
Red Hat Enterprise Linux 9

Deploying web servers and reverse proxies

Setting up and configuring web servers and reverse proxies in Red Hat Enterprise
Linux 9

Last Updated: 2024-02-13

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

Setting up and configuring web servers and reverse proxies in Red Hat Enterprise Linux 9

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure and run the Apache HTTP web server, the NGINX web server, or the Squid caching proxy
server on Red Hat Enterprise Linux 9. Configure TLS encryption. Configure Kerberos authentication
for the Apache HTTP web server. Set up NGINX as a reverse proxy for the HTTP traffic or as an
HTTP load balancer. Configure Squid as a caching proxy without authentication, with LDAP
authentication, or with Kerberos authentication.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER
1.1. INTRODUCTION TO THE APACHE HTTP WEB SERVER
1.2. NOTABLE CHANGES IN THE APACHE HTTP SERVER
1.3. THE APACHE CONFIGURATION FILES
1.4. MANAGING THE HTTPD SERVICE
1.5. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER
1.6. CONFIGURING APACHE NAME-BASED VIRTUAL HOSTS
1.7. CONFIGURING KERBEROS AUTHENTICATION FOR THE APACHE HTTP WEB SERVER

1.7.1. Setting up GSS-Proxy in an IdM environment
1.7.2. Configuring Kerberos authentication for a directory shared by the Apache HTTP web server

1.8. CONFIGURING TLS ENCRYPTION ON AN APACHE HTTP SERVER
1.8.1. Adding TLS encryption to an Apache HTTP Server
1.8.2. Setting the supported TLS protocol versions on an Apache HTTP Server
1.8.3. Setting the supported ciphers on an Apache HTTP Server

1.9. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION
1.10. SECURING WEB APPLICATIONS ON A WEB SERVER USING MODSECURITY

1.10.1. Deploying the ModSecurity web-based application firewall for Apache
1.10.2. Adding a custom rule to ModSecurity

1.11. INSTALLING THE APACHE HTTP SERVER MANUAL
1.12. WORKING WITH APACHE MODULES

1.12.1. Loading a DSO module
1.12.2. Compiling a custom Apache module

1.13. EXPORTING A PRIVATE KEY AND CERTIFICATES FROM AN NSS DATABASE TO USE THEM IN AN
APACHE WEB SERVER CONFIGURATION
1.14. ADDITIONAL RESOURCES

CHAPTER 2. SETTING UP AND CONFIGURING NGINX
2.1. INSTALLING AND PREPARING NGINX
2.2. CONFIGURING NGINX AS A WEB SERVER THAT PROVIDES DIFFERENT CONTENT FOR DIFFERENT
DOMAINS
2.3. ADDING TLS ENCRYPTION TO AN NGINX WEB SERVER
2.4. CONFIGURING NGINX AS A REVERSE PROXY FOR THE HTTP TRAFFIC
2.5. CONFIGURING NGINX AS AN HTTP LOAD BALANCER
2.6. ADDITIONAL RESOURCES

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER
3.1. SETTING UP SQUID AS A CACHING PROXY WITHOUT AUTHENTICATION
3.2. SETTING UP SQUID AS A CACHING PROXY WITH LDAP AUTHENTICATION
3.3. SETTING UP SQUID AS A CACHING PROXY WITH KERBEROS AUTHENTICATION
3.4. CONFIGURING A DOMAIN DENY LIST IN SQUID
3.5. CONFIGURING THE SQUID SERVICE TO LISTEN ON A SPECIFIC PORT OR IP ADDRESS
3.6. ADDITIONAL RESOURCES

3

4

5
5
5
6
6
7
8

10
10
11

12
12
14
15
16
17
17
18
19

20
20
21

21
21

23
23

25
27
29
29
30

31
31

33
36
39
40
41

Table of Contents

1

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

4

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

1.1. INTRODUCTION TO THE APACHE HTTP WEB SERVER

A web server is a network service that serves content to a client over the web. This typically means web
pages, but any other documents can be served as well. Web servers are also known as HTTP servers, as
they use the hypertext transport protocol (HTTP).

The Apache HTTP Server, httpd, is an open source web server developed by the Apache Software
Foundation.

If you are upgrading from a previous release of Red Hat Enterprise Linux, you have to update the httpd
service configuration accordingly. This section reviews some of the newly added features, and guides
you through the update of prior configuration files.

1.2. NOTABLE CHANGES IN THE APACHE HTTP SERVER

RHEL 9 provides version 2.4.48 of the Apache HTTP Server. Notable changes over version 2.4.37
distributed with RHEL 8 include:

Apache HTTP Server Control Interface (apachectl):

The systemctl pager is now disabled for apachectl status output.

The apachectl command now fails instead of giving a warning if you pass additional
arguments.

The apachectl graceful-stop command now returns immediately.

The apachectl configtest command now executes the httpd -t command without changing
the SELinux context.

The apachectl(8) man page in RHEL now fully documents differences from upstream
apachectl.

Apache eXtenSion tool (apxs):

The /usr/bin/apxs command no longer uses or exposes compiler optimisation flags as
applied when building the httpd package. You can now use the
/usr/lib64/httpd/build/vendor-apxs command to apply the same compiler flags as used to
build httpd. To use the vendor-apxs command, you must install the redhat-rpm-config
package first.

Apache modules:

The mod_lua module is now provided in a separate package.

The mod_php module provided with PHP for use with the Apache HTTP Server has been
removed. Since RHEL 8, PHP scripts are run using the FastCGI Process Manager (php-
fpm) by default. For more information, see Using PHP with the Apache HTTP Server .

Configuration syntax changes:

In the deprecated Allow directive provided by the mod_access_compat module, a
comment (the # character) now triggers a syntax error instead of being silently ignored.

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

5

http://www.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_and_using_dynamic_programming_languages/assembly_using-the-php-scripting-language_installing-and-using-dynamic-programming-languages#using-the-php-scripting-language-with-a-web-server_assembly_using-the-php-scripting-language

Other changes:

Kernel thread IDs are now used directly in error log messages, making them both accurate
and more concise.

Many minor enhancements and bug fixes.

Several new interfaces are available to module authors.

There are no backwards-incompatible changes to the httpd module API since RHEL 8.

Apache HTTP Server 2.4 is the initial version of this Application Stream, which you can install easily as an
RPM package.

1.3. THE APACHE CONFIGURATION FILES

The httpd, by default, reads the configuration files after start. You can see the list of the locations of
configuration files in the table below.

Table 1.1. The httpd service configuration files

Path Description

/etc/httpd/conf/httpd.conf The main configuration file.

/etc/httpd/conf.d/ An auxiliary directory for configuration files that are
included in the main configuration file.

/etc/httpd/conf.modules.d/ An auxiliary directory for configuration files which
load installed dynamic modules packaged in Red Hat
Enterprise Linux. In the default configuration, these
configuration files are processed first.

Although the default configuration is suitable for most situations, you can use also other configuration
options. For any changes to take effect, restart the web server first.

To check the configuration for possible errors, type the following at a shell prompt:

apachectl configtest
Syntax OK

To make the recovery from mistakes easier, make a copy of the original file before editing it.

1.4. MANAGING THE HTTPD SERVICE

This section describes how to start, stop, and restart the httpd service.

Prerequisites

The Apache HTTP Server is installed.

Procedure

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

6

To start the httpd service, enter:

systemctl start httpd

To stop the httpd service, enter:

systemctl stop httpd

To restart the httpd service, enter:

systemctl restart httpd

1.5. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER

You can set up a single-instance Apache HTTP Server to serve static HTML content.

Follow the procedure if the web server should provide the same content for all domains associated with
the server. If you want to provide different content for different domains, set up name-based virtual
hosts. For details, see Configuring Apache name-based virtual hosts .

Procedure

1. Install the httpd package:

dnf install httpd

2. If you use firewalld, open the TCP port 80 in the local firewall:

firewall-cmd --permanent --add-port=80/tcp
firewall-cmd --reload

3. Enable and start the httpd service:

systemctl enable --now httpd

4. Optional: Add HTML files to the /var/www/html/ directory.

NOTE

When adding content to /var/www/html/, files and directories must be readable
by the user under which httpd runs by default. The content owner can be the
either the root user and root user group, or another user or group of the
administrator’s choice. If the content owner is the root user and root user group,
the files must be readable by other users. The SELinux context for all the files
and directories must be httpd_sys_content_t, which is applied by default to all
content within the /var/www directory.

Verification steps

Connect with a web browser to http://server_IP_or_host_name/.
If the /var/www/html/ directory is empty or does not contain an index.html or index.htm file,
Apache displays the Red Hat Enterprise Linux Test Page. If /var/www/html/ contains HTML

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

7

files with a different name, you can load them by entering the URL to that file, such as
http://server_IP_or_host_name/example.html.

Additional resources

Apache manual: Installing the Apache HTTP server manual .

See the httpd.service(8) man page.

1.6. CONFIGURING APACHE NAME-BASED VIRTUAL HOSTS

Name-based virtual hosts enable Apache to serve different content for different domains that resolve
to the IP address of the server.

You can set up a virtual host for both the example.com and example.net domain with separate
document root directories. Both virtual hosts serve static HTML content.

Prerequisites

Clients and the web server resolve the example.com and example.net domain to the IP
address of the web server.
Note that you must manually add these entries to your DNS server.

Procedure

1. Install the httpd package:

dnf install httpd

2. Edit the /etc/httpd/conf/httpd.conf file:

a. Append the following virtual host configuration for the example.com domain:

<VirtualHost *:80>
 DocumentRoot "/var/www/example.com/"
 ServerName example.com
 CustomLog /var/log/httpd/example.com_access.log combined
 ErrorLog /var/log/httpd/example.com_error.log
</VirtualHost>

These settings configure the following:

All settings in the <VirtualHost *:80> directive are specific for this virtual host.

DocumentRoot sets the path to the web content of the virtual host.

ServerName sets the domains for which this virtual host serves content.
To set multiple domains, add the ServerAlias parameter to the configuration and
specify the additional domains separated with a space in this parameter.

CustomLog sets the path to the access log of the virtual host.

ErrorLog sets the path to the error log of the virtual host.

NOTE

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

8

NOTE

Apache uses the first virtual host found in the configuration also for
requests that do not match any domain set in the ServerName and
ServerAlias parameters. This also includes requests sent to the IP
address of the server.

3. Append a similar virtual host configuration for the example.net domain:

<VirtualHost *:80>
 DocumentRoot "/var/www/example.net/"
 ServerName example.net
 CustomLog /var/log/httpd/example.net_access.log combined
 ErrorLog /var/log/httpd/example.net_error.log
</VirtualHost>

4. Create the document roots for both virtual hosts:

mkdir /var/www/example.com/
mkdir /var/www/example.net/

5. If you set paths in the DocumentRoot parameters that are not within /var/www/, set the
httpd_sys_content_t context on both document roots:

semanage fcontext -a -t httpd_sys_content_t "/srv/example.com(/.*)?"
restorecon -Rv /srv/example.com/
semanage fcontext -a -t httpd_sys_content_t "/srv/example.net(/.*)?"
restorecon -Rv /srv/example.net/

These commands set the httpd_sys_content_t context on the /srv/example.com/ and
/srv/example.net/ directory.

Note that you must install the policycoreutils-python-utils package to run the restorecon
command.

6. If you use firewalld, open port 80 in the local firewall:

firewall-cmd --permanent --add-port=80/tcp
firewall-cmd --reload

7. Enable and start the httpd service:

systemctl enable --now httpd

Verification steps

1. Create a different example file in each virtual host’s document root:

echo "vHost example.com" > /var/www/example.com/index.html
echo "vHost example.net" > /var/www/example.net/index.html

2. Use a browser and connect to http://example.com. The web server shows the example file from
the example.com virtual host.

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

9

3. Use a browser and connect to http://example.net. The web server shows the example file from
the example.net virtual host.

Additional resources

Installing the Apache HTTP Server manual - Virtual Hosts

1.7. CONFIGURING KERBEROS AUTHENTICATION FOR THE APACHE
HTTP WEB SERVER

To perform Kerberos authentication in the Apache HTTP web server, RHEL 9 uses the
mod_auth_gssapi Apache module. The Generic Security Services API (GSSAPI) is an interface for
applications that make requests to use security libraries, such as Kerberos. The gssproxy service allows
to implement privilege separation for the httpd server, which optimizes this process from the security
point of view.

NOTE

The mod_auth_gssapi module replaces the removed mod_auth_kerb module.

Prerequisites

The httpd, mod_auth_gssapi and gssproxy packages are installed.

The Apache web server is set up and the httpd service is running.

1.7.1. Setting up GSS-Proxy in an IdM environment

This procedure describes how to set up GSS-Proxy to perform Kerberos authentication in the Apache
HTTP web server.

Procedure

1. Enable access to the keytab file of HTTP/<SERVER_NAME>@realm principal by creating the
service principal:

ipa service-add HTTP/<SERVER_NAME>

2. Retrieve the keytab for the principal stored in the /etc/gssproxy/http.keytab file:

ipa-getkeytab -s $(awk '/^server =/ {print $3}' /etc/ipa/default.conf) -k
/etc/gssproxy/http.keytab -p HTTP/$(hostname -f)

This step sets permissions to 400, thus only the root user has access to the keytab file. The
apache user does not.

3. Create the /etc/gssproxy/80-httpd.conf file with the following content:

[service/HTTP]
 mechs = krb5
 cred_store = keytab:/etc/gssproxy/http.keytab
 cred_store = ccache:/var/lib/gssproxy/clients/krb5cc_%U
 euid = apache

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

10

4. Restart and enable the gssproxy service:

systemctl restart gssproxy.service
systemctl enable gssproxy.service

Additional resources

gssproxy(8) man pages

gssproxy-mech(8) man pages

gssproxy.conf(5) man pages

1.7.2. Configuring Kerberos authentication for a directory shared by the Apache
HTTP web server

This procedure describes how to configure Kerberos authentication for the /var/www/html/private/
directory.

Prerequisites

The gssproxy service is configured and running.

Procedure

1. Configure the mod_auth_gssapi module to protect the /var/www/html/private/ directory:

<Location /var/www/html/private>
 AuthType GSSAPI
 AuthName "GSSAPI Login"
 Require valid-user
</Location>

2. Create system unit configuration drop-in file:

systemctl edit httpd.service

3. Add the following parameter to the system drop-in file:

[Service]
Environment=GSS_USE_PROXY=1

4. Reload the systemd configuration:

systemctl daemon-reload

5. Restart the httpd service:

systemctl restart httpd.service

Verification steps

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

11

1. Obtain a Kerberos ticket:

kinit

2. Open the URL to the protected directory in a browser.

1.8. CONFIGURING TLS ENCRYPTION ON AN APACHE HTTP SERVER

By default, Apache provides content to clients using an unencrypted HTTP connection. This section
describes how to enable TLS encryption and configure frequently used encryption-related settings on
an Apache HTTP Server.

Prerequisites

The Apache HTTP Server is installed and running.

1.8.1. Adding TLS encryption to an Apache HTTP Server

You can enable TLS encryption on an Apache HTTP Server for the example.com domain.

Prerequisites

The Apache HTTP Server is installed and running.

The private key is stored in the /etc/pki/tls/private/example.com.key file.
For details about creating a private key and certificate signing request (CSR), as well as how to
request a certificate from a certificate authority (CA), see your CA’s documentation.
Alternatively, if your CA supports the ACME protocol, you can use the mod_md module to
automate retrieving and provisioning TLS certificates.

The TLS certificate is stored in the /etc/pki/tls/certs/example.com.crt file. If you use a different
path, adapt the corresponding steps of the procedure.

The CA certificate is stored in the /etc/pki/tls/certs/ca.crt file. If you use a different path, adapt
the corresponding steps of the procedure.

Clients and the web server resolve the host name of the server to the IP address of the web
server.

If the server runs RHEL 9.2 or later and the FIPS mode is enabled, clients must either support
the Extended Master Secret (EMS) extension or use TLS 1.3. TLS 1.2 connections without EMS
fail. For more information, see the TLS extension "Extended Master Secret" enforced
Knowledgebase article.

Procedure

1. Install the mod_ssl package:

dnf install mod_ssl

2. Edit the /etc/httpd/conf.d/ssl.conf file and add the following settings to the <VirtualHost
default:443> directive:

a. Set the server name:

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

12

https://access.redhat.com/solutions/7018256

ServerName example.com

IMPORTANT

The server name must match the entry set in the Common Name field of the
certificate.

a. Optional: If the certificate contains additional host names in the Subject Alt Names (SAN)
field, you can configure mod_ssl to provide TLS encryption also for these host names. To
configure this, add the ServerAliases parameter with corresponding names:

ServerAlias www.example.com server.example.com

b. Set the paths to the private key, the server certificate, and the CA certificate:

SSLCertificateKeyFile "/etc/pki/tls/private/example.com.key"
SSLCertificateFile "/etc/pki/tls/certs/example.com.crt"
SSLCACertificateFile "/etc/pki/tls/certs/ca.crt"

3. For security reasons, configure that only the root user can access the private key file:

chown root:root /etc/pki/tls/private/example.com.key
chmod 600 /etc/pki/tls/private/example.com.key

WARNING

If the private key was accessed by unauthorized users, revoke the
certificate, create a new private key, and request a new certificate.
Otherwise, the TLS connection is no longer secure.

4. If you use firewalld, open port 443 in the local firewall:

firewall-cmd --permanent --add-port=443/tcp
firewall-cmd --reload

5. Restart the httpd service:

systemctl restart httpd

NOTE

If you protected the private key file with a password, you must enter this
password each time when the httpd service starts.

Verification steps

Use a browser and connect to https://example.com.

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

13

Additional resources

SSL/TLS Encryption

Security considerations for TLS in RHEL 9

1.8.2. Setting the supported TLS protocol versions on an Apache HTTP Server

By default, the Apache HTTP Server on RHEL uses the system-wide crypto policy that defines safe
default values, which are also compatible with recent browsers. For example, the DEFAULT policy
defines that only the TLSv1.2 and TLSv1.3 protocol versions are enabled in apache.

You can manually configure which TLS protocol versions your Apache HTTP Server supports. Follow the
procedure if your environment requires to enable only specific TLS protocol versions, for example:

If your environment requires that clients can also use the weak TLS1 (TLSv1.0) or TLS1.1
protocol.

If you want to configure that Apache only supports the TLSv1.2 or TLSv1.3 protocol.

Prerequisites

TLS encryption is enabled on the server as described in Adding TLS encryption to an Apache
HTTP server.

If the server runs RHEL 9.2 or later and the FIPS mode is enabled, clients must either support
the Extended Master Secret (EMS) extension or use TLS 1.3. TLS 1.2 connections without EMS
fail. For more information, see the TLS extension "Extended Master Secret" enforced
Knowledgebase article.

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file, and add the following setting to the <VirtualHost>
directive for which you want to set the TLS protocol version. For example, to enable only the
TLSv1.3 protocol:

SSLProtocol -All TLSv1.3

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. Use the following command to verify that the server supports TLSv1.3:

openssl s_client -connect example.com:443 -tls1_3

2. Use the following command to verify that the server does not support TLSv1.2:

openssl s_client -connect example.com:443 -tls1_2

If the server does not support the protocol, the command returns an error:

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/planning-and-implementing-tls_securing-networks#security-considerations-for-tls-in-rhel_planning-and-implementing-tls
https://access.redhat.com/solutions/7018256

140111600609088:error:1409442E:SSL routines:ssl3_read_bytes:tlsv1 alert protocol
version:ssl/record/rec_layer_s3.c:1543:SSL alert number 70

3. Optional: Repeat the command for other TLS protocol versions.

Additional resources

update-crypto-policies(8) man page

Using system-wide cryptographic policies .

For further details about the SSLProtocol parameter, refer to the mod_ssl documentation in
the Apache manual: Installing the Apache HTTP server manual .

1.8.3. Setting the supported ciphers on an Apache HTTP Server

By default, the Apache HTTP Server uses the system-wide crypto policy that defines safe default
values, which are also compatible with recent browsers. For the list of ciphers the system-wide crypto
allows, see the /etc/crypto-policies/back-ends/openssl.config file.

You can manually configure which ciphers your Apache HTTP Server supports. Follow the procedure if
your environment requires specific ciphers.

Prerequisites

TLS encryption is enabled on the server as described in Adding TLS encryption to an Apache
HTTP server.

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file, and add the SSLCipherSuite parameter to the
<VirtualHost> directive for which you want to set the TLS ciphers:

SSLCipherSuite
"EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH:!SHA1:!SHA256"

This example enables only the EECDH+AESGCM, EDH+AESGCM, AES256+EECDH, and
AES256+EDH ciphers and disables all ciphers which use the SHA1 and SHA256 message
authentication code (MAC).

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. To display the list of ciphers the Apache HTTP Server supports:

a. Install the nmap package:

dnf install nmap

b. Use the nmap utility to display the supported ciphers:

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

nmap --script ssl-enum-ciphers -p 443 example.com
...
PORT STATE SERVICE
443/tcp open https
| ssl-enum-ciphers:
| TLSv1.2:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (dh 2048) - A
| TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
...

Additional resources

update-crypto-policies(8) man page

Using system-wide cryptographic policies .

SSLCipherSuite

1.9. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION

Client certificate authentication enables administrators to allow only users who authenticate using a
certificate to access resources on the web server. You can configure client certificate authentication for
the /var/www/html/Example/ directory.

If the Apache HTTP Server uses the TLS 1.3 protocol, certain clients require additional configuration.
For example, in Firefox, set the security.tls.enable_post_handshake_auth parameter in the
about:config menu to true. For further details, see Transport Layer Security version 1.3 in Red Hat
Enterprise Linux 8.

Prerequisites

TLS encryption is enabled on the server as described in Adding TLS encryption to an Apache
HTTP server.

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file and add the following settings to the <VirtualHost>
directive for which you want to configure client authentication:

<Directory "/var/www/html/Example/">
 SSLVerifyClient require
</Directory>

The SSLVerifyClient require setting defines that the server must successfully validate the
client certificate before the client can access the content in the /var/www/html/Example/
directory.

2. Restart the httpd service:

systemctl restart httpd

Verification steps

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://www.redhat.com/en/blog/transport-layer-security-version-13-red-hat-enterprise-linux-8

1. Use the curl utility to access the https://example.com/Example/ URL without client
authentication:

$ curl https://example.com/Example/
curl: (56) OpenSSL SSL_read: error:1409445C:SSL routines:ssl3_read_bytes:tlsv13 alert
certificate required, errno 0

The error indicates that the web server requires a client certificate authentication.

2. Pass the client private key and certificate, as well as the CA certificate to curl to access the
same URL with client authentication:

$ curl --cacert ca.crt --key client.key --cert client.crt https://example.com/Example/

If the request succeeds, curl displays the index.html file stored in the /var/www/html/Example/
directory.

Additional resources

mod_ssl configuration

1.10. SECURING WEB APPLICATIONS ON A WEB SERVER USING
MODSECURITY

ModSecurity is an open source web application firewall (WAF) supported by various web servers such as
Apache, Nginx, and IIS, which reduces security risks in web applications. ModSecurity provides
customizable rule sets for configuring your server.

The mod_security-crs package contains the core rule set (CRS) with rules against cross-website
scripting, bad user agents, SQL injection, Trojans, session hijacking, and other exploits.

1.10.1. Deploying the ModSecurity web-based application firewall for Apache

To reduce risks related to running web-based applications on your web server by deploying
ModSecurity, install the mod_security and mod_security_crs packages for the Apache HTTP server.
The mod_security_crs package provides the core rule set (CRS) for the ModSecurity web-based
application firewall (WAF) module.

Procedure

1. Install the mod_security, mod_security_crs, and httpd packages:

dnf install -y mod_security mod_security_crs httpd

2. Start the httpd server:

systemctl restart httpd

Verification

1. Verify that the ModSecurity web-based application firewall is enabled on your Apache HTTP
server:

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

17

httpd -M | grep security
 security2_module (shared)

2. Check that the /etc/httpd/modsecurity.d/activated_rules/ directory contains rules provided by
mod_security_crs:

ls /etc/httpd/modsecurity.d/activated_rules/
...
REQUEST-921-PROTOCOL-ATTACK.conf
REQUEST-930-APPLICATION-ATTACK-LFI.conf
...

Additional resources

Red Hat JBoss Core Services ModSecurity Guide

An introduction to web application firewalls for Linux sysadmins

1.10.2. Adding a custom rule to ModSecurity

If the rules contained in the ModSecurity core rule set (CRS) do not fit your scenario and if you want to
prevent additional possible attacks, you can add your custom rules to the rule set used by the
ModSecurity web-based application firewall. The following example demonstrates the addition of a
simple rule. For creating more complex rules, see the reference manual on the ModSecurity Wiki
website.

Prerequisites

ModSecurity for Apache is installed and enabled.

Procedure

1. Open the /etc/httpd/conf.d/mod_security.conf file in a text editor of your choice, for example:

vi /etc/httpd/conf.d/mod_security.conf

2. Add the following example rule after the line starting with SecRuleEngine On:

SecRule ARGS:data "@contains evil" "deny,status:403,msg:'param data contains evil
data',id:1"

The previous rule forbids the use of resources to the user if the data parameter contains the
evil string.

3. Save the changes, and quit the editor.

4. Restart the httpd server:

systemctl restart httpd

Verification

1. Create a test.html page:

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

18

https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.37/html/red_hat_jboss_core_services_modsecurity_guide/index
https://www.redhat.com/sysadmin/introducing-wafs
https://github.com/SpiderLabs/ModSecurity/wiki

echo "mod_security test" > /var/www/html/test.html

2. Restart the httpd server:

systemctl restart httpd

3. Request test.html without malicious data in the GET variable of the HTTP request:

$ curl http://localhost/test.html?data=good

mod_security test

4. Request test.html with malicious data in the GET variable of the HTTP request:

$ curl localhost/test.html?data=xxxevilxxx

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>403 Forbidden</title>
</head><body>
<h1>Forbidden</h1>
<p>You do not have permission to access this resource.</p>
</body></html>

5. Check the /var/log/httpd/error_log file, and locate the log entry about denying access with the
param data containing an evil data message:

[Wed May 25 08:01:31.036297 2022] [:error] [pid 5839:tid 139874434791168] [client
::1:45658] [client ::1] ModSecurity: Access denied with code 403 (phase 2). String match
"evil" at ARGS:data. [file "/etc/httpd/conf.d/mod_security.conf"] [line "4"] [id "1"] [msg "param
data contains evil data"] [hostname "localhost"] [uri "/test.html"] [unique_id
"Yo4amwIdsBG3yZqSzh2GuwAAAIY"]

Additional resources

ModSecurity Wiki

1.11. INSTALLING THE APACHE HTTP SERVER MANUAL

You can install the Apache HTTP Server manual. This manual provides a detailed documentation of, for
example:

Configuration parameters and directives

Performance tuning

Authentication settings

Modules

Content caching

Security tips

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

19

https://github.com/SpiderLabs/ModSecurity/wiki

Configuring TLS encryption

After installing the manual, you can display it using a web browser.

Prerequisites

The Apache HTTP Server is installed and running.

Procedure

1. Install the httpd-manual package:

dnf install httpd-manual

2. Optional: By default, all clients connecting to the Apache HTTP Server can display the manual.
To restrict access to a specific IP range, such as the 192.0.2.0/24 subnet, edit the
/etc/httpd/conf.d/manual.conf file and add the Require ip 192.0.2.0/24 setting to the
<Directory "/usr/share/httpd/manual"> directive:

<Directory "/usr/share/httpd/manual">
...
 Require ip 192.0.2.0/24
...
</Directory>

3. Restart the httpd service:

systemctl restart httpd

Verification steps

1. To display the Apache HTTP Server manual, connect with a web browser to
http://host_name_or_IP_address/manual/

1.12. WORKING WITH APACHE MODULES

The httpd service is a modular application, and you can extend it with a number of Dynamic Shared
Objects (DSOs). Dynamic Shared Objects are modules that you can dynamically load or unload at
runtime as necessary. You can find these modules in the /usr/lib64/httpd/modules/ directory.

1.12.1. Loading a DSO module

As an administrator, you can choose the functionality to include in the server by configuring which
modules the server should load. To load a particular DSO module, use the LoadModule directive. Note
that modules provided by a separate package often have their own configuration file in the
/etc/httpd/conf.modules.d/ directory.

Prerequisites

You have installed the httpd package.

Procedure

1. Search for the module name in the configuration files in the /etc/httpd/conf.modules.d/

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

20

1. Search for the module name in the configuration files in the /etc/httpd/conf.modules.d/
directory:

grep mod_ssl.so /etc/httpd/conf.modules.d/*

2. Edit the configuration file in which the module name was found, and uncomment the
LoadModule directive of the module:

LoadModule ssl_module modules/mod_ssl.so

3. If the module was not found, for example, because a RHEL package does not provide the
module, create a configuration file, such as /etc/httpd/conf.modules.d/30-example.conf with
the following directive:

LoadModule ssl_module modules/<custom_module>.so

4. Restart the httpd service:

systemctl restart httpd

1.12.2. Compiling a custom Apache module

You can create your own module and build it with the help of the httpd-devel package, which contains
the include files, the header files, and the APache eXtenSion (apxs) utility required to compile a
module.

Prerequisites

You have the httpd-devel package installed.

Procedure

Build a custom module with the following command:

apxs -i -a -c module_name.c

Verification steps

Load the module the same way as described in Loading a DSO module .

1.13. EXPORTING A PRIVATE KEY AND CERTIFICATES FROM AN NSS
DATABASE TO USE THEM IN AN APACHE WEB SERVER
CONFIGURATION

Since RHEL 8 we no longer provide the mod_nss module for the Apache web server, and Red Hat
recommends using the mod_ssl module. If you store your private key and certificates in a Network
Security Services (NSS) database, follow this procedure to extract the key and certificates in Privacy
Enhanced Mail (PEM) format.

1.14. ADDITIONAL RESOURCES

CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/setting-apache-http-server_deploying-different-types-of-servers#exporting-a-private-key-and-certificates-from-an-nss-database-to-use-them-in-an-apache-web-server-configuration_setting-apache-http-server

httpd(8) man page

httpd.service(8) man page

httpd.conf(5) man page

apachectl(8) man page

Kerberos authentication on an Apache HTTP server: Using GSS-Proxy for Apache httpd
operation. Using Kerberos is an alternative way to enforce client authorization on an Apache
HTTP Server.

Configuring applications to use cryptographic hardware through PKCS #11 .

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

22

https://access.redhat.com/articles/5854761
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/configuring-applications-to-use-cryptographic-hardware-through-pkcs-11_security-hardening

CHAPTER 2. SETTING UP AND CONFIGURING NGINX
NGINX is a high performance and modular server that you can use, for example, as a:

Web server

Reverse proxy

Load balancer

This section describes how to NGINX in these scenarios.

2.1. INSTALLING AND PREPARING NGINX

In Red Hat Enterprise Linux 9,different versions to NGINX are provided by Application Streams. By using
the default configuration, NGINX runs as a web server on port 80 and provides content from the
/usr/share/nginx/html/ directory.

Prerequisites

RHEL 9 is installed.

The host is subscribed to the Red Hat Customer Portal.

The firewalld service is enabled and started.

Procedure

1. Install the nginx package:

To install NGINX 1.20 as the initial version of this Application Stream from an RPM package:

dnf install nginx

NOTE

If you have previously enabled an NGINX module stream, this command
installs the NGINX version from the enabled stream.

To install an alternate later version of NGINX from a module stream:

a. Display the available NGINX module streams:

dnf module list nginx
...
rhel-AppStream
Name Stream Profiles Summary
nginx 1.22 common [d] nginx webserver
...
Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

b. Enable the selected stream:

dnf module enable nginx:stream_version

CHAPTER 2. SETTING UP AND CONFIGURING NGINX

23

c. Install the nginx package:

dnf install nginx

2. Open the ports on which NGINX should provide its service in the firewall. For example, to open
the default ports for HTTP (port 80) and HTTPS (port 443) in firewalld, enter:

firewall-cmd --permanent --add-port={80/tcp,443/tcp}
firewall-cmd --reload

3. Enable the nginx service to start automatically when the system boots:

systemctl enable nginx

4. Optionally, start the nginx service:

systemctl start nginx

If you do not want to use the default configuration, skip this step, and configure NGINX
accordingly before you start the service.

Verification steps

1. Use the dnf utility to verify that the nginx package is installed.

In case of the NGINX 1.20 RPM package:

dnf list installed nginx
Installed Packages
nginx.x86_64 1:1.20.1-4.el9 @rhel-AppStream

In case of a selected NGINX module stream:

dnf list installed nginx
Installed Packages
nginx.x86_64 1:1.22.1-3.module+el9.2.0+17617+2f289c6c @rhel-AppStream

2. Ensure that the ports on which NGINX should provide its service are opened in the firewalld:

firewall-cmd --list-ports
80/tcp 443/tcp

3. Verify that the nginx service is enabled:

systemctl is-enabled nginx
enabled

Additional resources

Using and Configuring Subscription Manager

Securing networks

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

24

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/rhsm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/

2.2. CONFIGURING NGINX AS A WEB SERVER THAT PROVIDES
DIFFERENT CONTENT FOR DIFFERENT DOMAINS

By default, NGINX acts as a web server that provides the same content to clients for all domain names
associated with the IP addresses of the server. This procedure explains how to configure NGINX:

To serve requests to the example.com domain with content from the /var/www/example.com/
directory

To serve requests to the example.net domain with content from the /var/www/example.net/
directory

To serve all other requests, for example, to the IP address of the server or to other domains
associated with the IP address of the server, with content from the /usr/share/nginx/html/
directory

Prerequisites

NGINX is installed

Clients and the web server resolve the example.com and example.net domain to the IP
address of the web server.
Note that you must manually add these entries to your DNS server.

Procedure

1. Edit the /etc/nginx/nginx.conf file:

a. By default, the /etc/nginx/nginx.conf file already contains a catch-all configuration. If you
have deleted this part from the configuration, re-add the following server block to the http
block in the /etc/nginx/nginx.conf file:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 root /usr/share/nginx/html;
}

These settings configure the following:

The listen directive define which IP address and ports the service listens. In this case,
NGINX listens on port 80 on both all IPv4 and IPv6 addresses. The default_server
parameter indicates that NGINX uses this server block as the default for requests
matching the IP addresses and ports.

The server_name parameter defines the host names for which this server block is
responsible. Setting server_name to _ configures NGINX to accept any host name for
this server block.

The root directive sets the path to the web content for this server block.

b. Append a similar server block for the example.com domain to the http block:

server {

CHAPTER 2. SETTING UP AND CONFIGURING NGINX

25

 server_name example.com;
 root /var/www/example.com/;
 access_log /var/log/nginx/example.com/access.log;
 error_log /var/log/nginx/example.com/error.log;
}

The access_log directive defines a separate access log file for this domain.

The error_log directive defines a separate error log file for this domain.

c. Append a similar server block for the example.net domain to the http block:

server {
 server_name example.net;
 root /var/www/example.net/;
 access_log /var/log/nginx/example.net/access.log;
 error_log /var/log/nginx/example.net/error.log;
}

2. Create the root directories for both domains:

mkdir -p /var/www/example.com/
mkdir -p /var/www/example.net/

3. Set the httpd_sys_content_t context on both root directories:

semanage fcontext -a -t httpd_sys_content_t "/var/www/example.com(/.*)?"
restorecon -Rv /var/www/example.com/
semanage fcontext -a -t httpd_sys_content_t "/var/www/example.net(/.*)?"
restorecon -Rv /var/www/example.net/

These commands set the httpd_sys_content_t context on the /var/www/example.com/ and
/var/www/example.net/ directories.

Note that you must install the policycoreutils-python-utils package to run the restorecon
commands.

4. Create the log directories for both domains:

mkdir /var/log/nginx/example.com/
mkdir /var/log/nginx/example.net/

5. Restart the nginx service:

systemctl restart nginx

Verification steps

1. Create a different example file in each virtual host’s document root:

echo "Content for example.com" > /var/www/example.com/index.html
echo "Content for example.net" > /var/www/example.net/index.html
echo "Catch All content" > /usr/share/nginx/html/index.html

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

26

2. Use a browser and connect to http://example.com. The web server shows the example content
from the /var/www/example.com/index.html file.

3. Use a browser and connect to http://example.net. The web server shows the example content
from the /var/www/example.net/index.html file.

4. Use a browser and connect to http://IP_address_of_the_server. The web server shows the
example content from the /usr/share/nginx/html/index.html file.

2.3. ADDING TLS ENCRYPTION TO AN NGINX WEB SERVER

You can enable TLS encryption on an NGINX web server for the example.com domain.

Prerequisites

NGINX is installed.

The private key is stored in the /etc/pki/tls/private/example.com.key file.
For details about creating a private key and certificate signing request (CSR), as well as how to
request a certificate from a certificate authority (CA), see your CA’s documentation.

The TLS certificate is stored in the /etc/pki/tls/certs/example.com.crt file. If you use a different
path, adapt the corresponding steps of the procedure.

The CA certificate has been appended to the TLS certificate file of the server.

Clients and the web server resolve the host name of the server to the IP address of the web
server.

Port 443 is open in the local firewall.

If the server runs RHEL 9.2 or later and the FIPS mode is enabled, clients must either support
the Extended Master Secret (EMS) extension or use TLS 1.3. TLS 1.2 connections without EMS
fail. For more information, see the TLS extension "Extended Master Secret" enforced
Knowledgebase article.

Procedure

1. Edit the /etc/nginx/nginx.conf file, and add the following server block to the http block in the
configuration:

server {
 listen 443 ssl;
 server_name example.com;
 root /usr/share/nginx/html;
 ssl_certificate /etc/pki/tls/certs/example.com.crt;
 ssl_certificate_key /etc/pki/tls/private/example.com.key;
}

2. Optional: Starting with RHEL 9.3, you can use the ssl_pass_phrase_dialog directive to
configure an external program that is called at nginx start for each encrypted private key. Add
one of the following lines to the /etc/nginx/nginx.conf file:

To call an external program for each encrypted private key file, enter:

CHAPTER 2. SETTING UP AND CONFIGURING NGINX

27

https://access.redhat.com/solutions/7018256

ssl_pass_phrase_dialog exec:<path_to_program>;

NGINX calls this program with the following two arguments:

The server name specified in the server_name setting.

One of the following algorithms: RSA, DSA, EC, DH, or UNK if a cryptographic
algorithm cannot be recognized.

If you want to manually enter a passphrase for each encrypted private key file, enter:

ssl_pass_phrase_dialog builtin;

This is the default behavior if ssl_pass_phrase_dialog is not configured.

NOTE

The nginx service fails to start if you use this method but have at least one
private key protected by a passphrase. In this case, use one of the other
methods.

If you want systemd to prompt for the passphrase for each encrypted private key when you
start the nginx service by using the systemctl utility, enter:

ssl_pass_phrase_dialog exec:/usr/libexec/nginx-ssl-pass-dialog;

3. For security reasons, configure that only the root user can access the private key file:

chown root:root /etc/pki/tls/private/example.com.key
chmod 600 /etc/pki/tls/private/example.com.key

WARNING

If the private key was accessed by unauthorized users, revoke the
certificate, create a new private key, and request a new certificate.
Otherwise, the TLS connection is no longer secure.

4. Restart the nginx service:

systemctl restart nginx

Verification steps

Use a browser and connect to https://example.com

Additional resources

Security considerations for TLS in RHEL

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/planning-and-implementing-tls_securing-networks#security-considerations-for-tls-in-rhel_planning-and-implementing-tls

2.4. CONFIGURING NGINX AS A REVERSE PROXY FOR THE HTTP
TRAFFIC

You can configure the NGINX web server to act as a reverse proxy for HTTP traffic. For example, you
can use this functionality to forward requests to a specific subdirectory on a remote server. From the
client perspective, the client loads the content from the host it accesses. However, NGINX loads the
actual content from the remote server and forwards it to the client.

This procedure explains how to forward traffic to the /example directory on the web server to the URL
https://example.com.

Prerequisites

NGINX is installed as described in Installing and preparing NGINX .

Optional: TLS encryption is enabled on the reverse proxy.

Procedure

1. Edit the /etc/nginx/nginx.conf file and add the following settings to the server block that
should provide the reverse proxy:

location /example {
 proxy_pass https://example.com;
}

The location block defines that NGINX passes all requests in the /example directory to
https://example.com.

2. Set the httpd_can_network_connect SELinux boolean parameter to 1 to configure that
SELinux allows NGINX to forward traffic:

setsebool -P httpd_can_network_connect 1

3. Restart the nginx service:

systemctl restart nginx

Verification steps

Use a browser and connect to http://host_name/example and the content of
https://example.com is shown.

2.5. CONFIGURING NGINX AS AN HTTP LOAD BALANCER

You can use the NGINX reverse proxy feature to load-balance traffic. This procedure describes how to
configure NGINX as an HTTP load balancer that sends requests to different servers, based on which of
them has the least number of active connections. If both servers are not available, the procedure also
defines a third host for fallback reasons.

Prerequisites

NGINX is installed as described in Installing and preparing NGINX .

CHAPTER 2. SETTING UP AND CONFIGURING NGINX

29

Procedure

1. Edit the /etc/nginx/nginx.conf file and add the following settings:

http {
 upstream backend {
 least_conn;
 server server1.example.com;
 server server2.example.com;
 server server3.example.com backup;
 }

 server {
 location / {
 proxy_pass http://backend;
 }
 }
}

The least_conn directive in the host group named backend defines that NGINX sends
requests to server1.example.com or server2.example.com, depending on which host has the
least number of active connections. NGINX uses server3.example.com only as a backup in case
that the other two hosts are not available.

With the proxy_pass directive set to http://backend, NGINX acts as a reverse proxy and uses
the backend host group to distribute requests based on the settings of this group.

Instead of the least_conn load balancing method, you can specify:

No method to use round robin and distribute requests evenly across servers.

ip_hash to send requests from one client address to the same server based on a hash
calculated from the first three octets of the IPv4 address or the whole IPv6 address of the
client.

hash to determine the server based on a user-defined key, which can be a string, a variable,
or a combination of both. The consistent parameter configures that NGINX distributes
requests across all servers based on the user-defined hashed key value.

random to send requests to a randomly selected server.

2. Restart the nginx service:

systemctl restart nginx

2.6. ADDITIONAL RESOURCES

Official NGINX documentation . Note that Red Hat does not maintain this documentation and
that it might not work with the NGINX version you have installed.

Configuring applications to use cryptographic hardware through PKCS #11 .

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

30

https://nginx.org/en/docs/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/configuring-applications-to-use-cryptographic-hardware-through-pkcs-11_security-hardening

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY
SERVER

Squid is a proxy server that caches content to reduce bandwidth and load web pages more quickly. This
chapter describes how to set up Squid as a proxy for the HTTP, HTTPS, and FTP protocol, as well as
authentication and restricting access.

3.1. SETTING UP SQUID AS A CACHING PROXY WITHOUT
AUTHENTICATION

You can configure Squid as a caching proxy without authentication. The procedure limits access to the
proxy based on IP ranges.

Prerequisites

The procedure assumes that the /etc/squid/squid.conf file is as provided by the squid
package. If you edited this file before, remove the file and reinstall the package.

Procedure

1. Install the squid package:

dnf install squid

2. Edit the /etc/squid/squid.conf file:

a. Adapt the localnet access control lists (ACL) to match the IP ranges that should be allowed
to use the proxy:

acl localnet src 192.0.2.0/24
acl localnet 2001:db8:1::/64

By default, the /etc/squid/squid.conf file contains the http_access allow localnet rule
that allows using the proxy from all IP ranges specified in localnet ACLs. Note that you must
specify all localnet ACLs before the http_access allow localnet rule.

IMPORTANT

Remove all existing acl localnet entries that do not match your environment.

b. The following ACL exists in the default configuration and defines 443 as a port that uses the
HTTPS protocol:

acl SSL_ports port 443

If users should be able to use the HTTPS protocol also on other ports, add an ACL for each
of these port:

acl SSL_ports port port_number

c. Update the list of acl Safe_ports rules to configure to which ports Squid can establish a
connection. For example, to configure that clients using the proxy can only access

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER

31

resources on port 21 (FTP), 80 (HTTP), and 443 (HTTPS), keep only the following acl
Safe_ports statements in the configuration:

acl Safe_ports port 21
acl Safe_ports port 80
acl Safe_ports port 443

By default, the configuration contains the http_access deny !Safe_ports rule that defines
access denial to ports that are not defined in Safe_ports ACLs.

d. Configure the cache type, the path to the cache directory, the cache size, and further cache
type-specific settings in the cache_dir parameter:

cache_dir ufs /var/spool/squid 10000 16 256

With these settings:

Squid uses the ufs cache type.

Squid stores its cache in the /var/spool/squid/ directory.

The cache grows up to 10000 MB.

Squid creates 16 level-1 sub-directories in the /var/spool/squid/ directory.

Squid creates 256 sub-directories in each level-1 directory.
If you do not set a cache_dir directive, Squid stores the cache in memory.

3. If you set a different cache directory than /var/spool/squid/ in the cache_dir parameter:

a. Create the cache directory:

mkdir -p path_to_cache_directory

b. Configure the permissions for the cache directory:

chown squid:squid path_to_cache_directory

c. If you run SELinux in enforcing mode, set the squid_cache_t context for the cache
directory:

semanage fcontext -a -t squid_cache_t "path_to_cache_directory(/.*)?"
restorecon -Rv path_to_cache_directory

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

4. Open the 3128 port in the firewall:

firewall-cmd --permanent --add-port=3128/tcp
firewall-cmd --reload

5. Enable and start the squid service:

systemctl enable --now squid

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

32

Verification steps

To verify that the proxy works correctly, download a web page using the curl utility:

curl -O -L "https://www.redhat.com/index.html" -x "proxy.example.com:3128"

If curl does not display any error and the index.html file was downloaded to the current directory, the
proxy works.

3.2. SETTING UP SQUID AS A CACHING PROXY WITH LDAP
AUTHENTICATION

You can configure Squid as a caching proxy that uses LDAP to authenticate users. The procedure
configures that only authenticated users can use the proxy.

Prerequisites

The procedure assumes that the /etc/squid/squid.conf file is as provided by the squid
package. If you edited this file before, remove the file and reinstall the package.

An service user, such as uid=proxy_user,cn=users,cn=accounts,dc=example,dc=com exists
in the LDAP directory. Squid uses this account only to search for the authenticating user. If the
authenticating user exists, Squid binds as this user to the directory to verify the authentication.

Procedure

1. Install the squid package:

dnf install squid

2. Edit the /etc/squid/squid.conf file:

a. To configure the basic_ldap_auth helper utility, add the following configuration entry to
the top of /etc/squid/squid.conf:

auth_param basic program /usr/lib64/squid/basic_ldap_auth -b
"cn=users,cn=accounts,dc=example,dc=com" -D
"uid=proxy_user,cn=users,cn=accounts,dc=example,dc=com" -W
/etc/squid/ldap_password -f "(&(objectClass=person)(uid=%s))" -ZZ -H
ldap://ldap_server.example.com:389

The following describes the parameters passed to the basic_ldap_auth helper utility in the
example above:

-b base_DN sets the LDAP search base.

-D proxy_service_user_DN sets the distinguished name (DN) of the account Squid
uses to search for the authenticating user in the directory.

-W path_to_password_file sets the path to the file that contains the password of the
proxy service user. Using a password file prevents that the password is visible in the
operating system’s process list.

-f LDAP_filter specifies the LDAP search filter. Squid replaces the %s variable with the

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER

33

-f LDAP_filter specifies the LDAP search filter. Squid replaces the %s variable with the
user name provided by the authenticating user.
The (&(objectClass=person)(uid=%s)) filter in the example defines that the user
name must match the value set in the uid attribute and that the directory entry contains
the person object class.

-ZZ enforces a TLS-encrypted connection over the LDAP protocol using the
STARTTLS command. Omit the -ZZ in the following situations:

The LDAP server does not support encrypted connections.

The port specified in the URL uses the LDAPS protocol.

The -H LDAP_URL parameter specifies the protocol, the host name or IP address, and
the port of the LDAP server in URL format.

b. Add the following ACL and rule to configure that Squid allows only authenticated users to
use the proxy:

acl ldap-auth proxy_auth REQUIRED
http_access allow ldap-auth

IMPORTANT

Specify these settings before the http_access deny all rule.

c. Remove the following rule to disable bypassing the proxy authentication from IP ranges
specified in localnet ACLs:

http_access allow localnet

d. The following ACL exists in the default configuration and defines 443 as a port that uses the
HTTPS protocol:

acl SSL_ports port 443

If users should be able to use the HTTPS protocol also on other ports, add an ACL for each
of these port:

acl SSL_ports port port_number

e. Update the list of acl Safe_ports rules to configure to which ports Squid can establish a
connection. For example, to configure that clients using the proxy can only access
resources on port 21 (FTP), 80 (HTTP), and 443 (HTTPS), keep only the following acl
Safe_ports statements in the configuration:

acl Safe_ports port 21
acl Safe_ports port 80
acl Safe_ports port 443

By default, the configuration contains the http_access deny !Safe_ports rule that defines
access denial to ports that are not defined in Safe_ports ACLs.

f. Configure the cache type, the path to the cache directory, the cache size, and further cache

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

34

f. Configure the cache type, the path to the cache directory, the cache size, and further cache
type-specific settings in the cache_dir parameter:

cache_dir ufs /var/spool/squid 10000 16 256

With these settings:

Squid uses the ufs cache type.

Squid stores its cache in the /var/spool/squid/ directory.

The cache grows up to 10000 MB.

Squid creates 16 level-1 sub-directories in the /var/spool/squid/ directory.

Squid creates 256 sub-directories in each level-1 directory.
If you do not set a cache_dir directive, Squid stores the cache in memory.

3. If you set a different cache directory than /var/spool/squid/ in the cache_dir parameter:

a. Create the cache directory:

mkdir -p path_to_cache_directory

b. Configure the permissions for the cache directory:

chown squid:squid path_to_cache_directory

c. If you run SELinux in enforcing mode, set the squid_cache_t context for the cache
directory:

semanage fcontext -a -t squid_cache_t "path_to_cache_directory(/.*)?"
restorecon -Rv path_to_cache_directory

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

4. Store the password of the LDAP service user in the /etc/squid/ldap_password file, and set
appropriate permissions for the file:

echo "password" > /etc/squid/ldap_password
chown root:squid /etc/squid/ldap_password
chmod 640 /etc/squid/ldap_password

5. Open the 3128 port in the firewall:

firewall-cmd --permanent --add-port=3128/tcp
firewall-cmd --reload

6. Enable and start the squid service:

systemctl enable --now squid

Verification steps

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER

35

To verify that the proxy works correctly, download a web page using the curl utility:

curl -O -L "https://www.redhat.com/index.html" -x
"user_name:password@proxy.example.com:3128"

If curl does not display any error and the index.html file was downloaded to the current directory, the
proxy works.

Troubleshooting steps

To verify that the helper utility works correctly:

1. Manually start the helper utility with the same settings you used in the auth_param parameter:

/usr/lib64/squid/basic_ldap_auth -b "cn=users,cn=accounts,dc=example,dc=com" -D
"uid=proxy_user,cn=users,cn=accounts,dc=example,dc=com" -W
/etc/squid/ldap_password -f "(&(objectClass=person)(uid=%s))" -ZZ -H
ldap://ldap_server.example.com:389

2. Enter a valid user name and password, and press Enter:

user_name password

If the helper utility returns OK, authentication succeeded.

3.3. SETTING UP SQUID AS A CACHING PROXY WITH KERBEROS
AUTHENTICATION

You can configure Squid as a caching proxy that authenticates users to an Active Directory (AD) using
Kerberos. The procedure configures that only authenticated users can use the proxy.

Prerequisites

The procedure assumes that the /etc/squid/squid.conf file is as provided by the squid
package. If you edited this file before, remove the file and reinstall the package.

The server on which you want to install Squid is a member of the AD domain.

Procedure

1. Install the following packages:

dnf install squid krb5-workstation

2. Authenticate as the AD domain administrator:

kinit administrator@AD.EXAMPLE.COM

3. Create a keytab for Squid and store it in the /etc/squid/HTTP.keytab file:

export KRB5_KTNAME=FILE:/etc/squid/HTTP.keytab
net ads keytab CREATE -U administrator

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

36

4. Add the HTTP service principal to the keytab:

net ads keytab ADD HTTP -U administrator

5. Set the owner of the keytab file to the squid user:

chown squid /etc/squid/HTTP.keytab

6. Optionally, verify that the keytab file contains the HTTP service principal for the fully-qualified
domain name (FQDN) of the proxy server:

klist -k /etc/squid/HTTP.keytab
Keytab name: FILE:/etc/squid/HTTP.keytab
KVNO Principal
---- ---
...
 2 HTTP/proxy.ad.example.com@AD.EXAMPLE.COM
...

7. Edit the /etc/squid/squid.conf file:

a. To configure the negotiate_kerberos_auth helper utility, add the following configuration
entry to the top of /etc/squid/squid.conf:

auth_param negotiate program /usr/lib64/squid/negotiate_kerberos_auth -k
/etc/squid/HTTP.keytab -s HTTP/proxy.ad.example.com@AD.EXAMPLE.COM

The following describes the parameters passed to the negotiate_kerberos_auth helper
utility in the example above:

-k file sets the path to the key tab file. Note that the squid user must have read
permissions on this file.

-s HTTP/host_name@kerberos_realm sets the Kerberos principal that Squid uses.
Optionally, you can enable logging by passing one or both of the following parameters
to the helper utility:

-i logs informational messages, such as the authenticating user.

-d enables debug logging.
Squid logs the debugging information from the helper utility to the
/var/log/squid/cache.log file.

b. Add the following ACL and rule to configure that Squid allows only authenticated users to
use the proxy:

acl kerb-auth proxy_auth REQUIRED
http_access allow kerb-auth

IMPORTANT

Specify these settings before the http_access deny all rule.

c. Remove the following rule to disable bypassing the proxy authentication from IP ranges

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER

37

c. Remove the following rule to disable bypassing the proxy authentication from IP ranges
specified in localnet ACLs:

http_access allow localnet

d. The following ACL exists in the default configuration and defines 443 as a port that uses the
HTTPS protocol:

acl SSL_ports port 443

If users should be able to use the HTTPS protocol also on other ports, add an ACL for each
of these port:

acl SSL_ports port port_number

e. Update the list of acl Safe_ports rules to configure to which ports Squid can establish a
connection. For example, to configure that clients using the proxy can only access
resources on port 21 (FTP), 80 (HTTP), and 443 (HTTPS), keep only the following acl
Safe_ports statements in the configuration:

acl Safe_ports port 21
acl Safe_ports port 80
acl Safe_ports port 443

By default, the configuration contains the http_access deny !Safe_ports rule that defines
access denial to ports that are not defined in Safe_ports ACLs.

f. Configure the cache type, the path to the cache directory, the cache size, and further cache
type-specific settings in the cache_dir parameter:

cache_dir ufs /var/spool/squid 10000 16 256

With these settings:

Squid uses the ufs cache type.

Squid stores its cache in the /var/spool/squid/ directory.

The cache grows up to 10000 MB.

Squid creates 16 level-1 sub-directories in the /var/spool/squid/ directory.

Squid creates 256 sub-directories in each level-1 directory.
If you do not set a cache_dir directive, Squid stores the cache in memory.

8. If you set a different cache directory than /var/spool/squid/ in the cache_dir parameter:

a. Create the cache directory:

mkdir -p path_to_cache_directory

b. Configure the permissions for the cache directory:

chown squid:squid path_to_cache_directory

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

38

c. If you run SELinux in enforcing mode, set the squid_cache_t context for the cache
directory:

semanage fcontext -a -t squid_cache_t "path_to_cache_directory(/.*)?"
restorecon -Rv path_to_cache_directory

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

9. Open the 3128 port in the firewall:

firewall-cmd --permanent --add-port=3128/tcp
firewall-cmd --reload

10. Enable and start the squid service:

systemctl enable --now squid

Verification steps

To verify that the proxy works correctly, download a web page using the curl utility:

curl -O -L "https://www.redhat.com/index.html" --proxy-negotiate -u : -x
"proxy.ad.example.com:3128"

If curl does not display any error and the index.html file exists in the current directory, the proxy works.

Troubleshooting steps

To manually test Kerberos authentication:

1. Obtain a Kerberos ticket for the AD account:

kinit user@AD.EXAMPLE.COM

2. Optionally, display the ticket:

klist

3. Use the negotiate_kerberos_auth_test utility to test the authentication:

/usr/lib64/squid/negotiate_kerberos_auth_test proxy.ad.example.com

If the helper utility returns a token, the authentication succeeded:

Token: YIIFtAYGKwYBBQUCoIIFqDC...

3.4. CONFIGURING A DOMAIN DENY LIST IN SQUID

Frequently, administrators want to block access to specific domains. This section describes how to
configure a domain deny list in Squid.

Prerequisites

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER

39

Squid is configured, and users can use the proxy.

Procedure

1. Edit the /etc/squid/squid.conf file and add the following settings:

acl domain_deny_list dstdomain "/etc/squid/domain_deny_list.txt"
http_access deny all domain_deny_list

IMPORTANT

Add these entries before the first http_access allow statement that allows
access to users or clients.

2. Create the /etc/squid/domain_deny_list.txt file and add the domains you want to block. For
example, to block access to example.com including subdomains and to block example.net,
add:

.example.com
example.net

IMPORTANT

If you referred to the /etc/squid/domain_deny_list.txt file in the squid
configuration, this file must not be empty. If the file is empty, Squid fails to start.

3. Restart the squid service:

systemctl restart squid

3.5. CONFIGURING THE SQUID SERVICE TO LISTEN ON A SPECIFIC
PORT OR IP ADDRESS

By default, the Squid proxy service listens on the 3128 port on all network interfaces. You can change
the port and configuring Squid to listen on a specific IP address.

Prerequisites

The squid package is installed.

Procedure

1. Edit the /etc/squid/squid.conf file:

To set the port on which the Squid service listens, set the port number in the http_port
parameter. For example, to set the port to 8080, set:

http_port 8080

To configure on which IP address the Squid service listens, set the IP address and port

Red Hat Enterprise Linux 9 Deploying web servers and reverse proxies

40

To configure on which IP address the Squid service listens, set the IP address and port
number in the http_port parameter. For example, to configure that Squid listens only on the
192.0.2.1 IP address on port 3128, set:

http_port 192.0.2.1:3128

Add multiple http_port parameters to the configuration file to configure that Squid listens
on multiple ports and IP addresses:

http_port 192.0.2.1:3128
http_port 192.0.2.1:8080

2. If you configured that Squid uses a different port as the default (3128):

a. Open the port in the firewall:

firewall-cmd --permanent --add-port=port_number/tcp
firewall-cmd --reload

b. If you run SELinux in enforcing mode, assign the port to the squid_port_t port type
definition:

semanage port -a -t squid_port_t -p tcp port_number

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

3. Restart the squid service:

systemctl restart squid

3.6. ADDITIONAL RESOURCES

Configuration parameters usr/share/doc/squid-<version>/squid.conf.documented

CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER

41

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. SETTING UP THE APACHE HTTP WEB SERVER
	1.1. INTRODUCTION TO THE APACHE HTTP WEB SERVER
	1.2. NOTABLE CHANGES IN THE APACHE HTTP SERVER
	1.3. THE APACHE CONFIGURATION FILES
	1.4. MANAGING THE HTTPD SERVICE
	1.5. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER
	1.6. CONFIGURING APACHE NAME-BASED VIRTUAL HOSTS
	1.7. CONFIGURING KERBEROS AUTHENTICATION FOR THE APACHE HTTP WEB SERVER
	1.7.1. Setting up GSS-Proxy in an IdM environment
	1.7.2. Configuring Kerberos authentication for a directory shared by the Apache HTTP web server

	1.8. CONFIGURING TLS ENCRYPTION ON AN APACHE HTTP SERVER
	1.8.1. Adding TLS encryption to an Apache HTTP Server
	1.8.2. Setting the supported TLS protocol versions on an Apache HTTP Server
	1.8.3. Setting the supported ciphers on an Apache HTTP Server

	1.9. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION
	1.10. SECURING WEB APPLICATIONS ON A WEB SERVER USING MODSECURITY
	1.10.1. Deploying the ModSecurity web-based application firewall for Apache
	1.10.2. Adding a custom rule to ModSecurity

	1.11. INSTALLING THE APACHE HTTP SERVER MANUAL
	1.12. WORKING WITH APACHE MODULES
	1.12.1. Loading a DSO module
	1.12.2. Compiling a custom Apache module

	1.13. EXPORTING A PRIVATE KEY AND CERTIFICATES FROM AN NSS DATABASE TO USE THEM IN AN APACHE WEB SERVER CONFIGURATION
	1.14. ADDITIONAL RESOURCES

	CHAPTER 2. SETTING UP AND CONFIGURING NGINX
	2.1. INSTALLING AND PREPARING NGINX
	2.2. CONFIGURING NGINX AS A WEB SERVER THAT PROVIDES DIFFERENT CONTENT FOR DIFFERENT DOMAINS
	2.3. ADDING TLS ENCRYPTION TO AN NGINX WEB SERVER
	2.4. CONFIGURING NGINX AS A REVERSE PROXY FOR THE HTTP TRAFFIC
	2.5. CONFIGURING NGINX AS AN HTTP LOAD BALANCER
	2.6. ADDITIONAL RESOURCES

	CHAPTER 3. CONFIGURING THE SQUID CACHING PROXY SERVER
	3.1. SETTING UP SQUID AS A CACHING PROXY WITHOUT AUTHENTICATION
	3.2. SETTING UP SQUID AS A CACHING PROXY WITH LDAP AUTHENTICATION
	3.3. SETTING UP SQUID AS A CACHING PROXY WITH KERBEROS AUTHENTICATION
	3.4. CONFIGURING A DOMAIN DENY LIST IN SQUID
	3.5. CONFIGURING THE SQUID SERVICE TO LISTEN ON A SPECIFIC PORT OR IP ADDRESS
	3.6. ADDITIONAL RESOURCES

