have downloaded the sub-CA certificate and have it at your disposal in the PEM format.

Procedure

1. Open Firefox, then navigate to Preferences → Privacy & Security.

Figure 21.8. Privacy and Security section in Preferences

2. Click View Certificates.

Figure 21.9. View Certificates in Privacy and Security

CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

173

Figure 21.9. View Certificates in Privacy and Security

3. In the Your Certificates tab, click Import. Locate and open the certificate of the user in the
PKCS12 format, then click OK and OK.

4. To make sure that your IdM sub-CA is recognized by Firefox as a trusted authority, import the
IdM sub-CA certificate that you saved in Downloading the sub-CA certificate from IdM WebUI
as a trusted certificate authority certificate:

a. Open Firefox, navigate to Preferences and click Privacy & Security.

Figure 21.10. Privacy and Security section in Preferences

b. Click View Certificates.

Figure 21.11. View Certificates in Privacy and Security

c. In the Authorities tab, click Import. Locate and open the sub-CA certificate. Trust the
certificate to identify websites, then click OK and OK.

Red Hat Enterprise Linux 9 Managing certificates in IdM

174

CHAPTER 22. INVALIDATING A SPECIFIC GROUP OF
RELATED CERTIFICATES QUICKLY

As a system administrator, if you want to be able to invalidate a specific group of related certificates
quickly:

Design your applications so that they only trust certificates that were issued by a specific
lightweight Identity Management (IdM) sub-CA. Afterwards, you will be able to invalidate all
these certificates by only revoking the certificate of the Identity Management (IdM) sub-CA
that issued these certificates. For details on how to create and use a lightweight sub-CA in IdM,
see Invalidating a specific group of related certificates quickly .

To ensure that all the certificates that have been issued by the to-be-revoked IdM sub-CA are
immediately invalid, configure applications that rely on such certificates to use the IdM OCSP
responders. For example, to configure the Firefox browser to use OCSP responders, make sure
that the Query OCSP responder servers to confirm the current validity of certificates
checkbox is checked in Firefox Preferences.
In IdM, the certificate revocation list (CRL) is updated every four hours. d To invalidate all the
certificates issued by an IdM sub-CA, revoke the IdM sub-CA certificate. In addition, disable the
relevant CA ACLs, and consider disabling the IdM sub-CA. Disabling the sub-CA prevents the
sub-CA from issuing new certificates, but allows Online Certificate Status Protocol (OCSP)
responses to be produced for previously issued certificates because the sub-CA’s signing keys
are retained.

IMPORTANT

Do not delete the sub-CA if you use OCSP in your environment. Deleting the sub-CA
deletes the signing keys of the sub-CA, preventing production of OCSP responses for
certificates issued by that sub-CA.

The only scenario when deleting a sub-CA is preferable to disabling it is when you want to
create a new sub-CA with the same Subject distinguished name (DN) but a new signing
key.

22.1. DISABLING CA ACLS IN IDM CLI

When you want to retire an IdM service or a group of IdM services, consider disabling any existing
corresponding CA ACLs.

Follow this procedure to disable the TLS_web_server_authentication CA ACL that restricts the web
server running on your IdM client to request a certificate to be issued by the webserver-ca IdM sub-CA,
and to disable the TLS_web_client_authentication CA ACL that restricts IdM users to request a user
certificate to be issued by the webclient-ca IdM sub-CA.

Procedure

1. Optionally, to view all the CA ACLs in your IdM environment, enter the ipa caacl-find command:

$ ipa caacl-find

3 CA ACLs matched

 ACL name: hosts_services_caIPAserviceCert
 Enabled: TRUE

CHAPTER 22. INVALIDATING A SPECIFIC GROUP OF RELATED CERTIFICATES QUICKLY

175

 ACL name: TLS_web_server_authentication
 Enabled: TRUE

 ACL name: TLS_web_client_authentication
 Enabled: TRUE

2. Optionally, to view the details of a CA ACL, enter the ipa caacl-show command, and specify
the CA ACL name:

$ ipa caacl-show TLS_web_server_authentication
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca
 Profiles: caIPAserviceCert
 Services: HTTP/rhel8server.idm.example.com@IDM.EXAMPLE.COM

3. To disable a CA ACL, enter the ipa caacl-disable command, and specify the CA ACL name.

To disable the TLS_web_server_authentication CA ACL, enter:

$ ipa caacl-disable TLS_web_server_authentication

Disabled CA ACL "TLS_web_server_authentication"

To disable the TLS_web_client_authentication CA ACL, enter:

$ ipa caacl-disable TLS_web_client_authentication

Disabled CA ACL "TLS_web_client_authentication"

The only enabled CA ACL now is the hosts_services_caIPAserviceCert CA ACL.

IMPORTANT

Be extremely careful about disabling the hosts_services_caIPAserviceCert CA
ACL. Disabling hosts_services_caIPAserviceCert, without another CA ACL
granting IdM servers use of the ipa CA with the caIPAserviceCert profile means
that certificate renewal of the IdM HTTP and LDAP certificates will fail. The
expired IdM HTTP and LDAP certificates will eventually cause IdM system
failure.

22.2. DISABLING AN IDM SUB-CA

After revoking the CA certificate of an IdM sub-CA to invalidate all the certificates issued by that sub-
CA, consider disabling the IdM sub-CA if you no longer need it. You can re-enable the sub-CA at a later
time.

Disabling the sub-CA prevents the sub-CA from issuing new certificates, but allows Online Certificate

Red Hat Enterprise Linux 9 Managing certificates in IdM

176

Disabling the sub-CA prevents the sub-CA from issuing new certificates, but allows Online Certificate
Status Protocol (OCSP) responses to be produced for previously issued certificates because the sub-
CA’s signing keys are retained.

Prerequisites

You are logged in as IdM administrator.

Procedure

Enter the ipa ca-disable command and specify the name of the sub-CA:

$ ipa ca-disable webserver-CA

Disabled CA "webserver-CA"

CHAPTER 22. INVALIDATING A SPECIFIC GROUP OF RELATED CERTIFICATES QUICKLY

177

CHAPTER 23. VERIFYING CERTIFICATES USING IDM
HEALTHCHECK

Learn more about understanding and using the Healthcheck tool in Identity management (IdM) to
identify issues with IPA certificates maintained by certmonger.

For details, see Healthcheck in IdM .

23.1. IDM CERTIFICATES HEALTHCHECK TESTS

The Healthcheck tool includes several tests for verifying the status of certificates maintained by
certmonger in Identity Management (IdM). For details about certmonger, see Obtaining an IdM
certificate for a service using certmonger.

This suite of tests checks expiration, validation, trust and other issues. Multiple errors may be thrown for
the same underlying issue.

To see all certificate tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find all tests under the ipahealthcheck.ipa.certs source:

IPACertmongerExpirationCheck

This test checks expirations in certmonger.
If an error is reported, the certificate has expired.

If a warning appears, the certificate will expire soon. By default, this test applies within 28 days or
fewer days before certificate expiration.

You can configure the number of days in the /etc/ipahealthcheck/ipahealthcheck.conf file. After
opening the file, change the cert_expiration_days option located in the default section.

NOTE

Certmonger loads and maintains its own view of the certificate expiration. This check
does not validate the on-disk certificate.

IPACertfileExpirationCheck

This test checks if the certificate file or NSS database cannot be opened. This test also checks
expiration. Therefore, carefully read the msg attribute in the error or warning output. The message
specifies the problem.

NOTE

This test checks the on-disk certificate. If a certificate is missing, unreadable, etc a
separate error can also be raised.

IPACertNSSTrust

This test compares the trust for certificates stored in NSS databases. For the expected tracked

Red Hat Enterprise Linux 9 Managing certificates in IdM

178

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_idm_healthcheck_to_monitor_your_idm_environment/installing-and-running-the-ipa-healthcheck-tool_using-idm-healthcheck-to-monitor-your-idm-environment#healthcheck-in-idm_installing-and-running-the-ipa-healthcheck-tool
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/using-certmonger_managing-certificates-in-idm

This test compares the trust for certificates stored in NSS databases. For the expected tracked
certificates in NSS databases the trust is compared to an expected value and an error raised on a
non-match.

IPANSSChainValidation

This test validates the certificate chain of the NSS certificates. The test executes: certutil -V -u V -e
-d [dbdir] -n [nickname]

IPAOpenSSLChainValidation

This test validates the certificate chain of the OpenSSL certificates. To be comparable to the
NSSChain validation here is the OpenSSL command we execute:

openssl verify -verbose -show_chain -CAfile /etc/ipa/ca.crt [cert file]

IPARAAgent

This test compares the certificate on disk with the equivalent record in LDAP in
uid=ipara,ou=People,o=ipaca.

IPACertRevocation

This test uses certmonger to verify that certificates have not been revoked. Therefore, the test can
find issues connected with certificates maintained by certmonger only.

IPACertmongerCA

This test verifies the certmonger Certificate Authority (CA) configuration. IdM cannot issue
certificates without CA.
Certmonger maintains a set of CA helpers. In IdM, there is a CA named IPA which issues certificates
through IdM, authenticating as a host or user principal, for host or service certs.

There are also dogtag-ipa-ca-renew-agent and dogtag-ipa-ca-renew-agent-reuse which renew the
CA subsystem certificates.

NOTE

Run these tests on all IdM servers when trying to check for issues.

23.2. SCREENING CERTIFICATES USING THE HEALTHCHECK TOOL

Follow this procedure to run a standalone manual test of an Identity Management (IdM) certificate
health check using the Healthcheck tool.

The Healthcheck tool includes many tests, therefore, you can shorten the results with:

excluding all successful test: --failures-only

including only certificate tests: --source=ipahealthcheck.ipa.certs

Prerequisites

You must perform Healthcheck tests as the root user.

Procedure

To run Healthcheck with warnings, errors and critical issues regarding certificates, enter:

CHAPTER 23. VERIFYING CERTIFICATES USING IDM HEALTHCHECK

179

ipa-healthcheck --source=ipahealthcheck.ipa.certs --failures-only

Successful test displays empty brackets:

[]

Failed test shows you the following output:

{
 "source": "ipahealthcheck.ipa.certs",
 "check": "IPACertfileExpirationCheck",
 "result": "ERROR",
 "kw": {
 "key": 1234,
 "dbdir": "/path/to/nssdb",
 "error": [error],
 "msg": "Unable to open NSS database '/path/to/nssdb': [error]"
 }
}

This IPACertfileExpirationCheck test failed on opening the NSS database.

Additional resources

See man ipa-healthcheck.

Red Hat Enterprise Linux 9 Managing certificates in IdM

180

CHAPTER 24. VERIFYING SYSTEM CERTIFICATES USING IDM
HEALTHCHECK

Learn more about identifying issues with system certificates in Identity Management (IdM) by using the
Healthcheck tool.

For details, see

Healthcheck in IdM .

24.1. SYSTEM CERTIFICATES HEALTHCHECK TESTS

The Healthcheck tool includes several tests for verifying system (DogTag) certificates.

To see all tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find all tests under the ipahealthcheck.dogtag.ca source:

DogtagCertsConfigCheck

This test compares the CA (Certificate Authority) certificates in its NSS database to the same values
stored in CS.cfg. If they do not match, the CA fails to start.
Specifically, it checks:

auditSigningCert cert-pki-ca against ca.audit_signing.cert

ocspSigningCert cert-pki-ca against ca.ocsp_signing.cert

caSigningCert cert-pki-ca against ca.signing.cert

subsystemCert cert-pki-ca against ca.subsystem.cert

Server-Cert cert-pki-ca against ca.sslserver.cert

If Key Recovery Authority (KRA) is installed:

transportCert cert-pki-kra against ca.connector.KRA.transportCert

DogtagCertsConnectivityCheck

This test verifies connectivity. This test is equivalent to the ipa cert-show 1 command which checks:

The PKI proxy configuration in Apache

IdM being able to find a CA

The RA agent client certificate

Correctness of CA replies to requests

Note that the test checks a certificate with serial #1 because you want to verify that a cert-show can
be executed and get back an expected result from CA (either the certificate or a not found).

NOTE

CHAPTER 24. VERIFYING SYSTEM CERTIFICATES USING IDM HEALTHCHECK

181

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_idm_healthcheck_to_monitor_your_idm_environment/installing-and-running-the-ipa-healthcheck-tool_using-idm-healthcheck-to-monitor-your-idm-environment#healthcheck-in-idm_installing-and-running-the-ipa-healthcheck-tool

NOTE

Run these tests on all IdM servers when trying to find an issue.

24.2. SCREENING SYSTEM CERTIFICATES USING HEALTHCHECK

Follow this procedure to run a standalone manual test of Identity Management (IdM) certificates using
the Healthcheck tool.

Since, the Healthcheck tool includes many tests, you can narrow the results by including only DogTag
tests: --source=ipahealthcheck.dogtag.ca

Procedure

To run Healthcheck restricted to DogTag certificates, enter:

ipa-healthcheck --source=ipahealthcheck.dogtag.ca

An example of a successful test:

{
 "source: ipahealthcheck.dogtag.ca",
 "check: DogtagCertsConfigCheck",
 "result: SUCCESS",
 "uuid: 9b366200-9ec8-4bd9-bb5e-9a280c803a9c",
 "when: 20191008135826Z",
 "duration: 0.252280",
 "kw:" {
 "key": "Server-Cert cert-pki-ca",
 "configfile": "/var/lib/pki/pki-tomcat/conf/ca/CS.cfg"
 }
}

An example of a failed test:

{
 "source: ipahealthcheck.dogtag.ca",
 "check: DogtagCertsConfigCheck",
 "result: CRITICAL",
 "uuid: 59d66200-1447-4b3b-be01-89810c803a98",
 "when: 20191008135912Z",
 "duration: 0.002022",
 "kw:" {
 "exception": "NSDB /etc/pki/pki-tomcat/alias not initialized",
 }
}

Additional resources

See man ipa-healthcheck.

Red Hat Enterprise Linux 9 Managing certificates in IdM

182

CHAPTER 25. UNDERSTANDING THE CERTIFICATES USED
INTERNALLY BY IDM

You can install a Red Hat Identity Management (IdM) server with an integrated certificate authority
(CA) or without a CA. The certificates necessary to access and administer IdM are managed differently
depending on whether your CA is integrated or not:

Integrated CA: certificates are automatically created and tracked by certmonger. certmonger
automatically renews the certificates, ensuring a continuing validity of your IdM service.

Without a CA: certificates are requested from a third-party authority. In this case, you need to
monitor their expiration and ensure they are renewed to ensure the continuing validity of your
IdM service.

25.1. ABOUT THE INTERNAL CERTIFICATES IN IDM

Red Hat Identity Management (IdM) uses many services accessed by using a network, including an
LDAP server and an HTTP server. You access these services by using an SSL/TLS port, which requires a
server certificate. You require the HTTP and LDAP server certificates during the installation of the IdM
server.

You can obtain certificates in multiple ways depending on how you install and configure IdM:

With an integrated CA that can be either self-signed or signed by an external CA: IdM issues all
the certificates for the users, hosts, and services managed by IdM and you do not need to
provide a certificate file.
certmonger automatically monitors the expiry dates of the certificates and they are
automatically renewed when required.

With an externally signed CA: the installation is a multiple step process.

You need to run the installation with the --external-ca option to generate a CSR.

Submit the CSR to the external CA and retrieve the issued certificate and CA certificate
chain as a PEM file or Base64 encoded certificate.

Run the IdM server install again, specifying the location and names of the newly-issued CA
certificate and CA chain file. Your IdM certificate authority is configured as a subCA of the
external CA and this subCA issues the required HTTP and LDAP server certificates.
certmonger automatically monitors the expiry dates of the certificates and they are
automatically renewed when required.

Without a CA: requires you to request the following certificates from a third-party authority:

An LDAP server certificate

An Apache server certificate

A PKINIT certificate

Full CA certificate chain of the CA that issued the LDAP and Apache server certificates
These certificates are not tracked by certmonger and an administrator is responsible for
renewing them before they reach their expiration date.

Additional resources

CHAPTER 25. UNDERSTANDING THE CERTIFICATES USED INTERNALLY BY IDM

183

Planning your CA services .

25.2. CERTIFICATES INTERNAL TO IDM

Your internal certificates can depend on how you installed IdM and what components were included in
that installation. Depending on that installation, you might have the following certificates stored on your
system.

IdM CA certificate

The IdM CA certificate is used by IdM to sign all other certificates. Note that it is not present in CA-less
installations.

caSigningCert Description

File system location
nickname=caSigningCert cert-pki-ca
in /etc/pki/pki-tomcat/alias NSS
database

nickname=REALM.NAME IPA CA in
/etc/ipa/nssdb/ and /etc/ipa/ca.crt
(populated from LDAP)

LDAP location cn=REALM.NAME IPA
CA,cn=certificates,cn=ipa,cn=etc,dc=realm,d
c=name and ou=authorities,ou=ca,o=ipaca

Issuer Self-signed or signed by an external CA

Subject O = REALM.NAME, CN = Certificate Authority

Note that this is the default value but it can be
customized during the IdM server installation.

Additional information Must have CA:true critical constraint and must have
CT,C,C trust flags in the NSS database.

External CA certificate

If you are using an external CA, the chain of external CAs must be available in IdM to validate IdM
certificates. For a CA-less installation, the external CA certificate must be present in various locations,
including LDAP and in the /etc/ipa/ca.crt directory to validate HTTPD and LDAP certificates.

NOTE

You do not have to manually add the external CA certificate to all the required locations
as it is done automatically during the installation. However, if the external CA certificate is
updated later, you should follow the steps in Renewing the IdM CA renewal server
certificate using an external CA to ensure the new certificate is added to every location
where it is required.

Red Hat Enterprise Linux 9 Managing certificates in IdM

184

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/planning_identity_management/planning-your-ca-services_planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/ipa-ca-renewal_managing-certificates-in-idm#renew-with-externally-signed-CA_ipa-ca-renewal

External certificate Description

File system location /etc/pki/pki-tomcat/alias nssdb and as part of
chain in /etc/ipa/ca.crt (populated from LDAP)

LDAP location cn=SUBJECT,cn=certificates,cn=ipa,cn=etc,d
c=realm,dc=name and
ou=authorities,ou=ca,o=ipaca

Issuer External CA-signed

Subject External CA subject

Additional information You must have all the certificates in the chain in DER
format and you must import them into LDAP. Must
have CT,C,C trust flags in the NSS database.

Subsystem CA certificate

This certificate is used to authenticate to the LDAP server when writing to the LDAP database. This
certificate is not present in CA-less installations.

subsystemCert Description

File system location nickname=subsystemCert cert-pki-ca in
/etc/pki/pki-tomcat/alias nssdb

LDAP location uid=pkidbuser,ou=people,o=ipaca

Issuer IPA CA

Subject CN=CA Subsystem,O=REALM.NAME

Additional information Be wary of a serial and blob mismatch in LDAP. For
example, 2;SERIAL;CN=Certificate
Authority,O=REALM.NAME;CN=CA
Subsystem,O=REALM.NAME and
userCertificate must match the one on the file
system.

Audit signing certificate

This certificate is used to sign the audit logs. Note that it is not present in CA-less installations.

auditSigningCert Description

File system location nickname=auditSigningCert cert-pki-ca in
/etc/pki/pki-tomcat/alias nssdb

CHAPTER 25. UNDERSTANDING THE CERTIFICATES USED INTERNALLY BY IDM

185

LDAP location No dedicated LDAP location, shared via
ou=certificateRepository,ou=ca,o=ipaca

Issuer IPA CA

Subject CN=CA Audit,O=REALM.NAME

Additional information Must have ,,P trust flags in the NSS database.

auditSigningCert Description

OCSP signing certificate

This certificate is used to provide Online Certificate Status Protocol (OCSP) services. Note that it is not
present in CA-less installations.

ocspSigningCert Description

File system location nickname=ocspSigningCert cert-pki-ca in
/etc/pki/pki-tomcat/alias nssdb

LDAP location No dedicated LDAP location, shared via
ou=certificateRepository,ou=ca,o=ipaca

Issuer IPA CA

Subject CN=OCSP Subsystem,O=REALM.NAME

Additional information

Tomcat servlet certificate

This certificate is used when a client contacts the PKI. Note that this server certificate is specific to the
host and it is not present in CA-less installations.

Server-Cert Description

File system location
nickname=Server-Cert cert-pki-ca in
/etc/pki/pki-tomcat/alias nssdb+

LDAP location

Issuer IPA CA

Subject CN=$HOSTNAME,O=REALM.NAME

Red Hat Enterprise Linux 9 Managing certificates in IdM

186

Additional information

Server-Cert Description

Registration authority certificate

Certificate used by certmonger as well as by the IdM framework to authenticate to the PKI. For
example, if you run ipa cert-show 1, HTTPD communicates with the PKI and authenticates with this
certificate. Not present in CA-less installations.

RA agent Description

File system location /var/lib/ipa/ra-agent.pem (used to be in
/etc/httpd/alias before RHEL 7.4)

LDAP location uid=ipara,ou=people,o=ipaca

Issuer IPA CA

Subject CN=IPA RA,O=REALM.NAME

Additional information Be wary of a serial and blob mismatch in LDAP. For
example, 2;SERIAL;CN=Certificate
Authority,O=REALM.NAME;CN=IPA
RA,O=REALM.NAME and userCertificate must
match the one on the file system.

HTTPD front end certificate

Certificate used for the HTTPD frontend to secure connections to the Web UI and API. Must be present.

HTTPD Description

File system location /var/lib/ipa/certs/httpd.crt (used to be in
/etc/httpd/alias before RHEL 8)

LDAP location

Issuer IPA CA or external CA in CA-less installations

Subject CN=$HOSTNAME,O=REALM.NAME

Additional information Must contain a Certificate Subject Alt Name
extension with principal name as otherName =
1.3.6.1.4.1.311.20.2.3;UTF8:HTTP/$HOSTNAM
E@REALM, DNS name = $HOSTNAME.

LDAP TLS and STARTTLS certificate

CHAPTER 25. UNDERSTANDING THE CERTIFICATES USED INTERNALLY BY IDM

187

Certificate used for LDAP TLS and STARTTLS connections. Must be present.

LDAP Description

File system location nickname=Server-Cert in /etc/dirsrv/slapd-
DOMAIN NSS database (can be other nickname,
matching nsSSLPersonalitySSL in dse.ldif)

LDAP location

Issuer IPA CA or external CA in CA-less installations

Subject CN=$HOSTNAME,O=REALM.NAME

Additional information Must contain a Certificate Subject Alt Name
extension with principal name as otherName =
1.3.6.1.4.1.311.20.2.3;UTF8:ldap/$HOSTNAME
@REALM, DNS name = $HOSTNAME.

KDC certificate

Certificate used for PKINIT for the IdM KDC.

KDC Description

File system location /var/kerberos/krb5kdc/kdc.crt

LDAP location

Issuer IPA CA or external CA in CA-less installations

Subject CN=$HOSTNAME,O=REALM.NAME

Additional information Must have extended key usage id-pkinit-KPkdc
(1.3.6.1.5.2.3.5), principal name as otherName =
1.3.6.1.4.1.311.20.2.3;UTF8:krbtgt/REALM@R
EALM, DNS name = $HOSTNAME.

25.3. IDM INTERNAL CERTIFICATE RENEWAL PROCESS

By default, certmonger tracks the internal certificates and triggers the renewal and requests the IdM
CA to issue a new certificate.

If you are using an external CA and your internal certificates were issued by this CA, they are not
automatically renewed. In this case, you should monitor the expiry dates of your certificates to ensure
you renew them before they expire. The renewal process is time consuming and if you do not track the
expiry dates carefully, your certificates will expire and some services will no longer be available.

Red Hat Enterprise Linux 9 Managing certificates in IdM

188

WARNING

If your internal Red Hat Identity Management (IdM) certificates expire, IdM fails to
start.

The IdM CA renewal server renews the shared internal certificates 28 days before their expiration date.
certmonger triggers this renewal and uploads the new certificate into cn=
<nickname>,cn=ca_renewal,cn=ipa,cn=etc,$BASEDN. certmonger also triggers the renewal process
on the other IdM servers but as it is executed on an non-CA renewal server, it does not request a new
certificate but downloads the certificate from LDAP. Note that the Server-Cert cert-pki-ca, HTTP,
LDAP, and PKINIT certificates are specific to each replica, containing the hostname in their subject.

NOTE

If you manually renew a shared certificate with getcert before a certificate expires, the
renewal process is not triggered on the other replicas and you must run getcert on the
other replicas to perform the download of the renewed certificate from LDAP.

25.4. ADDITIONAL RESOURCES

Using IdM CA renewal server

Renewing expired system certificates when IdM is offline

Replacing the web server and LDAP server certificates if they have not yet expired on an IdM
replica

Replacing the web server and LDAP server certificates if they have expired in the whole IdM
deployment

CHAPTER 25. UNDERSTANDING THE CERTIFICATES USED INTERNALLY BY IDM

189

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/ipa-ca-renewal_managing-certificates-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/renewing-expired-system-certificates-when-idm-is-offline_managing-certificates-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/proc_replacing-the-web-server-and-ldap-server-certificates-if-they-have-not-yet-expired-on-an-idm-replica_managing-certificates-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_certificates_in_idm/proc_replacing-the-web-server-and-ldap-server-certificates-if-they-have-expired-in-the-whole-idm-deployment_managing-certificates-in-idm

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT
	1.1. CERTIFICATE AUTHORITIES IN IDM
	1.2. COMPARISON OF CERTIFICATES AND KERBEROS
	1.3. THE PROS AND CONS OF USING CERTIFICATES TO AUTHENTICATE USERS IN IDM

	CHAPTER 2. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM CA
	2.1. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE USING IDM WEB UI
	2.2. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING CERTUTIL
	2.3. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING OPENSSL
	2.4. ADDITIONAL RESOURCES

	CHAPTER 3. MANAGING IDM CERTIFICATES USING ANSIBLE
	3.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
	3.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
	3.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
	3.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

	CHAPTER 4. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
	4.1. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING THE IDM CLI
	4.2. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING THE IDM WEB UI
	4.3. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM CLI
	4.4. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM WEB UI
	4.5. ADDITIONAL RESOURCES

	CHAPTER 5. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM
	5.1. CERTIFICATE FORMATS AND ENCODINGS IN IDM
	5.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN IDM USER ACCOUNT
	5.2.1. Prerequisites
	5.2.2. Converting an external certificate in the IdM CLI and loading it into an IdM user account
	5.2.3. Converting an external certificate in the IdM web UI for loading into an IdM user account

	5.3. PREPARING TO LOAD A CERTIFICATE INTO THE BROWSER
	5.3.1. Exporting a certificate and private key from an NSS database into a PKCS #12 file
	5.3.2. Combining certificate and private key PEM files into a PKCS #12 file

	5.4. CERTIFICATE-RELATED COMMANDS AND FORMATS IN IDM

	CHAPTER 6. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT
	6.1. WHAT IS A CERTIFICATE PROFILE?
	6.2. CREATING A CERTIFICATE PROFILE
	6.3. WHAT IS A CA ACCESS CONTROL LIST?
	6.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE PROFILES
	6.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE CERTIFICATES
	6.6. MODIFYING A CERTIFICATE PROFILE
	6.7. CERTIFICATE PROFILE CONFIGURATION PARAMETERS

	CHAPTER 7. MANAGING THE VALIDITY OF CERTIFICATES IN IDM
	7.1. MANAGING THE VALIDITY OF AN EXISTING CERTIFICATE THAT WAS ISSUED BY IDM CA
	7.2. MANAGING THE VALIDITY OF FUTURE CERTIFICATES ISSUED BY IDM CA
	7.3. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN IDM WEBUI
	7.4. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN THE CLI
	7.5. REVOKING CERTIFICATES WITH THE INTEGRATED IDM CAS
	7.5.1. Certificate revocation reasons
	7.5.2. Revoking certificates with the integrated IdM CAs using IdM WebUI
	7.5.3. Revoking certificates with the integrated IdM CAs using IdM CLI

	7.6. RESTORING CERTIFICATES WITH THE INTEGRATED IDM CAS
	7.6.1. Restoring certificates with the integrated IdM CAs using IdM WebUI
	7.6.2. Restoring certificates with the integrated IdM CAs using IdM CLI

	CHAPTER 8. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION
	8.1. CONFIGURING THE IDM SERVER FOR SMART CARD AUTHENTICATION
	8.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART CARD AUTHENTICATION
	8.3. CONFIGURING THE IDM CLIENT FOR SMART CARD AUTHENTICATION
	8.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD AUTHENTICATION
	8.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI
	8.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI
	8.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	8.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	8.9. LOGGING IN TO IDM WITH SMART CARDS
	8.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION ON AN IDM CLIENT
	8.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

	CHAPTER 9. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM
	9.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST CONFIGURATION AND CERTIFICATE USAGE
	9.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP
	9.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD AUTHENTICATION USING ADCS CERTIFICATES
	9.4. CONVERTING THE PFX FILE
	9.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	9.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	9.7. CONFIGURING TIMEOUTS IN SSSD.CONF
	9.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD AUTHENTICATION

	CHAPTER 10. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT
	10.1. CERTIFICATE MAPPING RULES FOR CONFIGURING AUTHENTICATION
	10.2. COMPONENTS OF AN IDENTITY MAPPING RULE IN IDM
	10.3. OBTAINING DATA FROM A CERTIFICATE FOR USE IN A MATCHING RULE
	10.4. CONFIGURING CERTIFICATE MAPPING FOR USERS STORED IN IDM
	10.4.1. Adding a certificate mapping rule in the IdM web UI
	10.4.2. Adding a certificate mapping rule in the IdM CLI
	10.4.3. Adding certificate mapping data to a user entry in the IdM web UI
	10.4.4. Adding certificate mapping data to a user entry in the IdM CLI

	10.5. CERTIFICATE MAPPING RULES FOR TRUSTS WITH ACTIVE DIRECTORY DOMAINS
	10.6. CONFIGURING CERTIFICATE MAPPING FOR USERS WHOSE AD USER ENTRY CONTAINS THE WHOLE CERTIFICATE
	10.6.1. Adding a certificate mapping rule in the IdM web UI
	10.6.2. Adding a certificate mapping rule in the IdM CLI

	10.7. CONFIGURING CERTIFICATE MAPPING IF AD IS CONFIGURED TO MAP USER CERTIFICATES TO USER ACCOUNTS
	10.7.1. Adding a certificate mapping rule in the IdM web UI
	10.7.2. Adding a certificate mapping rule in the IdM CLI
	10.7.3. Checking certificate mapping data on the AD side

	10.8. CONFIGURING CERTIFICATE MAPPING IF AD USER ENTRY CONTAINS NO CERTIFICATE OR MAPPING DATA
	10.8.1. Adding a certificate mapping rule in the IdM web UI
	10.8.2. Adding a certificate mapping rule in the IdM CLI
	10.8.3. Adding a certificate to an AD user’s ID override in the IdM web UI
	10.8.4. Adding a certificate to an AD user’s ID override in the IdM CLI

	10.9. COMBINING SEVERAL IDENTITY MAPPING RULES INTO ONE
	10.10. ADDITIONAL RESOURCES

	CHAPTER 11. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT
	11.1. CONFIGURING THE IDENTITY MANAGEMENT SERVER FOR CERTIFICATE AUTHENTICATION IN THE WEB UI
	11.2. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
	11.3. MAKING SURE THE CERTIFICATE AND USER ARE LINKED TOGETHER
	11.4. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION
	11.5. AUTHENTICATING TO THE IDENTITY MANAGEMENT WEB UI WITH A CERTIFICATE AS AN IDENTITY MANAGEMENT USER
	11.6. CONFIGURING AN IDM CLIENT TO ENABLE AUTHENTICATING TO THE CLI USING A CERTIFICATE

	CHAPTER 12. USING IDM CA RENEWAL SERVER
	12.1. EXPLANATION OF IDM CA RENEWAL SERVER
	12.2. CHANGING AND RESETTING IDM CA RENEWAL SERVER
	12.3. SWITCHING FROM AN EXTERNALLY TO SELF-SIGNED CA IN IDM
	12.4. RENEWING THE IDM CA RENEWAL SERVER CERTIFICATE USING AN EXTERNAL CA

	CHAPTER 13. RENEWING EXPIRED SYSTEM CERTIFICATES WHEN IDM IS OFFLINE
	13.1. RENEWING EXPIRED SYSTEM CERTIFICATES ON A CA RENEWAL SERVER
	13.2. VERIFYING OTHER IDM SERVERS IN THE IDM DOMAIN AFTER RENEWAL

	CHAPTER 14. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE NOT YET EXPIRED ON AN IDM REPLICA
	CHAPTER 15. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE WHOLE IDM DEPLOYMENT
	CHAPTER 16. GENERATING CRL ON THE IDM CA SERVER
	16.1. STOPPING CRL GENERATION ON AN IDM SERVER
	16.2. STARTING CRL GENERATION ON AN IDM REPLICA SERVER

	CHAPTER 17. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER ROLES
	CHAPTER 18. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
	18.1. CERTMONGER OVERVIEW
	18.2. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
	18.3. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
	18.4. VIEWING THE DETAILS OF A CERTIFICATE REQUEST TRACKED BY CERTMONGER
	18.5. STARTING AND STOPPING CERTIFICATE TRACKING
	18.6. RENEWING A CERTIFICATE MANUALLY
	18.7. MAKING CERTMONGER RESUME TRACKING OF IDM CERTIFICATES ON A CA REPLICA
	18.8. USING SCEP WITH CERTMONGER
	18.8.1. SCEP overview
	18.8.2. Requesting an IdM CA-signed certificate through SCEP
	18.8.3. Automatically renewing AD SCEP certificates with certmonger

	CHAPTER 19. DEPLOYING AND MANAGING THE ACME SERVICE IN IDM
	19.1. THE ACME SERVICE IN IDM
	19.2. ENABLING THE ACME SERVICE IN IDM
	19.3. DISABLING THE ACME SERVICE IN IDM

	CHAPTER 20. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES
	20.1. THE CERTIFICATE SYSTEM ROLE
	20.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE USING THE CERTIFICATE SYSTEM ROLE
	20.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE CERTIFICATE SYSTEM ROLE
	20.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER CERTIFICATE ISSUANCE USING THE CERTIFICATE SYSTEM ROLE

	CHAPTER 21. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES
	21.1. MANAGING LIGHTWEIGHT SUB-CAS
	21.1.1. Creating a sub-CA from the IdM WebUI
	21.1.2. Deleting a sub-CA from the IdM WebUI
	21.1.3. Creating a sub-CA from the IdM CLI
	21.1.4. Disabling a sub-CA from the IdM CLI
	21.1.5. Deleting a sub-CA from the IdM CLI

	21.2. DOWNLOADING THE SUB-CA CERTIFICATE FROM IDM WEBUI
	21.3. CREATING CA ACLS FOR WEB SERVER AND CLIENT AUTHENTICATION
	21.3.1. Viewing CA ACLs in IdM CLI
	21.3.2. Creating a CA ACL for web servers authenticating to web clients using certificates issued by webserver-ca
	21.3.3. Creating a CA ACL for user web browsers authenticating to web servers using certificates issued by webclient-ca

	21.4. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
	21.5. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
	21.6. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER
	21.7. ADDING TLS ENCRYPTION TO AN APACHE HTTP SERVER
	21.8. SETTING THE SUPPORTED TLS PROTOCOL VERSIONS ON AN APACHE HTTP SERVER
	21.9. SETTING THE SUPPORTED CIPHERS ON AN APACHE HTTP SERVER
	21.10. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION
	21.11. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
	21.12. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION

	CHAPTER 22. INVALIDATING A SPECIFIC GROUP OF RELATED CERTIFICATES QUICKLY
	22.1. DISABLING CA ACLS IN IDM CLI
	22.2. DISABLING AN IDM SUB-CA

	CHAPTER 23. VERIFYING CERTIFICATES USING IDM HEALTHCHECK
	23.1. IDM CERTIFICATES HEALTHCHECK TESTS
	23.2. SCREENING CERTIFICATES USING THE HEALTHCHECK TOOL

	CHAPTER 24. VERIFYING SYSTEM CERTIFICATES USING IDM HEALTHCHECK
	24.1. SYSTEM CERTIFICATES HEALTHCHECK TESTS
	24.2. SCREENING SYSTEM CERTIFICATES USING HEALTHCHECK

	CHAPTER 25. UNDERSTANDING THE CERTIFICATES USED INTERNALLY BY IDM
	25.1. ABOUT THE INTERNAL CERTIFICATES IN IDM
	25.2. CERTIFICATES INTERNAL TO IDM
	25.3. IDM INTERNAL CERTIFICATE RENEWAL PROCESS
	25.4. ADDITIONAL RESOURCES

