
Red Hat Enterprise Linux 9

Configuring firewalls and packet filters

Managing the firewalld service, the nftables framework, and XDP packet filtering
features

Last Updated: 2024-01-17

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

Managing the firewalld service, the nftables framework, and XDP packet filtering features

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Packet filters, such as firewalls, use rules to control incoming, outgoing, and forwarded network
traffic. In Red Hat Enterprise Linux (RHEL), you can use the firewalld service and the nftables
framework to filter network traffic and build performance-critical firewalls. You can also use the
Express Data Path (XDP) feature of the kernel to process or drop network packets at the network
interface at a very high rate.

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. USING AND CONFIGURING FIREWALLD
1.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES
1.2. FIREWALL ZONES
1.3. FIREWALL POLICIES
1.4. FIREWALL RULES
1.5. ZONE CONFIGURATION FILES
1.6. PREDEFINED FIREWALLD SERVICES
1.7. WORKING WITH FIREWALLD ZONES

1.7.1. Customizing firewall settings for a specific zone to enhance security
1.7.2. Changing the default zone
1.7.3. Assigning a network interface to a zone
1.7.4. Assigning a zone to a connection using nmcli
1.7.5. Manually assigning a zone to a network connection in a connection profile file
1.7.6. Creating a new zone
1.7.7. Using zone targets to set default behavior for incoming traffic

1.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD
1.8.1. Controlling traffic with predefined services using the CLI
1.8.2. Controlling traffic with predefined services using the GUI
1.8.3. Configuring firewalld to allow hosting a secure web server
1.8.4. Closing unused or unnecessary ports to enhance network security
1.8.5. Controlling traffic through the CLI
1.8.6. Controlling traffic with protocols using GUI

1.9. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE
1.9.1. Adding a source
1.9.2. Removing a source
1.9.3. Removing a source port
1.9.4. Using zones and sources to allow a service for only a specific domain

1.10. FILTERING FORWARDED TRAFFIC BETWEEN ZONES
1.10.1. The relationship between policy objects and zones
1.10.2. Using priorities to sort policies
1.10.3. Using policy objects to filter traffic between locally hosted containers and a network physically connected
to the host
1.10.4. Setting the default target of policy objects
1.10.5. Using DNAT to forward HTTPS traffic to a different host

1.11. CONFIGURING NAT USING FIREWALLD
1.11.1. Network address translation types
1.11.2. Configuring IP address masquerading
1.11.3. Using DNAT to forward incoming HTTP traffic
1.11.4. Redirecting traffic from a non-standard port to make the web service accessible on a standard port

1.12. MANAGING ICMP REQUESTS
1.12.1. Configuring ICMP filtering

1.13. SETTING AND CONTROLLING IP SETS USING FIREWALLD
1.13.1. Configuring dynamic updates for allowlisting with IP sets

1.14. PRIORITIZING RICH RULES
1.14.1. How the priority parameter organizes rules into different chains
1.14.2. Setting the priority of a rich rule

1.15. CONFIGURING FIREWALL LOCKDOWN
1.15.1. Configuring lockdown using CLI

5

6

7
7
7
9

10
10
11
11

12
13
13
14
14
15
16
16
16
18
19

20
21
22
22
22
23
23
23
24
25
25

25
26
27
29
29
29
30
31

33
33
34
34
36
36
36
37
37

Table of Contents

1

. .

1.15.2. Overview of lockdown allowlist configuration files
1.16. ENABLING TRAFFIC FORWARDING BETWEEN DIFFERENT INTERFACES OR SOURCES WITHIN A
FIREWALLD ZONE

1.16.1. The difference between intra-zone forwarding and zones with the default target set to ACCEPT
1.16.2. Using intra-zone forwarding to forward traffic between an Ethernet and Wi-Fi network

1.17. CONFIGURING FIREWALLD BY USING RHEL SYSTEM ROLES
1.17.1. Introduction to the firewall RHEL System Role
1.17.2. Resetting the firewalld settings by using a RHEL System Role
1.17.3. Forwarding incoming traffic in firewalld from one local port to a different local port by using a
RHEL System Role
1.17.4. Managing ports in firewalld by using a RHEL System Role
1.17.5. Configuring a firewalld DMZ zone by using a RHEL System Role

CHAPTER 2. GETTING STARTED WITH NFTABLES
2.1. MIGRATING FROM IPTABLES TO NFTABLES

2.1.1. When to use firewalld, nftables, or iptables
2.1.2. Converting iptables and ip6tables rule sets to nftables
2.1.3. Converting single iptables and ip6tables rules to nftables
2.1.4. Comparison of common iptables and nftables commands

2.2. WRITING AND EXECUTING NFTABLES SCRIPTS
2.2.1. Supported nftables script formats
2.2.2. Running nftables scripts
2.2.3. Using comments in nftables scripts
2.2.4. Using variables in nftables script
2.2.5. Including files in nftables scripts
2.2.6. Automatically loading nftables rules when the system boots

2.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND RULES
2.3.1. Basics of nftables tables
2.3.2. Basics of nftables chains

Chain types
Chain priorities
Chain policies

2.3.3. Basics of nftables rules
2.3.4. Managing tables, chains, and rules using nft commands

2.4. CONFIGURING NAT USING NFTABLES
2.4.1. NAT types
2.4.2. Configuring masquerading using nftables
2.4.3. Configuring source NAT using nftables
2.4.4. Configuring destination NAT using nftables
2.4.5. Configuring a redirect using nftables
2.4.6. Configuring flowtable by using nftables

2.5. USING SETS IN NFTABLES COMMANDS
2.5.1. Using anonymous sets in nftables
2.5.2. Using named sets in nftables
2.5.3. Additional resources

2.6. USING VERDICT MAPS IN NFTABLES COMMANDS
2.6.1. Using anonymous maps in nftables
2.6.2. Using named maps in nftables
2.6.3. Additional resources

2.7. EXAMPLE: PROTECTING A LAN AND DMZ USING AN NFTABLES SCRIPT
2.7.1. Network conditions
2.7.2. Security requirements to the firewall script
2.7.3. Configuring logging of dropped packets to a file

37

38
38
39
40
40
41

42
43
44

46
46
46
47
48
48
49
49
50
51
51
52
52
53
53
54
54
54
55
55
56
58
58
59
60
60
61

62
63
63
64
65
65
65
66
68
68
68
69
69

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

2

. .

2.7.4. Writing and activating the nftables script
2.8. CONFIGURING PORT FORWARDING USING NFTABLES

2.8.1. Forwarding incoming packets to a different local port
2.8.2. Forwarding incoming packets on a specific local port to a different host

2.9. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS
2.9.1. Limiting the number of connections using nftables
2.9.2. Blocking IP addresses that attempt more than ten new incoming TCP connections within one minute

2.10. DEBUGGING NFTABLES RULES
2.10.1. Creating a rule with a counter
2.10.2. Adding a counter to an existing rule
2.10.3. Monitoring packets that match an existing rule

2.11. BACKING UP AND RESTORING THE NFTABLES RULE SET
2.11.1. Backing up the nftables rule set to a file
2.11.2. Restoring the nftables rule set from a file

2.12. ADDITIONAL RESOURCES

CHAPTER 3. USING XDP-FILTER FOR HIGH-PERFORMANCE TRAFFIC FILTERING TO PREVENT DDOS
ATTACKS

3.1. DROPPING NETWORK PACKETS THAT MATCH AN XDP-FILTER RULE
3.2. DROPPING ALL NETWORK PACKETS EXCEPT THE ONES THAT MATCH AN XDP-FILTER RULE

70
73
73
74
75
75
75
76
76
77
77
78
78
79
79

80
80
81

Table of Contents

3

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

6

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. USING AND CONFIGURING FIREWALLD
A firewall is a way to protect machines from any unwanted traffic from outside. It enables users to
control incoming network traffic on host machines by defining a set of firewall rules. These rules are used
to sort the incoming traffic and either block it or allow through.

firewalld is a firewall service daemon that provides a dynamic customizable host-based firewall with a
D-Bus interface. Being dynamic, it enables creating, changing, and deleting the rules without the
necessity to restart the firewall daemon each time the rules are changed.

firewalld uses the concepts of zones and services, that simplify the traffic management. Zones are
predefined sets of rules. Network interfaces and sources can be assigned to a zone. The traffic allowed
depends on the network your computer is connected to and the security level this network is assigned.
Firewall services are predefined rules that cover all necessary settings to allow incoming traffic for a
specific service and they apply within a zone.

Services use one or more ports or addresses for network communication. Firewalls filter communication
based on ports. To allow network traffic for a service, its ports must be open. firewalld blocks all traffic
on ports that are not explicitly set as open. Some zones, such as trusted, allow all traffic by default.

Note that firewalld with nftables backend does not support passing custom nftables rules to firewalld,
using the --direct option.

1.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES

The following is a brief overview in which scenario you should use one of the following utilities:

firewalld: Use the firewalld utility for simple firewall use cases. The utility is easy to use and
covers the typical use cases for these scenarios.

nftables: Use the nftables utility to set up complex and performance-critical firewalls, such as
for a whole network.

iptables: The iptables utility on Red Hat Enterprise Linux uses the nf_tables kernel API instead
of the legacy back end. The nf_tables API provides backward compatibility so that scripts that
use iptables commands still work on Red Hat Enterprise Linux. For new firewall scripts, Red Hat
recommends to use nftables.

IMPORTANT

To prevent the different firewall-related services (firewalld, nftables, or iptables) from
influencing each other, run only one of them on a RHEL host, and disable the other
services.

1.2. FIREWALL ZONES

You can use the firewalld utility to separate networks into different zones according to the level of trust
that you have with the interfaces and traffic within that network. A connection can only be part of one
zone, but you can use that zone for many network connections.

firewalld follows strict principles in regards to zones:

1. Traffic ingresses only one zone.

2. Traffic egresses only one zone.

CHAPTER 1. USING AND CONFIGURING FIREWALLD

7

3. A zone defines a level of trust.

4. Intrazone traffic (within the same zone) is allowed by default.

5. Interzone traffic (from zone to zone) is denied by default.

Principles 4 and 5 are a consequence of principle 3.

Principle 4 is configurable through the zone option --remove-forward. Principle 5 is configurable by
adding new policies.

NetworkManager notifies firewalld of the zone of an interface. You can assign zones to interfaces with
the following utilities:

NetworkManager

firewall-config utility

firewall-cmd utility

The RHEL web console

The RHEL web console, firewall-config, and firewall-cmd can only edit the appropriate
NetworkManager configuration files. If you change the zone of the interface using the web console,
firewall-cmd, or firewall-config, the request is forwarded to NetworkManager and is not handled by
firewalld.

The /usr/lib/firewalld/zones/ directory stores the predefined zones, and you can instantly apply them to
any available network interface. These files are copied to the /etc/firewalld/zones/ directory only after
they are modified. The default settings of the predefined zones are as follows:

block

Suitable for: Any incoming network connections are rejected with an icmp-host-prohibited
message for IPv4 and icmp6-adm-prohibited for IPv6.

Accepts: Only network connections initiated from within the system.

dmz

Suitable for: Computers in your DMZ that are publicly-accessible with limited access to your
internal network.

Accepts: Only selected incoming connections.

drop

Suitable for: Any incoming network packets are dropped without any notification.

**Accepts: Only outgoing network connections.

external

Suitable for: External networks with masquerading enabled, especially for routers. Situations
when you do not trust the other computers on the network.

Accepts: Only selected incoming connections.

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

8

home

Suitable for: Home environment where you mostly trust the other computers on the network.

Accepts: Only selected incoming connections.

internal

Suitable for: Internal networks where you mostly trust the other computers on the network.

Accepts: Only selected incoming connections.

public

Suitable for: Public areas where you do not trust other computers on the network.

Accepts: Only selected incoming connections.

trusted

Accepts: All network connections.

work

Suitable for: Work environment where you mostly trust the other computers on the network.

Accepts: Only selected incoming connections.

One of these zones is set as the default zone. When interface connections are added to
NetworkManager, they are assigned to the default zone. On installation, the default zone in firewalld is
the public zone. You can change the default zone.

NOTE

Make network zone names self-explanatory to help users understand them quickly.

To avoid any security problems, review the default zone configuration and disable any unnecessary
services according to your needs and risk assessments.

Additional resources

The firewalld.zone(5) man page.

1.3. FIREWALL POLICIES

The firewall policies specify the desired security state of your network. They outline rules and actions to
take for different types of traffic. Typically, the policies contain rules for the following types of traffic:

Incoming traffic

Outgoing traffic

Forward traffic

Specific services and applications

CHAPTER 1. USING AND CONFIGURING FIREWALLD

9

Network address translations (NAT)

Firewall policies use the concept of firewall zones. Each zone is associated with a specific set of firewall
rules that determine the traffic allowed. Policies apply firewall rules in a stateful, unidirectional manner.
This means you only consider one direction of the traffic. The traffic return path is implicitly allowed due
to stateful filtering of firewalld.

Policies are associated with an ingress zone and an egress zone. The ingress zone is where the traffic
originated (received). The egress zone is where the traffic leaves (sent).

The firewall rules defined in a policy can reference the firewall zones to apply consistent configurations
across multiple network interfaces.

1.4. FIREWALL RULES

You can use the firewall rules to implement specific configurations for allowing or blocking network
traffic. As a result, you can control the flow of network traffic to protect your system from security
threats.

Firewall rules typically define certain criteria based on various attributes. The attributes can be as:

Source IP addresses

Destination IP addresses

Transfer Protocols (TCP, UDP, …)

Ports

Network interfaces

The firewalld utility organizes the firewall rules into zones (such as public, internal, and others) and
policies. Each zone has its own set of rules that determine the level of traffic freedom for network
interfaces associated with a particular zone.

1.5. ZONE CONFIGURATION FILES

A firewalld zone configuration file contains the information for a zone. These are the zone description,
services, ports, protocols, icmp-blocks, masquerade, forward-ports and rich language rules in an XML
file format. The file name has to be zone-name.xml where the length of zone-name is currently limited
to 17 chars. The zone configuration files are located in the /usr/lib/firewalld/zones/ and
/etc/firewalld/zones/ directories.

The following example shows a configuration that allows one service (SSH) and one port range, for both
the TCP and UDP protocols:

Additional resources

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>My Zone</short>
 <description>Here you can describe the characteristic features of the zone.</description>
 <service name="ssh"/>
 <port protocol="udp" port="1025-65535"/>
 <port protocol="tcp" port="1025-65535"/>
</zone>

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

10

Additional resources

firewalld.zone manual page

1.6. PREDEFINED FIREWALLD SERVICES

The firewalld service is a predefined set of firewall rules that define access to a specific application or
network service. Each service represents a combination of the following elements:

Local port

Network protocol

Associated firewall rules

Source ports and destinations

Firewall helper modules that load automatically if a service is enabled

A service simplifies packet filtering and saves you time because it achieves several tasks at once. For
example, firewalld can perform the following tasks at once:

Open a port

Define network protocol

Enable packet forwarding

Service configuration options and generic file information are described in the firewalld.service(5) man
page. The services are specified by means of individual XML configuration files, which are named in the
following format: service-name.xml. Protocol names are preferred over service or application names in
firewalld.

You can configure firewalld in the following ways:

Use utilities:

firewall-config - graphical utility

firewall-cmd - command-line utility

firewall-offline-cmd - command-line utility

Edit the XML files in the /etc/firewalld/services/ directory.
If you do not add or change the service, no corresponding XML file exists in
/etc/firewalld/services/. You can use the files in /usr/lib/firewalld/services/ as templates.

Additional resources

The firewalld.service(5) man page

1.7. WORKING WITH FIREWALLD ZONES

Zones represent a concept to manage incoming traffic more transparently. The zones are connected to
networking interfaces or assigned a range of source addresses. You manage firewall rules for each zone
independently, which enables you to define complex firewall settings and apply them to the traffic.

CHAPTER 1. USING AND CONFIGURING FIREWALLD

11

1.7.1. Customizing firewall settings for a specific zone to enhance security

You can strengthen your network security by modifying the firewall settings and associating a specific
network interface or connection with a particular firewall zone. By defining granular rules and restrictions
for a zone, you can control inbound and outbound traffic based on your intended security levels.

For example, you can achieve the following benefits:

Protection of sensitive data

Prevention of unauthorized access

Mitigation of potential network threats

Prerequisites

The firewalld service is running.

Procedure

1. List the available firewall zones:

firewall-cmd --get-zones

The firewall-cmd --get-zones command displays all zones that are available on the system, but
it does not show any details for particular zones. To see more detailed information for all zones,
use the firewall-cmd --list-all-zones command.

2. Choose the zone you want to use for this configuration.

3. Modify firewall settings for the chosen zone. For example, to allow the SSH service and remove
the ftp service:

firewall-cmd --add-service=ssh --zone=<your_chosen_zone>
firewall-cmd --remove-service=ftp --zone=<same_chosen_zone>

4. Assign a network interface to the firewall zone:

a. List the available network interfaces:

firewall-cmd --get-active-zones

Activity of a zone is determined by the presence of network interfaces or source address
ranges that match its configuration. The default zone is active for unclassified traffic but is
not always active if no traffic matches its rules.

b. Assign a network interface to the chosen zone:

firewall-cmd --zone=<your_chosen_zone> --change-interface=<interface_name> -
-permanent

Assigning a network interface to a zone is more suitable for applying consistent firewall
settings to all traffic on a particular interface (physical or virtual).

The firewall-cmd command, when used with the --permanent option, often involves

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

12

updating NetworkManager connection profiles to make changes to the firewall
configuration permanent. This integration between firewalld and NetworkManager ensures
consistent network and firewall settings.

Verification

1. Display the updated settings for your chosen zone:

firewall-cmd --zone=<your_chosen_zone> --list-all

The command output displays all zone settings including the assigned services, network
interface, and network connections (sources).

1.7.2. Changing the default zone

System administrators assign a zone to a networking interface in its configuration files. If an interface is
not assigned to a specific zone, it is assigned to the default zone. After each restart of the firewalld
service, firewalld loads the settings for the default zone and makes it active. Note that settings for all
other zones are preserved and ready to be used.

Typically, zones are assigned to interfaces by NetworkManager according to the connection.zone
setting in NetworkManager connection profiles. Also, after a reboot NetworkManager manages
assignments for "activating" those zones.

Prerequisites

The firewalld service is running.

Procedure

To set up the default zone:

1. Display the current default zone:

firewall-cmd --get-default-zone

2. Set the new default zone:

firewall-cmd --set-default-zone <zone_name>

NOTE

Following this procedure, the setting is a permanent setting, even without the --
permanent option.

1.7.3. Assigning a network interface to a zone

It is possible to define different sets of rules for different zones and then change the settings quickly by
changing the zone for the interface that is being used. With multiple interfaces, a specific zone can be
set for each of them to distinguish traffic that is coming through them.

Procedure

To assign the zone to a specific interface:

CHAPTER 1. USING AND CONFIGURING FIREWALLD

13

1. List the active zones and the interfaces assigned to them:

firewall-cmd --get-active-zones

2. Assign the interface to a different zone:

firewall-cmd --zone=zone_name --change-interface=interface_name --permanent

1.7.4. Assigning a zone to a connection using nmcli

You can add a firewalld zone to a NetworkManager connection using the nmcli utility.

Procedure

1. Assign the zone to the NetworkManager connection profile:

nmcli connection modify profile connection.zone zone_name

2. Activate the connection:

nmcli connection up profile

1.7.5. Manually assigning a zone to a network connection in a connection profile file

If you cannot use the nmcli utility to modify a connection profile, you can manually edit the
corresponding file of the profile to assign a firewalld zone.

NOTE

Modifying the connection profile with the nmcli utility to assign a firewalld zone is more
efficient. For details, see Assigning a network interface to a zone .

Procedure

1. Determine the path to the connection profile and its format:

nmcli -f NAME,FILENAME connection
NAME FILENAME
enp1s0 /etc/NetworkManager/system-connections/enp1s0.nmconnection
enp7s0 /etc/sysconfig/network-scripts/ifcfg-enp7s0

NetworkManager uses separate directories and file names for the different connection profile
formats:

Profiles in /etc/NetworkManager/system-
connections/<connection_name>.nmconnection files use the keyfile format.

Profiles in /etc/sysconfig/network-scripts/ifcfg-<interface_name> files use the ifcfg
format.

2. Depending on the format, update the corresponding file:

If the file uses the keyfile format, append zone=<name> to the [connection] section of the
/etc/NetworkManager/system-connections/<connection_name>.nmconnection file:

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

14

/etc/NetworkManager/system-connections/<connection_name>.nmconnection file:

[connection]
...
zone=internal

If the file uses the ifcfg format, append ZONE=<name> to the /etc/sysconfig/network-
scripts/ifcfg-<interface_name> file:

ZONE=internal

3. Reload the connection profiles:

nmcli connection reload

4. Reactivate the connection profiles

nmcli connection up <profile_name>

Verification

Display the zone of the interface, for example:

firewall-cmd --get-zone-of-interface enp1s0
internal

1.7.6. Creating a new zone

To use custom zones, create a new zone and use it just like a predefined zone. New zones require the --
permanent option, otherwise the command does not work.

Prerequisites

The firewalld service is running.

Procedure

1. Create a new zone:

firewall-cmd --permanent --new-zone=zone-name

2. Make the new zone usable:

firewall-cmd --reload

The command applies recent changes to the firewall configuration without interrupting network
services that are already running.

Verification

Check if the new zone is added to your permanent settings:

CHAPTER 1. USING AND CONFIGURING FIREWALLD

15

firewall-cmd --get-zones --permanent

1.7.7. Using zone targets to set default behavior for incoming traffic

For every zone, you can set a default behavior that handles incoming traffic that is not further specified.
Such behavior is defined by setting the target of the zone. There are four options:

ACCEPT: Accepts all incoming packets except those disallowed by specific rules.

REJECT: Rejects all incoming packets except those allowed by specific rules. When firewalld
rejects packets, the source machine is informed about the rejection.

DROP: Drops all incoming packets except those allowed by specific rules. When firewalld drops
packets, the source machine is not informed about the packet drop.

default: Similar behavior as for REJECT, but with special meanings in certain scenarios.

Prerequisites

The firewalld service is running.

Procedure

To set a target for a zone:

1. List the information for the specific zone to see the default target:

firewall-cmd --zone=zone-name --list-all

2. Set a new target in the zone:

firewall-cmd --permanent --zone=zone-name --set-target=
<default|ACCEPT|REJECT|DROP>

Additional resources

firewall-cmd(1) man page

1.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD

The firewalld package installs a large number of predefined service files and you can add more or
customize them. You can then use these service definitions to open or close ports for services without
knowing the protocol and port numbers they use.

1.8.1. Controlling traffic with predefined services using the CLI

The most straightforward method to control traffic is to add a predefined service to firewalld. This
opens all necessary ports and modifies other settings according to the service definition file .

Prerequisites

The firewalld service is running.

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

16

Procedure

1. Check that the service in firewalld is not already allowed:

firewall-cmd --list-services
ssh dhcpv6-client

The command lists the services that are enabled in the default zone.

2. List all predefined services in firewalld:

firewall-cmd --get-services
RH-Satellite-6 amanda-client amanda-k5-client bacula bacula-client bitcoin bitcoin-rpc
bitcoin-testnet bitcoin-testnet-rpc ceph ceph-mon cfengine condor-collector ctdb dhcp dhcpv6
dhcpv6-client dns docker-registry ...

The command displays a list of available services for the default zone.

3. Add the service to the list of services that firewalld allows:

firewall-cmd --add-service=<service_name>

The command adds the specified service to the default zone.

4. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

The command applies these runtime changes to the permanent configuration of the firewall. By
default, it applies these changes to the configuration of the default zone.

Verification

1. List all permanent firewall rules:

firewall-cmd --list-all --permanent
public
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: cockpit dhcpv6-client ssh
 ports:
 protocols:
 forward: no
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

The command displays complete configuration with the permanent firewall rules of the default
firewall zone (public).

2. Check the validity of the permanent configuration of the firewalld service.

CHAPTER 1. USING AND CONFIGURING FIREWALLD

17

firewall-cmd --check-config
success

If the permanent configuration is invalid, the command returns an error with further details:

firewall-cmd --check-config
Error: INVALID_PROTOCOL: 'public.xml': 'tcpx' not from {'tcp'|'udp'|'sctp'|'dccp'}

You can also manually inspect the permanent configuration files to verify the settings. The main
configuration file is /etc/firewalld/firewalld.conf. The zone-specific configuration files are in the
/etc/firewalld/zones/ directory and the policies are in the /etc/firewalld/policies/ directory.

1.8.2. Controlling traffic with predefined services using the GUI

You can control the network traffic with predefined services using a graphical user interface. The
Firewall Configuration application provides an accessible and user-friendly alternative to the command-
line utilities.

Prerequisites

You installed the firewall-config package.

The firewalld service is running.

Procedure

1. To enable or disable a predefined or custom service:

a. Start the firewall-config utility and select the network zone whose services are to be
configured.

b. Select the Zones tab and then the Services tab below.

c. Select the checkbox for each type of service you want to trust or clear the checkbox to
block a service in the selected zone.

2. To edit a service:

a. Start the firewall-config utility.

b. Select Permanent from the menu labeled Configuration. Additional icons and menu
buttons appear at the bottom of the Services window.

c. Select the service you want to configure.

The Ports, Protocols, and Source Port tabs enable adding, changing, and removing of ports, protocols,
and source port for the selected service. The modules tab is for configuring Netfilter helper modules.
The Destination tab enables limiting traffic to a particular destination address and Internet Protocol
(IPv4 or IPv6).

NOTE

It is not possible to alter service settings in the Runtime mode.

Verification

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

18

Press the Super key to enter the Activities overview.

Select the Firewall Configuration utility.

You can also start the graphical firewall configuration utility using the command-line, by
entering the firewall-config command.

View the list of configurations of your firewall:

The Firewall Configuration window opens. Note that this command can be run as a normal user, but you
are prompted for an administrator password occasionally.

1.8.3. Configuring firewalld to allow hosting a secure web server

Ports are logical services that enable an operating system to receive and distinguish network traffic and
forward it to system services. The system services are represented by a daemon that listens on the port
and waits for any traffic coming to this port.

Normally, system services listen on standard ports that are reserved for them. The httpd daemon, for
example, listens on port 80. However, system administrators can directly specify the port number
instead of the service name.

You can use the firewalld service to configure access to a secure web server for hosting your data.

Prerequisites

The firewalld service is running.

Procedure

1. Check the currently active firewall zone:

CHAPTER 1. USING AND CONFIGURING FIREWALLD

19

firewall-cmd --get-active-zones

2. Add the HTTPS service to the appropriate zone:

firewall-cmd --zone=<zone_name> --add-service=https --permanent

3. Reload the firewall configuration:

firewall-cmd --reload

Verification

1. Check if the port is open in firewalld:

If you opened the port by specifying the port number, enter:

firewall-cmd --zone=<zone_name> --list-all

If you opened the port by specifying a service definition, enter:

firewall-cmd --zone=<zone_name> --list-services

1.8.4. Closing unused or unnecessary ports to enhance network security

When an open port is no longer needed, you can use the firewalld utility to close it.

IMPORTANT

Close all unnecessary ports to reduce the potential attack surface and minimize the risk
of unauthorized access or exploitation of vulnerabilities.

Procedure

1. List all allowed ports:

firewall-cmd --list-ports

By default, this command lists the ports that are enabled in the default zone.

NOTE

This command will only give you a list of ports that are opened as ports. You will
not be able to see any open ports that are opened as a service. For that case,
consider using the --list-all option instead of --list-ports.

2. Remove the port from the list of allowed ports to close it for the incoming traffic:

firewall-cmd --remove-port=port-number/port-type

This command removes a port from a zone. If you do not specify a zone, it will remove the port
from the default zone.

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

20

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

Without specifying a zone, this command applies runtime changes to the permanent
configuration of the default zone.

Verification

1. List the active zones and choose the zone you want to inspect:

firewall-cmd --get-active-zones

2. List the currently open ports in the selected zone to check if the unused or unnecessary ports
are closed:

firewall-cmd --zone=<zone_to_inspect> --list-ports

1.8.5. Controlling traffic through the CLI

You can use the firewall-cmd command to:

disable networking traffic

enable networking traffic

As a result, you can for example enhance your system defenses, ensure data privacy or optimize network
resources.

IMPORTANT

Enabling panic mode stops all networking traffic. For this reason, it should be used only
when you have the physical access to the machine or if you are logged in using a serial
console.

Procedure

1. To immediately disable networking traffic, switch panic mode on:

firewall-cmd --panic-on

2. Switching off panic mode reverts the firewall to its permanent settings. To switch panic mode
off, enter:

firewall-cmd --panic-off

Verification

To see whether panic mode is switched on or off, use:

firewall-cmd --query-panic

CHAPTER 1. USING AND CONFIGURING FIREWALLD

21

1.8.6. Controlling traffic with protocols using GUI

To permit traffic through the firewall using a certain protocol, you can use the GUI.

Prerequisites

You installed the firewall-config package

Procedure

1. Start the firewall-config tool and select the network zone whose settings you want to change.

2. Select the Protocols tab and click the Add button on the right-hand side. The Protocol window
opens.

3. Either select a protocol from the list or select the Other Protocol check box and enter the
protocol in the field.

1.9. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A
SOURCE

You can use zones to manage incoming traffic based on its source. Incoming traffic in this context is any
data that is destined for your system, or passes through the host running firewalld. The source typically
refers to the IP address or network range from which the traffic originates. As a result, you can sort
incoming traffic and assign it to different zones to allow or disallow services that can be reached by that
traffic.

Matching by source address takes precedence over matching by interface name. When you add a source
to a zone, the firewall will prioritize the source-based rules for incoming traffic over interface-based
rules. This means that if incoming traffic matches a source address specified for a particular zone, the
zone associated with that source address will determine how the traffic is handled, regardless of the
interface through which it arrives. On the other hand, interface-based rules are generally a fallback for
traffic that does not match specific source-based rules. These rules apply to traffic, for which the source
is not explicitly associated with a zone. This allows you to define a default behavior for traffic that does
not have a specific source-defined zone.

1.9.1. Adding a source

To route incoming traffic into a specific zone, add the source to that zone. The source can be an IP
address or an IP mask in the classless inter-domain routing (CIDR) notation.

NOTE

In case you add multiple zones with an overlapping network range, they are ordered
alphanumerically by zone name and only the first one is considered.

To set the source in the current zone:

firewall-cmd --add-source=<source>

To set the source IP address for a specific zone:

firewall-cmd --zone=zone-name --add-source=<source>

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

22

The following procedure allows all incoming traffic from 192.168.2.15 in the trusted zone:

Procedure

1. List all available zones:

firewall-cmd --get-zones

2. Add the source IP to the trusted zone in the permanent mode:

firewall-cmd --zone=trusted --add-source=192.168.2.15

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

1.9.2. Removing a source

When you remove a source from a zone, the traffic which originates from the source is no longer
directed through the rules specified for that source. Instead, the traffic falls back to the rules and
settings of the zone associated with the interface from which it originates, or goes to the default zone.

Procedure

1. List allowed sources for the required zone:

firewall-cmd --zone=zone-name --list-sources

2. Remove the source from the zone permanently:

firewall-cmd --zone=zone-name --remove-source=<source>

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

1.9.3. Removing a source port

By removing a source port you disable sorting the traffic based on a port of origin.

Procedure

To remove a source port:

firewall-cmd --zone=zone-name --remove-source-port=<port-
name>/<tcp|udp|sctp|dccp>

1.9.4. Using zones and sources to allow a service for only a specific domain

To allow traffic from a specific network to use a service on a machine, use zones and source. The

CHAPTER 1. USING AND CONFIGURING FIREWALLD

23

To allow traffic from a specific network to use a service on a machine, use zones and source. The
following procedure allows only HTTP traffic from the 192.0.2.0/24 network while any other traffic is
blocked.

WARNING

When you configure this scenario, use a zone that has the default target. Using a
zone that has the target set to ACCEPT is a security risk, because for traffic from
192.0.2.0/24, all network connections would be accepted.

Procedure

1. List all available zones:

firewall-cmd --get-zones
block dmz drop external home internal public trusted work

2. Add the IP range to the internal zone to route the traffic originating from the source through
the zone:

firewall-cmd --zone=internal --add-source=192.0.2.0/24

3. Add the http service to the internal zone:

firewall-cmd --zone=internal --add-service=http

4. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

Verification

Check that the internal zone is active and that the service is allowed in it:

firewall-cmd --zone=internal --list-all
internal (active)
 target: default
 icmp-block-inversion: no
 interfaces:
 sources: 192.0.2.0/24
 services: cockpit dhcpv6-client mdns samba-client ssh http
 ...

Additional resources

firewalld.zones(5) man page

1.10. FILTERING FORWARDED TRAFFIC BETWEEN ZONES

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

24

firewalld enables you to control the flow of network data between different firewalld zones. By defining
rules and policies, you can manage how traffic is allowed or blocked when it moves between these zones.

The policy objects feature provides forward and output filtering in firewalld. You can use firewalld to
filter traffic between different zones to allow access to locally hosted VMs to connect the host.

1.10.1. The relationship between policy objects and zones

Policy objects allow the user to attach firewalld’s primitives such as services, ports, and rich rules to the
policy. You can apply the policy objects to traffic that passes between zones in a stateful and
unidirectional manner.

firewall-cmd --permanent --new-policy myOutputPolicy

firewall-cmd --permanent --policy myOutputPolicy --add-ingress-zone HOST

firewall-cmd --permanent --policy myOutputPolicy --add-egress-zone ANY

HOST and ANY are the symbolic zones used in the ingress and egress zone lists.

The HOST symbolic zone allows policies for the traffic originating from or has a destination to
the host running firewalld.

The ANY symbolic zone applies policy to all the current and future zones. ANY symbolic zone
acts as a wildcard for all zones.

1.10.2. Using priorities to sort policies

Multiple policies can apply to the same set of traffic, therefore, priorities should be used to create an
order of precedence for the policies that may be applied.

To set a priority to sort the policies:

firewall-cmd --permanent --policy mypolicy --set-priority -500

In the above example -500 is a lower priority value but has higher precedence. Thus, -500 will execute
before -100.

Lower numerical priority values have higher precedence and are applied first.

1.10.3. Using policy objects to filter traffic between locally hosted containers and a
network physically connected to the host

The policy objects feature allows users to filter traffic between Podman and firewalld zones.

NOTE

Red Hat recommends blocking all traffic by default and opening the selective services
needed for the Podman utility.

Procedure

1. Create a new firewall policy:

CHAPTER 1. USING AND CONFIGURING FIREWALLD

25

firewall-cmd --permanent --new-policy podmanToAny

2. Block all traffic from Podman to other zones and allow only necessary services on Podman:

firewall-cmd --permanent --policy podmanToAny --set-target REJECT
firewall-cmd --permanent --policy podmanToAny --add-service dhcp
firewall-cmd --permanent --policy podmanToAny --add-service dns
firewall-cmd --permanent --policy podmanToAny --add-service https

3. Create a new Podman zone:

firewall-cmd --permanent --new-zone=podman

4. Define the ingress zone for the policy:

firewall-cmd --permanent --policy podmanToHost --add-ingress-zone podman

5. Define the egress zone for all other zones:

firewall-cmd --permanent --policy podmanToHost --add-egress-zone ANY

Setting the egress zone to ANY means that you filter from Podman to other zones. If you want
to filter to the host, then set the egress zone to HOST.

6. Restart the firewalld service:

systemctl restart firewalld

Verification

Verify the Podman firewall policy to other zones:

firewall-cmd --info-policy podmanToAny
podmanToAny (active)
 ...
 target: REJECT
 ingress-zones: podman
 egress-zones: ANY
 services: dhcp dns https
 ...

1.10.4. Setting the default target of policy objects

You can specify --set-target options for policies. The following targets are available:

ACCEPT - accepts the packet

DROP - drops the unwanted packets

REJECT - rejects unwanted packets with an ICMP reply

CONTINUE (default) - packets will be subject to rules in following policies and zones.

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

26

firewall-cmd --permanent --policy mypolicy --set-target CONTINUE

Verification

Verify information about the policy

firewall-cmd --info-policy mypolicy

1.10.5. Using DNAT to forward HTTPS traffic to a different host

If your web server runs in a DMZ with private IP addresses, you can configure destination network
address translation (DNAT) to enable clients on the internet to connect to this web server. In this case,
the host name of the web server resolves to the public IP address of the router. When a client
establishes a connection to a defined port on the router, the router forwards the packets to the internal
web server.

Prerequisites

The DNS server resolves the host name of the web server to the router’s IP address.

You know the following settings:

The private IP address and port number that you want to forward

The IP protocol to be used

The destination IP address and port of the web server where you want to redirect the
packets

Procedure

1. Create a firewall policy:

firewall-cmd --permanent --new-policy <example_policy>

The policies, as opposed to zones, allow packet filtering for input, output, and forwarded traffic.
This is important, because forwarding traffic to endpoints on locally run web servers, containers,
or virtual machines requires such capability.

2. Configure symbolic zones for the ingress and egress traffic to also enable the router itself to
connect to its local IP address and forward this traffic:

firewall-cmd --permanent --policy=<example_policy> --add-ingress-zone=HOST
firewall-cmd --permanent --policy=<example_policy> --add-egress-zone=ANY

The --add-ingress-zone=HOST option refers to packets generated locally and transmitted out
of the local host. The --add-egress-zone=ANY option refers to traffic moving to any zone.

3. Add a rich rule that forwards traffic to the web server:

firewall-cmd --permanent --policy=<example_policy> --add-rich-rule='rule
family="ipv4" destination address="192.0.2.1" forward-port port="443" protocol="tcp"
to-port="443" to-addr="192.51.100.20"'

The rich rule forwards TCP traffic from port 443 on the IP address of the router (192.0.2.1) to

CHAPTER 1. USING AND CONFIGURING FIREWALLD

27

The rich rule forwards TCP traffic from port 443 on the IP address of the router (192.0.2.1) to
port 443 of the IP address of the web server (192.51.100.20).

4. Reload the firewall configuration files:

firewall-cmd --reload
success

5. Activate routing of 127.0.0.0/8 in the kernel:

For persistent changes, run:

echo "net.ipv4.conf.all.route_localnet=1" > /etc/sysctl.d/90-enable-route-
localnet.conf

The command persistently configures the route_localnet kernel parameter and ensures
that the setting is preserved after the system reboots.

For applying the settings immediately without a system reboot, run:

sysctl -p /etc/sysctl.d/90-enable-route-localnet.conf

The sysctl command is useful for applying on-the-fly changes, however the configuration
will not persist across system reboots.

Verification

1. Connect to the IP address of the router and to the port that you have forwarded to the web
server:

curl https://192.0.2.1:443

2. Optional: Verify that the net.ipv4.conf.all.route_localnet kernel parameter is active:

sysctl net.ipv4.conf.all.route_localnet
net.ipv4.conf.all.route_localnet = 1

3. Verify that <example_policy> is active and contains the settings you need, especially the
source IP address and port, protocol to be used, and the destination IP address and port:

firewall-cmd --info-policy=<example_policy>
example_policy (active)
 priority: -1
 target: CONTINUE
 ingress-zones: HOST
 egress-zones: ANY
 services:
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

28

 rich rules:
 rule family="ipv4" destination address="192.0.2.1" forward-port port="443" protocol="tcp" to-
port="443" to-addr="192.51.100.20"

Additional resources

firewall-cmd(1), firewalld.policies(5), firewalld.richlanguage(5), sysctl(8), and sysctl.conf(5)
man pages

Using configuration files in /etc/sysctl.d/ to adjust kernel parameters

1.11. CONFIGURING NAT USING FIREWALLD

With firewalld, you can configure the following network address translation (NAT) types:

Masquerading

Destination NAT (DNAT)

Redirect

1.11.1. Network address translation types

These are the different network address translation (NAT) types:

Masquerading

Use one of these NAT types to change the source IP address of packets. For example, Internet
Service Providers (ISPs) do not route private IP ranges, such as 10.0.0.0/8. If you use private IP
ranges in your network and users should be able to reach servers on the internet, map the source IP
address of packets from these ranges to a public IP address.
Masquerading automatically uses the IP address of the outgoing interface. Therefore, use
masquerading if the outgoing interface uses a dynamic IP address.

Destination NAT (DNAT)

Use this NAT type to rewrite the destination address and port of incoming packets. For example, if
your web server uses an IP address from a private IP range and is, therefore, not directly accessible
from the internet, you can set a DNAT rule on the router to redirect incoming traffic to this server.

Redirect

This type is a special case of DNAT that redirects packets to a different port on the local machine.
For example, if a service runs on a different port than its standard port, you can redirect incoming
traffic from the standard port to this specific port.

1.11.2. Configuring IP address masquerading

You can enable IP masquerading on your system. IP masquerading hides individual machines behind a
gateway when accessing the internet.

Procedure

1. To check if IP masquerading is enabled (for example, for the external zone), enter the following
command as root:

firewall-cmd --zone=external --query-masquerade

CHAPTER 1. USING AND CONFIGURING FIREWALLD

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel#using-configuration-files-in-etc-sysctl-d-to-adjust-kernel-parameters_configuring-kernel-parameters-at-runtime

The command prints yes with exit status 0 if enabled. It prints no with exit status 1 otherwise. If
zone is omitted, the default zone will be used.

2. To enable IP masquerading, enter the following command as root:

firewall-cmd --zone=external --add-masquerade

3. To make this setting persistent, pass the --permanent option to the command.

4. To disable IP masquerading, enter the following command as root:

firewall-cmd --zone=external --remove-masquerade

To make this setting permanent, pass the --permanent option to the command.

1.11.3. Using DNAT to forward incoming HTTP traffic

You can use destination network address translation (DNAT) to direct incoming traffic from one
destination address and port to another. Typically, this is useful for redirecting incoming requests from
an external network interface to specific internal servers or services.

Prerequisites

The firewalld service is running.

Procedure

1. Create the /etc/sysctl.d/90-enable-IP-forwarding.conf file with the following content:

net.ipv4.ip_forward=1

This setting enables IP forwarding in the kernel. It makes the internal RHEL server act as a router
and forward packets from network to network.

2. Load the setting from the /etc/sysctl.d/90-enable-IP-forwarding.conf file:

sysctl -p /etc/sysctl.d/90-enable-IP-forwarding.conf

3. Forward incoming HTTP traffic:

firewall-cmd --zone=public --add-forward-
port=port=80:proto=tcp:toaddr=198.51.100.10:toport=8080 --permanent

The previous command defines a DNAT rule with the following settings:

--zone=public - The firewall zone for which you configure the DNAT rule. You can adjust
this to whatever zone you need.

--add-forward-port - The option that indicates you are adding a port-forwarding rule.

port=80 - The external destination port.

proto=tcp - The protocol indicating that you forward TCP traffic.

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

30

toaddr=198.51.100.10 - The destination IP address.

toport=8080 - The destination port of the internal server.

--permanent - The option that makes the DNAT rule persistent across reboots.

4. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

Verify the DNAT rule for the firewall zone that you used:

firewall-cmd --list-forward-ports --zone=public
port=80:proto=tcp:toport=8080:toaddr=198.51.100.10

Alternatively, view the corresponding XML configuration file:

cat /etc/firewalld/zones/public.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>Public</short>
 <description>For use in public areas. You do not trust the other computers on networks to
not harm your computer. Only selected incoming connections are accepted.</description>
 <service name="ssh"/>
 <service name="dhcpv6-client"/>
 <service name="cockpit"/>
 <forward-port port="80" protocol="tcp" to-port="8080" to-addr="198.51.100.10"/>
 <forward/>
</zone>

Additional resources

Configuring kernel parameters at runtime

firewall-cmd(1) manual page

1.11.4. Redirecting traffic from a non-standard port to make the web service
accessible on a standard port

You can use the redirect mechanism to make the web service that internally runs on a non-standard port
accessible without requiring users to specify the port in the URL. As a result, the URLs are simpler and
provide better browsing experience, while a non-standard port is still used internally or for specific
requirements.

Prerequisites

The firewalld service is running.

Procedure

1. Create the /etc/sysctl.d/90-enable-IP-forwarding.conf file with the following content:

CHAPTER 1. USING AND CONFIGURING FIREWALLD

31

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel#doc-wrapper

net.ipv4.ip_forward=1

This setting enables IP forwarding in the kernel.

2. Load the setting from the /etc/sysctl.d/90-enable-IP-forwarding.conf file:

sysctl -p /etc/sysctl.d/90-enable-IP-forwarding.conf

3. Create the NAT redirect rule:

firewall-cmd --zone=public --add-forward-
port=port=<standard_port>:proto=tcp:toport=<non_standard_port> --permanent

The previous command defines the NAT redirect rule with the following settings:

--zone=public - The firewall zone, for which you configure the rule. You can adjust this to
whatever zone you need.

--add-forward-port=port=<non_standard_port> - The option that indicates you are
adding a port-forwarding (redirecting) rule with source port on which you initially receive the
incoming traffic.

proto=tcp - The protocol indicating that you redirect TCP traffic.

toport=<standard_port> - The destination port, to which the incoming traffic should be
redirected after being received on the source port.

--permanent - The option that makes the rule persist across reboots.

4. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

Verify the redirect rule for the firewall zone that you used:

firewall-cmd --list-forward-ports
port=8080:proto=tcp:toport=80:toaddr=

Alternatively, view the corresponding XML configuration file:

cat /etc/firewalld/zones/public.xml
<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>Public</short>
 <description>For use in public areas. You do not trust the other computers on networks to
not harm your computer. Only selected incoming connections are accepted.</description>
 <service name="ssh"/>
 <service name="dhcpv6-client"/>
 <service name="cockpit"/>
 <forward-port port="8080" protocol="tcp" to-port="80"/>
 <forward/>
</zone>

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

32

Additional resources

Configuring kernel parameters at runtime

firewall-cmd(1) manual page

1.12. MANAGING ICMP REQUESTS

The Internet Control Message Protocol (ICMP) is a supporting protocol that is used by various
network devices for testing, troubleshooting, and diagnostics. ICMP differs from transport protocols
such as TCP and UDP because it is not used to exchange data between systems.

You can use the ICMP messages, especially echo-request and echo-reply, to reveal information about a
network and misuse such information for various kinds of fraudulent activities. Therefore, firewalld
enables controlling the ICMP requests to protect your network information.

1.12.1. Configuring ICMP filtering

You can use ICMP filtering to define which ICMP types and codes you want the firewall to permit or
deny from reaching your system. ICMP types and codes are specific categories and subcategories of
ICMP messages.

ICMP filtering helps, for example, in the following areas:

Security enhancement - Block potentially harmful ICMP types and codes to reduce your attack
surface.

Network performance - Permit only necessary ICMP types to optimize network performance
and prevent potential network congestion caused by excessive ICMP traffic.

Troubleshooting control - Maintain essential ICMP functionality for network troubleshooting
and block ICMP types that represent potential security risk.

Prerequisites

The firewalld service is running.

Procedure

1. List available ICMP types and codes:

firewall-cmd --get-icmptypes
address-unreachable bad-header beyond-scope communication-prohibited destination-
unreachable echo-reply echo-request failed-policy fragmentation-needed host-precedence-
violation host-prohibited host-redirect host-unknown host-unreachable
...

From this predefined list, select which ICMP types and codes to allow or block.

2. Filter specific ICMP types by:

Allowing ICMP types:

firewall-cmd --zone=<target-zone> --remove-icmp-block=echo-request --
permanent

CHAPTER 1. USING AND CONFIGURING FIREWALLD

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel#doc-wrapper

The command removes any existing blocking rules for the echo requests ICMP type.

Blocking ICMP types:

firewall-cmd --zone=<target-zone> --add-icmp-block=redirect --permanent

The command ensures that the redirect messages ICMP type is blocked by the firewall.

3. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

Verify your filtering rules are in effect:

firewall-cmd --list-icmp-blocks
redirect

The command output displays the ICMP types and codes that you allowed or blocked.

Additional resources

firewall-cmd(1) manual page

1.13. SETTING AND CONTROLLING IP SETS USING FIREWALLD

IP sets are a RHEL feature for grouping of IP addresses and networks into sets to achieve more flexible
and efficient firewall rule management.

The IP sets are valuable in scenarios when you need to for example:

Handle large lists of IP addresses

Implement dynamic updates to those large lists of IP addresses

Create custom IP-based policies to enhance network security and control

WARNING

Red Hat recommends using the firewall-cmd command to create and manage IP
sets.

1.13.1. Configuring dynamic updates for allowlisting with IP sets

You can make near real-time updates to flexibly allow specific IP addresses or ranges in the IP sets even
in unpredictable conditions. These updates can be triggered by various events, such as detection of
security threats or changes in the network behavior. Typically, such a solution leverages automation to
reduce manual effort and improve security by responding quickly to the situation.

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

34

Prerequisites

The firewalld service is running.

Procedure

1. Create an IP set with a meaningful name:

firewall-cmd --permanent --new-ipset=allowlist --type=hash:ip

The new IP set called allowlist contains IP addresses that you want your firewall to allow.

2. Add a dynamic update to the IP set:

firewall-cmd --permanent --ipset=allowlist --add-entry=198.51.100.10

This configuration updates the allowlist IP set with a newly added IP address that is allowed to
pass network traffic by your firewall.

3. Create a firewall rule that references the previously created IP set:

firewall-cmd --permanent --zone=public --add-source=ipset:allowlist

Without this rule, the IP set would not have any impact on network traffic. The default firewall
policy would prevail.

4. Reload the firewall configuration to apply the changes:

firewall-cmd --reload

Verification

1. List all IP sets:

firewall-cmd --get-ipsets
allowlist

2. List the active rules:

firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp0s1
 sources: ipset:allowlist
 services: cockpit dhcpv6-client ssh
 ports:
 protocols:
 ...

The sources section of the command-line output provides insights to what origins of traffic
(hostnames, interfaces, IP sets, subnets, and others) are permitted or denied access to a
particular firewall zone. In this case, the IP addresses contained in the allowlist IP set are
allowed to pass traffic through the firewall for the public zone.

CHAPTER 1. USING AND CONFIGURING FIREWALLD

35

3. Explore the contents of your IP set:

cat /etc/firewalld/ipsets/allowlist.xml
<?xml version="1.0" encoding="utf-8"?>
<ipset type="hash:ip">
 <entry>198.51.100.10</entry>
</ipset>

Next steps

Use a script or a security utility to fetch your threat intelligence feeds and update allowlist
accordingly in an automated fashion.

Additional resources

firewall-cmd(1) manual page

1.14. PRIORITIZING RICH RULES

By default, rich rules are organized based on their rule action. For example, deny rules have precedence
over allow rules. The priority parameter in rich rules provides administrators fine-grained control over
rich rules and their execution order. When using the priority parameter, rules are sorted first by their
priority values in ascending order. When more rules have the same priority, their order is determined by
the rule action, and if the action is also the same, the order may be undefined.

1.14.1. How the priority parameter organizes rules into different chains

You can set the priority parameter in a rich rule to any number between -32768 and 32767, and lower
numerical values have higher precedence.

The firewalld service organizes rules based on their priority value into different chains:

Priority lower than 0: the rule is redirected into a chain with the _pre suffix.

Priority higher than 0: the rule is redirected into a chain with the _post suffix.

Priority equals 0: based on the action, the rule is redirected into a chain with the _log, _deny, or
_allow the action.

Inside these sub-chains, firewalld sorts the rules based on their priority value.

1.14.2. Setting the priority of a rich rule

The following is an example of how to create a rich rule that uses the priority parameter to log all traffic
that is not allowed or denied by other rules. You can use this rule to flag unexpected traffic.

Procedure

Add a rich rule with a very low precedence to log all traffic that has not been matched by other
rules:

firewall-cmd --add-rich-rule='rule priority=32767 log prefix="UNEXPECTED: " limit
value="5/m"'

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

36

The command additionally limits the number of log entries to 5 per minute.

Verification

Display the nftables rule that the command in the previous step created:

nft list chain inet firewalld filter_IN_public_post
table inet firewalld {
 chain filter_IN_public_post {
 log prefix "UNEXPECTED: " limit rate 5/minute
 }
}

1.15. CONFIGURING FIREWALL LOCKDOWN

Local applications or services are able to change the firewall configuration if they are running as root (for
example, libvirt). With this feature, the administrator can lock the firewall configuration so that either no
applications or only applications that are added to the lockdown allow list are able to request firewall
changes. The lockdown settings default to disabled. If enabled, the user can be sure that there are no
unwanted configuration changes made to the firewall by local applications or services.

1.15.1. Configuring lockdown using CLI

You can enable or disable the lockdown feature using the command line.

Procedure

1. To query whether lockdown is enabled:

firewall-cmd --query-lockdown

2. Manage lockdown configuration by either:

Enabling lockdown:

firewall-cmd --lockdown-on

Disabling lockdown:

firewall-cmd --lockdown-off

1.15.2. Overview of lockdown allowlist configuration files

The default allowlist configuration file contains the NetworkManager context and the default context
of libvirt. The user ID 0 is also on the list.

The allowlist configuration files are stored in the /etc/firewalld/ directory.

<?xml version="1.0" encoding="utf-8"?>
 <whitelist>
 <command name="/usr/bin/python3 -s /usr/bin/firewall-config"/>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>

CHAPTER 1. USING AND CONFIGURING FIREWALLD

37

Following is an example allowlist configuration file enabling all commands for the firewall-cmd utility, for
a user called user whose user ID is 815:

This example shows both user id and user name, but only one option is required. Python is the
interpreter and is prepended to the command line.

In Red Hat Enterprise Linux, all utilities are placed in the /usr/bin/ directory and the /bin/ directory is
sym-linked to the /usr/bin/ directory. In other words, although the path for firewall-cmd when entered
as root might resolve to /bin/firewall-cmd, /usr/bin/firewall-cmd can now be used. All new scripts
should use the new location. But be aware that if scripts that run as root are written to use the
/bin/firewall-cmd path, then that command path must be added in the allowlist in addition to the
/usr/bin/firewall-cmd path traditionally used only for non- root users.

The * at the end of the name attribute of a command means that all commands that start with this string
match. If the * is not there then the absolute command including arguments must match.

1.16. ENABLING TRAFFIC FORWARDING BETWEEN DIFFERENT
INTERFACES OR SOURCES WITHIN A FIREWALLD ZONE

Intra-zone forwarding is a firewalld feature that enables traffic forwarding between interfaces or
sources within a firewalld zone.

1.16.1. The difference between intra-zone forwarding and zones with the default
target set to ACCEPT

With intra-zone forwarding enabled, the traffic within a single firewalld zone can flow from one interface
or source to another interface or source. The zone specifies the trust level of interfaces and sources. If
the trust level is the same, the traffic stays inside the same zone.

NOTE

Enabling intra-zone forwarding in the default zone of firewalld, applies only to the
interfaces and sources added to the current default zone.

firewalld uses different zones to manage incoming and outgoing traffic. Each zone has its own set of
rules and behaviors. For example, the trusted zone, allows all forwarded traffic by default.

Other zones can have different default behaviors. In standard zones, forwarded traffic is typically
dropped by default when the target of the zone is set to default.

To control how the traffic is forwarded between different interfaces or sources within a zone, make sure
you understand and configure the target of the zone accordingly.

 <selinux context="system_u:system_r:virtd_t:s0-s0:c0.c1023"/>
 <user id="0"/>
 </whitelist>

<?xml version="1.0" encoding="utf-8"?>
 <whitelist>
 <command name="/usr/libexec/platform-python -s /bin/firewall-cmd*"/>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>
 <user id="815"/>
 <user name="user"/>
 </whitelist>

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

38

1.16.2. Using intra-zone forwarding to forward traffic between an Ethernet and Wi-Fi
network

You can use intra-zone forwarding to forward traffic between interfaces and sources within the same
firewalld zone. This feature brings the following benefits:

Seamless connectivity between wired and wireless devices (you can forward traffic between an
Ethernet network connected to enp1s0 and a Wi-Fi network connected to wlp0s20)

Support for flexible work environments

Shared resources that are accessible and used by multiple devices or users within a network
(such as printers, databases, network-attached storage, and others)

Efficient internal networking (such as smooth communication, reduced latency, resource
accessibility, and others)

You can enable this functionality for individual firewalld zones.

Procedure

1. Enable packet forwarding in the kernel:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

2. Ensure that interfaces between which you want to enable intra-zone forwarding are assigned
only to the internal zone:

firewall-cmd --get-active-zones

3. If the interface is currently assigned to a zone other than internal, reassign it:

firewall-cmd --zone=internal --change-interface=interface_name --permanent

4. Add the enp1s0 and wlp0s20 interfaces to the internal zone:

firewall-cmd --zone=internal --add-interface=enp1s0 --add-interface=wlp0s20

5. Enable intra-zone forwarding:

firewall-cmd --zone=internal --add-forward

Verification

The following verification steps require that the nmap-ncat package is installed on both hosts.

1. Log in to a host that is on the same network as the enp1s0 interface of the host on which you
enabled zone forwarding.

2. Start an echo service with ncat to test connectivity:

ncat -e /usr/bin/cat -l 12345

CHAPTER 1. USING AND CONFIGURING FIREWALLD

39

3. Log in to a host that is in the same network as the wlp0s20 interface.

4. Connect to the echo server running on the host that is in the same network as the enp1s0:

ncat <other_host> 12345

5. Type something and press Enter. Verify the text is sent back.

Additional resources

firewalld.zones(5) man page

1.17. CONFIGURING FIREWALLD BY USING RHEL SYSTEM ROLES

You can use the firewall System Role to configure settings of the firewalld service on multiple clients
at once. This solution:

Provides an interface with efficient input settings.

Keeps all intended firewalld parameters in one place.

After you run the firewall role on the control node, the System Role applies the firewalld parameters to
the managed node immediately and makes them persistent across reboots.

1.17.1. Introduction to the firewall RHEL System Role

RHEL System Roles is a set of contents for the Ansible automation utility. This content together with
the Ansible automation utility provides a consistent configuration interface to remotely manage multiple
systems.

The rhel-system-roles.firewall role from the RHEL System Roles was introduced for automated
configurations of the firewalld service. The rhel-system-roles package contains this System Role, and
also the reference documentation.

To apply the firewalld parameters on one or more systems in an automated fashion, use the firewall
System Role variable in a playbook. A playbook is a list of one or more plays that is written in the text-
based YAML format.

You can use an inventory file to define a set of systems that you want Ansible to configure.

With the firewall role you can configure many different firewalld parameters, for example:

Zones.

The services for which packets should be allowed.

Granting, rejection, or dropping of traffic access to ports.

Forwarding of ports or port ranges for a zone.

Additional resources

README.md and README.html files in the /usr/share/doc/rhel-system-roles/firewall/
directory

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

40

Working with playbooks

How to build your inventory

1.17.2. Resetting the firewalld settings by using a RHEL System Role

With the firewall RHEL system role, you can reset the firewalld settings to their default state. If you add
the previous:replaced parameter to the variable list, the System Role removes all existing user-defined
settings and resets firewalld to the defaults. If you combine the previous:replaced parameter with
other settings, the firewall role removes all existing settings before applying new ones.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/reset-firewalld.yml, with the following content:

2. Validate the playbook syntax:

ansible-playbook ~/configure-ethernet-device-with-ethtoolcoalesce-settings.yml --
syntax-check

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

ansible-playbook ~/reset-firewalld.yml

Verification

- name: Reset firewalld example
 hosts: managed-node-01.example.com
 tasks:
 - name: Reset firewalld
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - previous: replaced

CHAPTER 1. USING AND CONFIGURING FIREWALLD

41

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Run this command as root on the managed node to check all the zones:

firewall-cmd --list-all-zones

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

1.17.3. Forwarding incoming traffic in firewalld from one local port to a different local
port by using a RHEL System Role

With the firewall role you can remotely configure firewalld parameters with persisting effect on
multiple managed hosts.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/port_forwarding.yml, with the following content:

2. Validate the playbook syntax:

ansible-playbook ~/port_forwarding.yml --syntax-check

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

ansible-playbook ~/port_forwarding.yml

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Forward incoming traffic on port 8080 to 443
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - { forward_port: 8080/tcp;443;, state: enabled, runtime: true, permanent: true }

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

42

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Verification

On the managed host, display the firewalld settings:

firewall-cmd --list-forward-ports

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

1.17.4. Managing ports in firewalld by using a RHEL System Role

You can use the RHEL firewall System Role to open or close ports in the local firewall for incoming
traffic and make the new configuration persist across reboots. For example you can configure the
default zone to permit incoming traffic for the HTTPS service.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/opening-a-port.yml, with the following content:

The permanent: true option makes the new settings persistent across reboots.

2. Validate the playbook syntax:

ansible-playbook ~/opening-a-port.yml --syntax-check

Note that this command only validates the syntax and does not protect against a wrong but valid

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Allow incoming HTTPS traffic to the local host
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - port: 443/tcp
 service: http
 state: enabled
 runtime: true
 permanent: true

CHAPTER 1. USING AND CONFIGURING FIREWALLD

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

ansible-playbook ~/opening-a-port.yml

Verification

On the managed node, verify that the 443/tcp port associated with the HTTPS service is open:

firewall-cmd --list-ports
443/tcp

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

1.17.5. Configuring a firewalld DMZ zone by using a RHEL System Role

As a system administrator, you can use the firewall System Role to configure a dmz zone on the enp1s0
interface to permit HTTPS traffic to the zone. In this way, you enable external users to access your web
servers.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/configuring-a-dmz.yml, with the following content:

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Creating a DMZ with access to HTTPS port and masquerading for hosts in DMZ
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - zone: dmz
 interface: enp1s0
 service: https

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

2. Validate the playbook syntax:

ansible-playbook ~/configuring-a-dmz.yml --syntax-check

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

ansible-playbook ~/configuring-a-dmz.yml

Verification

On the managed node, view detailed information about the dmz zone:

firewall-cmd --zone=dmz --list-all
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp1s0
 sources:
 services: https ssh
 ports:
 protocols:
 forward: no
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

 state: enabled
 runtime: true
 permanent: true

CHAPTER 1. USING AND CONFIGURING FIREWALLD

45

CHAPTER 2. GETTING STARTED WITH NFTABLES
The nftables framework classifies packets and it is the successor to the iptables, ip6tables, arptables,
ebtables, and ipset utilities. It offers numerous improvements in convenience, features, and
performance over previous packet-filtering tools, most notably:

Built-in lookup tables instead of linear processing

A single framework for both the IPv4 and IPv6 protocols

All rules applied atomically instead of fetching, updating, and storing a complete rule set

Support for debugging and tracing in the rule set (nftrace) and monitoring trace events (in the
nft tool)

More consistent and compact syntax, no protocol-specific extensions

A Netlink API for third-party applications

The nftables framework uses tables to store chains. The chains contain individual rules for performing
actions. The nft utility replaces all tools from the previous packet-filtering frameworks. You can use the
libnftnl library for low-level interaction with nftables Netlink API through the libmnl library.

To display the effect of rule set changes, use the nft list ruleset command. Because these utilities add
tables, chains, rules, sets, and other objects to the nftables rule set, be aware that nftables rule-set
operations, such as the nft flush ruleset command, might affect rule sets installed using the iptables
command.

2.1. MIGRATING FROM IPTABLES TO NFTABLES

If your firewall configuration still uses iptables rules, you can migrate your iptables rules to nftables.

IMPORTANT

The ipset and iptables-nft packages have been deprecated in Red Hat Enterprise Linux
9. This includes deprecation of nft-variants such as iptables, ip6tables, arptables, and
ebtables utilities. If you are using any of these tools, for example, because you upgraded
from an earlier RHEL version, Red Hat recommends migrating to the nft command line
tool provided by the nftables package.

2.1.1. When to use firewalld, nftables, or iptables

The following is a brief overview in which scenario you should use one of the following utilities:

firewalld: Use the firewalld utility for simple firewall use cases. The utility is easy to use and
covers the typical use cases for these scenarios.

nftables: Use the nftables utility to set up complex and performance-critical firewalls, such as
for a whole network.

iptables: The iptables utility on Red Hat Enterprise Linux uses the nf_tables kernel API instead
of the legacy back end. The nf_tables API provides backward compatibility so that scripts that
use iptables commands still work on Red Hat Enterprise Linux. For new firewall scripts, Red Hat
recommends to use nftables.

IMPORTANT

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

46

IMPORTANT

To prevent the different firewall-related services (firewalld, nftables, or iptables) from
influencing each other, run only one of them on a RHEL host, and disable the other
services.

2.1.2. Converting iptables and ip6tables rule sets to nftables

Use the iptables-restore-translate and ip6tables-restore-translate utilities to translate iptables and
ip6tables rule sets to nftables.

Prerequisites

The nftables and iptables packages are installed.

The system has iptables and ip6tables rules configured.

Procedure

1. Write the iptables and ip6tables rules to a file:

iptables-save >/root/iptables.dump
ip6tables-save >/root/ip6tables.dump

2. Convert the dump files to nftables instructions:

iptables-restore-translate -f /root/iptables.dump > /etc/nftables/ruleset-migrated-
from-iptables.nft
ip6tables-restore-translate -f /root/ip6tables.dump > /etc/nftables/ruleset-migrated-
from-ip6tables.nft

3. Review and, if needed, manually update the generated nftables rules.

4. To enable the nftables service to load the generated files, add the following to the
/etc/sysconfig/nftables.conf file:

include "/etc/nftables/ruleset-migrated-from-iptables.nft"
include "/etc/nftables/ruleset-migrated-from-ip6tables.nft"

5. Stop and disable the iptables service:

systemctl disable --now iptables

If you used a custom script to load the iptables rules, ensure that the script no longer starts
automatically and reboot to flush all tables.

6. Enable and start the nftables service:

systemctl enable --now nftables

Verification

Display the nftables rule set:

CHAPTER 2. GETTING STARTED WITH NFTABLES

47

nft list ruleset

Additional resources

Automatically loading nftables rules when the system boots

2.1.3. Converting single iptables and ip6tables rules to nftables

Red Hat Enterprise Linux provides the iptables-translate and ip6tables-translate utilities to convert an
iptables or ip6tables rule into the equivalent one for nftables.

Prerequisites

The nftables package is installed.

Procedure

Use the iptables-translate or ip6tables-translate utility instead of iptables or ip6tables to
display the corresponding nftables rule, for example:

iptables-translate -A INPUT -s 192.0.2.0/24 -j ACCEPT
nft add rule ip filter INPUT ip saddr 192.0.2.0/24 counter accept

Note that some extensions lack translation support. In these cases, the utility prints the
untranslated rule prefixed with the # sign, for example:

iptables-translate -A INPUT -j CHECKSUM --checksum-fill
nft # -A INPUT -j CHECKSUM --checksum-fill

Additional resources

iptables-translate --help

2.1.4. Comparison of common iptables and nftables commands

The following is a comparison of common iptables and nftables commands:

Listing all rules:

iptables nftables

iptables-save nft list ruleset

Listing a certain table and chain:

iptables nftables

iptables -L nft list table ip filter

iptables -L INPUT nft list chain ip filter INPUT

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

48

iptables -t nat -L PREROUTING nft list chain ip nat PREROUTING

iptables nftables

The nft command does not pre-create tables and chains. They exist only if a user created them
manually.

Listing rules generated by firewalld:

nft list table inet firewalld
nft list table ip firewalld
nft list table ip6 firewalld

2.2. WRITING AND EXECUTING NFTABLES SCRIPTS

The major benefit of using the nftables framework is that the execution of scripts is atomic. This means
that the system either applies the whole script or prevents the execution if an error occurs. This
guarantees that the firewall is always in a consistent state.

Additionally, with the nftables script environment, you can:

Add comments

Define variables

Include other rule-set files

When you install the nftables package, Red Hat Enterprise Linux automatically creates *.nft scripts in
the /etc/nftables/ directory. These scripts contain commands that create tables and empty chains for
different purposes.

2.2.1. Supported nftables script formats

You can write scripts in the nftables scripting environment in the following formats:

The same format as the nft list ruleset command displays the rule set:

#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

table inet example_table {
 chain example_chain {
 # Chain for incoming packets that drops all packets that
 # are not explicitly allowed by any rule in this chain
 type filter hook input priority 0; policy drop;

 # Accept connections to port 22 (ssh)
 tcp dport ssh accept
 }
}

CHAPTER 2. GETTING STARTED WITH NFTABLES

49

The same syntax as for nft commands:

2.2.2. Running nftables scripts

You can run an nftables script either by passing it to the nft utility or by executing the script directly.

Procedure

To run an nftables script by passing it to the nft utility, enter:

nft -f /etc/nftables/<example_firewall_script>.nft

To run an nftables script directly:

a. For the single time that you perform this:

i. Ensure that the script starts with the following shebang sequence:

IMPORTANT

If you omit the -f parameter, the nft utility does not read the script and
displays: Error: syntax error, unexpected newline, expecting string.

ii. Optional: Set the owner of the script to root:

chown root /etc/nftables/<example_firewall_script>.nft

iii. Make the script executable for the owner:

chmod u+x /etc/nftables/<example_firewall_script>.nft

b. Run the script:

/etc/nftables/<example_firewall_script>.nft

If no output is displayed, the system executed the script successfully.

#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

Create a table
add table inet example_table

Create a chain for incoming packets that drops all packets
that are not explicitly allowed by any rule in this chain
add chain inet example_table example_chain { type filter hook input priority 0 ; policy drop ; }

Add a rule that accepts connections to port 22 (ssh)
add rule inet example_table example_chain tcp dport ssh accept

#!/usr/sbin/nft -f

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

50

IMPORTANT

Even if nft executes the script successfully, incorrectly placed rules, missing parameters,
or other problems in the script can cause that the firewall behaves not as expected.

Additional resources

chown(1) man page

chmod(1) man page

Automatically loading nftables rules when the system boots

2.2.3. Using comments in nftables scripts

The nftables scripting environment interprets everything to the right of a # character to the end of a
line as a comment.

Comments can start at the beginning of a line, or next to a command:

2.2.4. Using variables in nftables script

To define a variable in an nftables script, use the define keyword. You can store single values and
anonymous sets in a variable. For more complex scenarios, use sets or verdict maps.

Variables with a single value

The following example defines a variable named INET_DEV with the value enp1s0:

define INET_DEV = enp1s0

You can use the variable in the script by entering the $ sign followed by the variable name:

...
add rule inet example_table example_chain iifname $INET_DEV tcp dport ssh accept
...

Variables that contain an anonymous set

The following example defines a variable that contains an anonymous set:

define DNS_SERVERS = { 192.0.2.1, 192.0.2.2 }

You can use the variable in the script by writing the $ sign followed by the variable name:

add rule inet example_table example_chain ip daddr $DNS_SERVERS accept

NOTE

...
Flush the rule set
flush ruleset

add table inet example_table # Create a table
...

CHAPTER 2. GETTING STARTED WITH NFTABLES

51

NOTE

Curly braces have special semantics when you use them in a rule because they indicate
that the variable represents a set.

Additional resources

Using sets in nftables commands

Using verdict maps in nftables commands

2.2.5. Including files in nftables scripts

In the nftables scripting environment, you can include other scripts by using the include statement.

If you specify only a file name without an absolute or relative path, nftables includes files from the
default search path, which is set to /etc on Red Hat Enterprise Linux.

Example 2.1. Including files from the default search directory

To include a file from the default search directory:

include "example.nft"

Example 2.2. Including all *.nft files from a directory

To include all files ending with *.nft that are stored in the /etc/nftables/rulesets/ directory:

include "/etc/nftables/rulesets/*.nft"

Note that the include statement does not match files beginning with a dot.

Additional resources

The Include files section in the nft(8) man page

2.2.6. Automatically loading nftables rules when the system boots

The nftables systemd service loads firewall scripts that are included in the /etc/sysconfig/nftables.conf
file.

Prerequisites

The nftables scripts are stored in the /etc/nftables/ directory.

Procedure

1. Edit the /etc/sysconfig/nftables.conf file.

If you modified the *.nft scripts that were created in /etc/nftables/ with the installation of

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

52

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_firewalls_and_packet_filters/getting-started-with-nftables_firewall-packet-filters#using-sets-in-nftables-commands_getting-started-with-nftables
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_firewalls_and_packet_filters/getting-started-with-nftables_firewall-packet-filters#using-verdict-maps-in-nftables-commands_getting-started-with-nftables

If you modified the *.nft scripts that were created in /etc/nftables/ with the installation of
the nftables package, uncomment the include statement for these scripts.

If you wrote new scripts, add include statements to include these scripts. For example, to
load the /etc/nftables/example.nft script when the nftables service starts, add:

include "/etc/nftables/_example_.nft"

2. Optional: Start the nftables service to load the firewall rules without rebooting the system:

systemctl start nftables

3. Enable the nftables service.

systemctl enable nftables

Additional resources

Supported nftables script formats

2.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND
RULES

You can display nftables rule sets and manage them.

2.3.1. Basics of nftables tables

A table in nftables is a namespace that contains a collection of chains, rules, sets, and other objects.

Each table must have an address family assigned. The address family defines the packet types that this
table processes. You can set one of the following address families when you create a table:

ip: Matches only IPv4 packets. This is the default if you do not specify an address family.

ip6: Matches only IPv6 packets.

inet: Matches both IPv4 and IPv6 packets.

arp: Matches IPv4 address resolution protocol (ARP) packets.

bridge: Matches packets that pass through a bridge device.

netdev: Matches packets from ingress.

If you want to add a table, the format to use depends on your firewall script:

In scripts in native syntax, use:

table <table_address_family> <table_name> {
}

In shell scripts, use:

nft add table <table_address_family> <table_name>

CHAPTER 2. GETTING STARTED WITH NFTABLES

53

2.3.2. Basics of nftables chains

Tables consist of chains which in turn are containers for rules. The following two rule types exists:

Base chain: You can use base chains as an entry point for packets from the networking stack.

Regular chain: You can use regular chains as a jump target to better organize rules.

If you want to add a base chain to a table, the format to use depends on your firewall script:

In scripts in native syntax, use:

table <table_address_family> <table_name> {
 chain <chain_name> {
 type <type> hook <hook> priority <priority>
 policy <policy> ;
 }
}

In shell scripts, use:

nft add chain <table_address_family> <table_name> <chain_name> { type <type> hook
<hook> priority <priority> \; policy <policy> \; }

To avoid that the shell interprets the semicolons as the end of the command, place the \ escape
character in front of the semicolons.

Both examples create base chains. To create a regular chain, do not set any parameters in the curly
brackets.

Chain types
The following are the chain types and an overview with which address families and hooks you can use
them:

Type Address families Hooks Description

filter all all Standard chain type

nat ip, ip6, inet prerouting, input,
output,
postrouting

Chains of this type perform native address
translation based on connection tracking
entries. Only the first packet traverses this
chain type.

route ip, ip6 output Accepted packets that traverse this chain type
cause a new route lookup if relevant parts of
the IP header have changed.

Chain priorities
The priority parameter specifies the order in which packets traverse chains with the same hook value.
You can set this parameter to an integer value or use a standard priority name.

The following matrix is an overview of the standard priority names and their numeric values, and with

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

54

The following matrix is an overview of the standard priority names and their numeric values, and with
which address families and hooks you can use them:

Textual value Numeric value Address families Hooks

raw -300 ip, ip6, inet all

mangle -150 ip, ip6, inet all

dstnat -100 ip, ip6, inet prerouting

-300 bridge prerouting

filter 0 ip, ip6, inet, arp, netdev all

-200 bridge all

security 50 ip, ip6, inet all

srcnat 100 ip, ip6, inet postrouting

300 bridge postrouting

out 100 bridge output

Chain policies
The chain policy defines whether nftables should accept or drop packets if rules in this chain do not
specify any action. You can set one of the following policies in a chain:

accept (default)

drop

2.3.3. Basics of nftables rules

Rules define actions to perform on packets that pass a chain that contains this rule. If the rule also
contains matching expressions, nftables performs the actions only if all previous expressions apply.

If you want to add a rule to a chain, the format to use depends on your firewall script:

In scripts in native syntax, use:

table <table_address_family> <table_name> {
 chain <chain_name> {
 type <type> hook <hook> priority <priority> ; policy <policy> ;
 <rule>
 }
}

In shell scripts, use:

CHAPTER 2. GETTING STARTED WITH NFTABLES

55

nft add rule <table_address_family> <table_name> <chain_name> <rule>

This shell command appends the new rule at the end of the chain. If you prefer to add a rule at
the beginning of the chain, use the nft insert command instead of nft add.

2.3.4. Managing tables, chains, and rules using nft commands

To manage an nftables firewall on the command line or in shell scripts, use the nft utility.

IMPORTANT

The commands in this procedure do not represent a typical workflow and are not
optimized. This procedure only demonstrates how to use nft commands to manage
tables, chains, and rules in general.

Procedure

1. Create a table named nftables_svc with the inet address family so that the table can process
both IPv4 and IPv6 packets:

nft add table inet nftables_svc

2. Add a base chain named INPUT, that processes incoming network traffic, to the inet
nftables_svc table:

nft add chain inet nftables_svc INPUT { type filter hook input priority filter \; policy
accept \; }

To avoid that the shell interprets the semicolons as the end of the command, escape the
semicolons using the \ character.

3. Add rules to the INPUT chain. For example, allow incoming TCP traffic on port 22 and 443, and,
as the last rule of the INPUT chain, reject other incoming traffic with an Internet Control
Message Protocol (ICMP) port unreachable message:

nft add rule inet nftables_svc INPUT tcp dport 22 accept
nft add rule inet nftables_svc INPUT tcp dport 443 accept
nft add rule inet nftables_svc INPUT reject with icmpx type port-unreachable

If you enter the nft add rule commands as shown, nft adds the rules in the same order to the
chain as you run the commands.

4. Display the current rule set including handles:

nft -a list table inet nftables_svc
table inet nftables_svc { # handle 13
 chain INPUT { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport 22 accept # handle 2
 tcp dport 443 accept # handle 3
 reject # handle 4
 }
}

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

56

5. Insert a rule before the existing rule with handle 3. For example, to insert a rule that allows TCP
traffic on port 636, enter:

nft insert rule inet nftables_svc INPUT position 3 tcp dport 636 accept

6. Append a rule after the existing rule with handle 3. For example, to insert a rule that allows TCP
traffic on port 80, enter:

nft add rule inet nftables_svc INPUT position 3 tcp dport 80 accept

7. Display the rule set again with handles. Verify that the later added rules have been added to the
specified positions:

nft -a list table inet nftables_svc
table inet nftables_svc { # handle 13
 chain INPUT { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport 22 accept # handle 2
 tcp dport 636 accept # handle 5
 tcp dport 443 accept # handle 3
 tcp dport 80 accept # handle 6
 reject # handle 4
 }
}

8. Remove the rule with handle 6:

nft delete rule inet nftables_svc INPUT handle 6

To remove a rule, you must specify the handle.

9. Display the rule set, and verify that the removed rule is no longer present:

nft -a list table inet nftables_svc
table inet nftables_svc { # handle 13
 chain INPUT { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport 22 accept # handle 2
 tcp dport 636 accept # handle 5
 tcp dport 443 accept # handle 3
 reject # handle 4
 }
}

10. Remove all remaining rules from the INPUT chain:

nft flush chain inet nftables_svc INPUT

11. Display the rule set, and verify that the INPUT chain is empty:

nft list table inet nftables_svc
table inet nftables_svc {
 chain INPUT {

CHAPTER 2. GETTING STARTED WITH NFTABLES

57

 type filter hook input priority filter; policy accept
 }
}

12. Delete the INPUT chain:

nft delete chain inet nftables_svc INPUT

You can also use this command to delete chains that still contain rules.

13. Display the rule set, and verify that the INPUT chain has been deleted:

nft list table inet nftables_svc
table inet nftables_svc {
}

14. Delete the nftables_svc table:

nft delete table inet nftables_svc

You can also use this command to delete tables that still contain chains.

NOTE

To delete the entire rule set, use the nft flush ruleset command instead of
manually deleting all rules, chains, and tables in separate commands.

Additional resources

nft(8) man page

2.4. CONFIGURING NAT USING NFTABLES

With nftables, you can configure the following network address translation (NAT) types:

Masquerading

Source NAT (SNAT)

Destination NAT (DNAT)

Redirect

IMPORTANT

You can only use real interface names in iifname and oifname parameters, and
alternative names (altname) are not supported.

2.4.1. NAT types

These are the different network address translation (NAT) types:

Masquerading and source NAT (SNAT)

Use one of these NAT types to change the source IP address of packets. For example, Internet

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

58

Use one of these NAT types to change the source IP address of packets. For example, Internet
Service Providers (ISPs) do not route private IP ranges, such as 10.0.0.0/8. If you use private IP
ranges in your network and users should be able to reach servers on the internet, map the source IP
address of packets from these ranges to a public IP address.
Masquerading and SNAT are very similar to one another. The differences are:

Masquerading automatically uses the IP address of the outgoing interface. Therefore, use
masquerading if the outgoing interface uses a dynamic IP address.

SNAT sets the source IP address of packets to a specified IP and does not dynamically look
up the IP of the outgoing interface. Therefore, SNAT is faster than masquerading. Use SNAT
if the outgoing interface uses a fixed IP address.

Destination NAT (DNAT)

Use this NAT type to rewrite the destination address and port of incoming packets. For example, if
your web server uses an IP address from a private IP range and is, therefore, not directly accessible
from the internet, you can set a DNAT rule on the router to redirect incoming traffic to this server.

Redirect

This type is a special case of DNAT that redirects packets to the local machine depending on the
chain hook. For example, if a service runs on a different port than its standard port, you can redirect
incoming traffic from the standard port to this specific port.

2.4.2. Configuring masquerading using nftables

Masquerading enables a router to dynamically change the source IP of packets sent through an
interface to the IP address of the interface. This means that if the interface gets a new IP assigned,
nftables automatically uses the new IP when replacing the source IP.

Replace the source IP of packets leaving the host through the ens3 interface to the IP set on ens3.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the prerouting chain, the nftables framework
requires this chain to match incoming packet replies.

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the postrouting chain that matches outgoing packets on the ens3 interface:

nft add rule nat postrouting oifname "ens3" masquerade

CHAPTER 2. GETTING STARTED WITH NFTABLES

59

2.4.3. Configuring source NAT using nftables

On a router, Source NAT (SNAT) enables you to change the IP of packets sent through an interface to a
specific IP address. The router then replaces the source IP of outgoing packets.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the postrouting chain, the nftables framework
requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the postrouting chain that replaces the source IP of outgoing packets through
ens3 with 192.0.2.1:

nft add rule nat postrouting oifname "ens3" snat to 192.0.2.1

Additional resources

Forwarding incoming packets on a specific local port to a different host

2.4.4. Configuring destination NAT using nftables

Destination NAT (DNAT) enables you to redirect traffic on a router to a host that is not directly
accessible from the internet.

For example, with DNAT the router redirects incoming traffic sent to port 80 and 443 to a web server
with the IP address 192.0.2.1.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

60

IMPORTANT

Even if you do not add a rule to the postrouting chain, the nftables framework
requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming traffic to port 80 and 443 on the
ens3 interface of the router to the web server with the IP address 192.0.2.1:

nft add rule nat prerouting iifname ens3 tcp dport { 80, 443 } dnat to 192.0.2.1

4. Depending on your environment, add either a SNAT or masquerading rule to change the source
address for packets returning from the web server to the sender:

a. If the ens3 interface uses a dynamic IP addresses, add a masquerading rule:

nft add rule nat postrouting oifname "ens3" masquerade

b. If the ens3 interface uses a static IP address, add a SNAT rule. For example, if the ens3
uses the 198.51.100.1 IP address:

nft add rule nat postrouting oifname "ens3" snat to 198.51.100.1

5. Enable packet forwarding:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

Additional resources

NAT types

2.4.5. Configuring a redirect using nftables

The redirect feature is a special case of destination network address translation (DNAT) that redirects
packets to the local machine depending on the chain hook.

For example, you can redirect incoming and forwarded traffic sent to port 22 of the local host to port
2222.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting chain to the table:

nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }

Note that you must pass the -- option to the nft command to prevent the shell from interpreting

CHAPTER 2. GETTING STARTED WITH NFTABLES

61

Note that you must pass the -- option to the nft command to prevent the shell from interpreting
the negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming traffic on port 22 to port 2222:

nft add rule nat prerouting tcp dport 22 redirect to 2222

Additional resources

NAT types

2.4.6. Configuring flowtable by using nftables

The nftables utility uses the netfilter framework to provide network address translation (NAT) for
network traffic and provides the fastpath feature-based flowtable mechanism to accelerate packet
forwarding.

The flowtable mechanism has the following features:

Uses connection tracking to bypass the classic packet forwarding path.

Avoids revisiting the routing table by bypassing the classic packet processing.

Works only with TCP and UDP protocols.

Hardware independent software fast path.

Procedure

1. Add an example-table table of inet family:

nft add table inet <example-table>

2. Add an example-flowtable flowtable with ingress hook and filter as a priority type:

nft add flowtable inet <example-table> <example-flowtable> { hook ingress priority
filter \; devices = { enp1s0, enp7s0 } \; }

3. Add an example-forwardchain flow to the flowtable from a packet processing table:

nft add chain inet <example-table> <example-forwardchain> { type filter hook
forward priority filter \; }

This command adds a flowtable of filter type with forward hook and filter priority.

4. Add a rule with established connection tracking state to offload example-flowtable flow:

nft add rule inet <example-table> <example-forwardchain> ct state established flow
add @<example-flowtable>

Verification

Verify the properties of example-table:

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

62

nft list table inet <example-table>
table inet example-table {
 flowtable example-flowtable {
 hook ingress priority filter
 devices = { enp1s0, enp7s0 }
 }

 chain example-forwardchain {
type filter hook forward priority filter; policy accept;
ct state established flow add @example-flowtable
 }
}

Additional resources

nft(8) man page

2.5. USING SETS IN NFTABLES COMMANDS

The nftables framework natively supports sets. You can use sets, for example, if a rule should match
multiple IP addresses, port numbers, interfaces, or any other match criteria.

2.5.1. Using anonymous sets in nftables

An anonymous set contains comma-separated values enclosed in curly brackets, such as { 22, 80, 443 },
that you use directly in a rule. You can use anonymous sets also for IP addresses and any other match
criteria.

The drawback of anonymous sets is that if you want to change the set, you must replace the rule. For a
dynamic solution, use named sets as described in Using named sets in nftables .

Prerequisites

The example_chain chain and the example_table table in the inet family exists.

Procedure

1. For example, to add a rule to example_chain in example_table that allows incoming traffic to
port 22, 80, and 443:

nft add rule inet example_table example_chain tcp dport { 22, 80, 443 } accept

2. Optional: Display all chains and their rules in example_table:

nft list table inet example_table
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport { ssh, http, https } accept
 }
}

CHAPTER 2. GETTING STARTED WITH NFTABLES

63

2.5.2. Using named sets in nftables

The nftables framework supports mutable named sets. A named set is a list or range of elements that
you can use in multiple rules within a table. Another benefit over anonymous sets is that you can update
a named set without replacing the rules that use the set.

When you create a named set, you must specify the type of elements the set contains. You can set the
following types:

ipv4_addr for a set that contains IPv4 addresses or ranges, such as 192.0.2.1 or 192.0.2.0/24.

ipv6_addr for a set that contains IPv6 addresses or ranges, such as 2001:db8:1::1 or
2001:db8:1::1/64.

ether_addr for a set that contains a list of media access control (MAC) addresses, such as
52:54:00:6b:66:42.

inet_proto for a set that contains a list of internet protocol types, such as tcp.

inet_service for a set that contains a list of internet services, such as ssh.

mark for a set that contains a list of packet marks. Packet marks can be any positive 32-bit
integer value (0 to 2147483647).

Prerequisites

The example_chain chain and the example_table table exists.

Procedure

1. Create an empty set. The following examples create a set for IPv4 addresses:

To create a set that can store multiple individual IPv4 addresses:

nft add set inet example_table example_set { type ipv4_addr \; }

To create a set that can store IPv4 address ranges:

nft add set inet example_table example_set { type ipv4_addr \; flags interval \; }

IMPORTANT

To prevent the shell from interpreting the semicolons as the end of the
command, you must escape the semicolons with a backslash.

2. Optional: Create rules that use the set. For example, the following command adds a rule to the
example_chain in the example_table that will drop all packets from IPv4 addresses in
example_set.

nft add rule inet example_table example_chain ip saddr @example_set drop

Because example_set is still empty, the rule has currently no effect.

3. Add IPv4 addresses to example_set:

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

64

If you create a set that stores individual IPv4 addresses, enter:

nft add element inet example_table example_set { 192.0.2.1, 192.0.2.2 }

If you create a set that stores IPv4 ranges, enter:

nft add element inet example_table example_set { 192.0.2.0-192.0.2.255 }

When you specify an IP address range, you can alternatively use the Classless Inter-Domain
Routing (CIDR) notation, such as 192.0.2.0/24 in the above example.

2.5.3. Additional resources

The Sets section in the nft(8) man page

2.6. USING VERDICT MAPS IN NFTABLES COMMANDS

Verdict maps, which are also known as dictionaries, enable nft to perform an action based on packet
information by mapping match criteria to an action.

2.6.1. Using anonymous maps in nftables

An anonymous map is a { match_criteria : action } statement that you use directly in a rule. The
statement can contain multiple comma-separated mappings.

The drawback of an anonymous map is that if you want to change the map, you must replace the rule.
For a dynamic solution, use named maps as described in Using named maps in nftables .

For example, you can use an anonymous map to route both TCP and UDP packets of the IPv4 and IPv6
protocol to different chains to count incoming TCP and UDP packets separately.

Procedure

1. Create a new table:

nft add table inet example_table

2. Create the tcp_packets chain in example_table:

nft add chain inet example_table tcp_packets

3. Add a rule to tcp_packets that counts the traffic in this chain:

nft add rule inet example_table tcp_packets counter

4. Create the udp_packets chain in example_table

nft add chain inet example_table udp_packets

5. Add a rule to udp_packets that counts the traffic in this chain:

nft add rule inet example_table udp_packets counter

CHAPTER 2. GETTING STARTED WITH NFTABLES

65

6. Create a chain for incoming traffic. For example, to create a chain named incoming_traffic in
example_table that filters incoming traffic:

nft add chain inet example_table incoming_traffic { type filter hook input priority 0 \;
}

7. Add a rule with an anonymous map to incoming_traffic:

nft add rule inet example_table incoming_traffic ip protocol vmap { tcp : jump
tcp_packets, udp : jump udp_packets }

The anonymous map distinguishes the packets and sends them to the different counter chains
based on their protocol.

8. To list the traffic counters, display example_table:

nft list table inet example_table
table inet example_table {
 chain tcp_packets {
 counter packets 36379 bytes 2103816
 }

 chain udp_packets {
 counter packets 10 bytes 1559
 }

 chain incoming_traffic {
 type filter hook input priority filter; policy accept;
 ip protocol vmap { tcp : jump tcp_packets, udp : jump udp_packets }
 }
}

The counters in the tcp_packets and udp_packets chain display both the number of received
packets and bytes.

2.6.2. Using named maps in nftables

The nftables framework supports named maps. You can use these maps in multiple rules within a table.
Another benefit over anonymous maps is that you can update a named map without replacing the rules
that use it.

When you create a named map, you must specify the type of elements:

ipv4_addr for a map whose match part contains an IPv4 address, such as 192.0.2.1.

ipv6_addr for a map whose match part contains an IPv6 address, such as 2001:db8:1::1.

ether_addr for a map whose match part contains a media access control (MAC) address, such
as 52:54:00:6b:66:42.

inet_proto for a map whose match part contains an internet protocol type, such as tcp.

inet_service for a map whose match part contains an internet services name port number, such
as ssh or 22.

mark for a map whose match part contains a packet mark. A packet mark can be any positive

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

66

mark for a map whose match part contains a packet mark. A packet mark can be any positive
32-bit integer value (0 to 2147483647).

counter for a map whose match part contains a counter value. The counter value can be any
positive 64-bit integer value.

quota for a map whose match part contains a quota value. The quota value can be any positive
64-bit integer value.

For example, you can allow or drop incoming packets based on their source IP address. Using a named
map, you require only a single rule to configure this scenario while the IP addresses and actions are
dynamically stored in the map.

Procedure

1. Create a table. For example, to create a table named example_table that processes IPv4
packets:

nft add table ip example_table

2. Create a chain. For example, to create a chain named example_chain in example_table:

nft add chain ip example_table example_chain { type filter hook input priority 0 \; }

IMPORTANT

To prevent the shell from interpreting the semicolons as the end of the
command, you must escape the semicolons with a backslash.

3. Create an empty map. For example, to create a map for IPv4 addresses:

nft add map ip example_table example_map { type ipv4_addr : verdict \; }

4. Create rules that use the map. For example, the following command adds a rule to
example_chain in example_table that applies actions to IPv4 addresses which are both
defined in example_map:

nft add rule example_table example_chain ip saddr vmap @example_map

5. Add IPv4 addresses and corresponding actions to example_map:

nft add element ip example_table example_map { 192.0.2.1 : accept, 192.0.2.2 : drop }

This example defines the mappings of IPv4 addresses to actions. In combination with the rule
created above, the firewall accepts packet from 192.0.2.1 and drops packets from 192.0.2.2.

6. Optional: Enhance the map by adding another IP address and action statement:

nft add element ip example_table example_map { 192.0.2.3 : accept }

7. Optional: Remove an entry from the map:

nft delete element ip example_table example_map { 192.0.2.1 }

CHAPTER 2. GETTING STARTED WITH NFTABLES

67

8. Optional: Display the rule set:

nft list ruleset
table ip example_table {
 map example_map {
 type ipv4_addr : verdict
 elements = { 192.0.2.2 : drop, 192.0.2.3 : accept }
 }

 chain example_chain {
 type filter hook input priority filter; policy accept;
 ip saddr vmap @example_map
 }
}

2.6.3. Additional resources

The Maps section in the nft(8) man page

2.7. EXAMPLE: PROTECTING A LAN AND DMZ USING AN NFTABLES
SCRIPT

Use the nftables framework on a RHEL router to write and install a firewall script that protects the
network clients in an internal LAN and a web server in a DMZ from unauthorized access from the
internet and from other networks.

IMPORTANT

This example is only for demonstration purposes and describes a scenario with specific
requirements.

Firewall scripts highly depend on the network infrastructure and security requirements.
Use this example to learn the concepts of nftables firewalls when you write scripts for
your own environment.

2.7.1. Network conditions

The network in this example has the following conditions:

The router is connected to the following networks:

The internet through interface enp1s0

The internal LAN through interface enp7s0

The DMZ through enp8s0

The internet interface of the router has both a static IPv4 address (203.0.113.1) and IPv6
address (2001:db8:a::1) assigned.

The clients in the internal LAN use only private IPv4 addresses from the range 10.0.0.0/24.
Consequently, traffic from the LAN to the internet requires source network address translation
(SNAT).

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

68

The administrator PCs in the internal LAN use the IP addresses 10.0.0.100 and 10.0.0.200.

The DMZ uses public IP addresses from the ranges 198.51.100.0/24 and 2001:db8:b::/56.

The web server in the DMZ uses the IP addresses 198.51.100.5 and 2001:db8:b::5.

The router acts as a caching DNS server for hosts in the LAN and DMZ.

2.7.2. Security requirements to the firewall script

The following are the requirements to the nftables firewall in the example network:

The router must be able to:

Recursively resolve DNS queries.

Perform all connections on the loopback interface.

Clients in the internal LAN must be able to:

Query the caching DNS server running on the router.

Access the HTTPS server in the DMZ.

Access any HTTPS server on the internet.

The PCs of the administrators must be able to access the router and every server in the DMZ
using SSH.

The web server in the DMZ must be able to:

Query the caching DNS server running on the router.

Access HTTPS servers on the internet to download updates.

Hosts on the internet must be able to:

Access the HTTPS servers in the DMZ.

Additionally, the following security requirements exists:

Connection attempts that are not explicitly allowed should be dropped.

Dropped packets should be logged.

2.7.3. Configuring logging of dropped packets to a file

By default, systemd logs kernel messages, such as for dropped packets, to the journal. Additionally, you
can configure the rsyslog service to log such entries to a separate file. To ensure that the log file does
not grow infinitely, configure a rotation policy.

Prerequisites

The rsyslog package is installed.

The rsyslog service is running.

CHAPTER 2. GETTING STARTED WITH NFTABLES

69

Procedure

1. Create the /etc/rsyslog.d/nftables.conf file with the following content:

Using this configuration, the rsyslog service logs dropped packets to the /var/log/nftables.log
file instead of /var/log/messages.

2. Restart the rsyslog service:

systemctl restart rsyslog

3. Create the /etc/logrotate.d/nftables file with the following content to rotate
/var/log/nftables.log if the size exceeds 10 MB:

The maxage 30 setting defines that logrotate removes rotated logs older than 30 days during
the next rotation operation.

Additional resources

rsyslog.conf(5) man page

logrotate(8) man page

2.7.4. Writing and activating the nftables script

This example is an nftables firewall script that runs on a RHEL router and protects the clients in an
internal LAN and a web server in a DMZ. For details about the network and the requirements for the
firewall used in the example, see Network conditions and Security requirements to the firewall script .

WARNING

This nftables firewall script is only for demonstration purposes. Do not use it
without adapting it to your environments and security requirements.

Prerequisites

The network is configured as described in Network conditions.

:msg, startswith, "nft drop" -/var/log/nftables.log
& stop

/var/log/nftables.log {
 size +10M
 maxage 30
 sharedscripts
 postrotate
 /usr/bin/systemctl kill -s HUP rsyslog.service >/dev/null 2>&1 || true
 endscript
}

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

70

Procedure

1. Create the /etc/nftables/firewall.nft script with the following content:

Remove all rules
flush ruleset

Table for both IPv4 and IPv6 rules
table inet nftables_svc {

 # Define variables for the interface name
 define INET_DEV = enp1s0
 define LAN_DEV = enp7s0
 define DMZ_DEV = enp8s0

 # Set with the IPv4 addresses of admin PCs
 set admin_pc_ipv4 {
 type ipv4_addr
 elements = { 10.0.0.100, 10.0.0.200 }
 }

 # Chain for incoming trafic. Default policy: drop
 chain INPUT {
 type filter hook input priority filter
 policy drop

 # Accept packets in established and related state, drop invalid packets
 ct state vmap { established:accept, related:accept, invalid:drop }

 # Accept incoming traffic on loopback interface
 iifname lo accept

 # Allow request from LAN and DMZ to local DNS server
 iifname { $LAN_DEV, $DMZ_DEV } meta l4proto { tcp, udp } th dport 53 accept

 # Allow admins PCs to access the router using SSH
 iifname $LAN_DEV ip saddr @admin_pc_ipv4 tcp dport 22 accept

 # Last action: Log blocked packets
 # (packets that were not accepted in previous rules in this chain)
 log prefix "nft drop IN : "
 }

 # Chain for outgoing traffic. Default policy: drop
 chain OUTPUT {
 type filter hook output priority filter
 policy drop

 # Accept packets in established and related state, drop invalid packets
 ct state vmap { established:accept, related:accept, invalid:drop }

 # Accept outgoing traffic on loopback interface

CHAPTER 2. GETTING STARTED WITH NFTABLES

71

2. Include the /etc/nftables/firewall.nft script in the /etc/sysconfig/nftables.conf file:

include "/etc/nftables/firewall.nft"

3. Enable IPv4 forwarding:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

4. Enable and start the nftables service:

systemctl enable --now nftables

 oifname lo accept

 # Allow local DNS server to recursively resolve queries
 oifname $INET_DEV meta l4proto { tcp, udp } th dport 53 accept

 # Last action: Log blocked packets
 log prefix "nft drop OUT: "
 }

 # Chain for forwarding traffic. Default policy: drop
 chain FORWARD {
 type filter hook forward priority filter
 policy drop

 # Accept packets in established and related state, drop invalid packets
 ct state vmap { established:accept, related:accept, invalid:drop }

 # IPv4 access from LAN and internet to the HTTPS server in the DMZ
 iifname { $LAN_DEV, $INET_DEV } oifname $DMZ_DEV ip daddr 198.51.100.5 tcp dport
443 accept

 # IPv6 access from internet to the HTTPS server in the DMZ
 iifname $INET_DEV oifname $DMZ_DEV ip6 daddr 2001:db8:b::5 tcp dport 443 accept

 # Access from LAN and DMZ to HTTPS servers on the internet
 iifname { $LAN_DEV, $DMZ_DEV } oifname $INET_DEV tcp dport 443 accept

 # Last action: Log blocked packets
 log prefix "nft drop FWD: "
 }

 # Postrouting chain to handle SNAT
 chain postrouting {
 type nat hook postrouting priority srcnat; policy accept;

 # SNAT for IPv4 traffic from LAN to internet
 iifname $LAN_DEV oifname $INET_DEV snat ip to 203.0.113.1
 }
}

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

72

Verification

1. Optional: Verify the nftables rule set:

nft list ruleset
...

2. Try to perform an access that the firewall prevents. For example, try to access the router using
SSH from the DMZ:

ssh router.example.com
ssh: connect to host router.example.com port 22: Network is unreachable

3. Depending on your logging settings, search:

The systemd journal for the blocked packets:

journalctl -k -g "nft drop"
Oct 14 17:27:18 router kernel: nft drop IN : IN=enp8s0 OUT= MAC=...
SRC=198.51.100.5 DST=198.51.100.1 ... PROTO=TCP SPT=40464 DPT=22 ... SYN ...

The /var/log/nftables.log file for the blocked packets:

Oct 14 17:27:18 router kernel: nft drop IN : IN=enp8s0 OUT= MAC=...
SRC=198.51.100.5 DST=198.51.100.1 ... PROTO=TCP SPT=40464 DPT=22 ... SYN ...

2.8. CONFIGURING PORT FORWARDING USING NFTABLES

Port forwarding enables administrators to forward packets sent to a specific destination port to a
different local or remote port.

For example, if your web server does not have a public IP address, you can set a port forwarding rule on
your firewall that forwards incoming packets on port 80 and 443 on the firewall to the web server. With
this firewall rule, users on the internet can access the web server using the IP or host name of the
firewall.

2.8.1. Forwarding incoming packets to a different local port

You can use nftables to forward packets. For example, you can forward incoming IPv4 packets on port
8022 to port 22 on the local system.

Procedure

1. Create a table named nat with the ip address family:

nft add table ip nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain ip nat prerouting { type nat hook prerouting priority -100 \; }

NOTE

CHAPTER 2. GETTING STARTED WITH NFTABLES

73

NOTE

Pass the -- option to the nft command to prevent the shell from interpreting the
negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming packets on port 8022 to the local
port 22:

nft add rule ip nat prerouting tcp dport 8022 redirect to :22

2.8.2. Forwarding incoming packets on a specific local port to a different host

You can use a destination network address translation (DNAT) rule to forward incoming packets on a
local port to a remote host. This enables users on the internet to access a service that runs on a host
with a private IP address.

For example, you can forward incoming IPv4 packets on the local port 443 to the same port number on
the remote system with the 192.0.2.1 IP address.

Prerequisites

You are logged in as the root user on the system that should forward the packets.

Procedure

1. Create a table named nat with the ip address family:

nft add table ip nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain ip nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain ip nat postrouting { type nat hook postrouting priority 100 \; }

NOTE

Pass the -- option to the nft command to prevent the shell from interpreting the
negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming packets on port 443 to the same port
on 192.0.2.1:

nft add rule ip nat prerouting tcp dport 443 dnat to 192.0.2.1

4. Add a rule to the postrouting chain to masquerade outgoing traffic:

nft add rule ip nat postrouting daddr 192.0.2.1 masquerade

5. Enable packet forwarding:

echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

74

2.9. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS

You can use nftables to limit the number of connections or to block IP addresses that attempt to
establish a given amount of connections to prevent them from using too many system resources.

2.9.1. Limiting the number of connections using nftables

The ct count parameter of the nft utility enables administrators to limit the number of connections.

Prerequisites

The base example_chain in example_table exists.

Procedure

1. Create a dynamic set for IPv4 addresses:

nft add set inet example_table example_meter { type ipv4_addr\; flags dynamic \;}

2. Add a rule that allows only two simultaneous connections to the SSH port (22) from an IPv4
address and rejects all further connections from the same IP:

nft add rule ip example_table example_chain tcp dport ssh meter example_meter { ip
saddr ct count over 2 } counter reject

3. Optional: Display the set created in the previous step:

nft list set inet example_table example_meter
table inet example_table {
 meter example_meter {
 type ipv4_addr
 size 65535
 elements = { 192.0.2.1 ct count over 2 , 192.0.2.2 ct count over 2 }
 }
}

The elements entry displays addresses that currently match the rule. In this example, elements
lists IP addresses that have active connections to the SSH port. Note that the output does not
display the number of active connections or if connections were rejected.

2.9.2. Blocking IP addresses that attempt more than ten new incoming TCP
connections within one minute

You can temporarily block hosts that are establishing more than ten IPv4 TCP connections within one
minute.

Procedure

1. Create the filter table with the ip address family:

nft add table ip filter

2. Add the input chain to the filter table:

CHAPTER 2. GETTING STARTED WITH NFTABLES

75

nft add chain ip filter input { type filter hook input priority 0 \; }

3. Add a set named denylist to the filter table:

nft add set ip filter denylist { type ipv4_addr \; flags dynamic, timeout \; timeout 5m \;
}

This command creates a dynamic set for IPv4 addresses. The timeout 5m parameter defines
that nftables automatically removes entries after five minutes to prevent that the set fills up
with stale entries.

4. Add a rule that automatically adds the source IP address of hosts that attempt to establish
more than ten new TCP connections within one minute to the denylist set:

nft add rule ip filter input ip protocol tcp ct state new, untracked add @denylist { ip
saddr limit rate over 10/minute } drop

Additional resources

Using named sets in nftables

2.10. DEBUGGING NFTABLES RULES

The nftables framework provides different options for administrators to debug rules and if packets
match them.

2.10.1. Creating a rule with a counter

To identify if a rule is matched, you can use a counter.

For more information about a procedure that adds a counter to an existing rule, see Adding a
counter to an existing rule.

Prerequisites

The chain to which you want to add the rule exists.

Procedure

1. Add a new rule with the counter parameter to the chain. The following example adds a rule with
a counter that allows TCP traffic on port 22 and counts the packets and traffic that match this
rule:

nft add rule inet example_table example_chain tcp dport 22 counter accept

2. To display the counter values:

nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

76

 tcp dport ssh counter packets 6872 bytes 105448565 accept
 }
}

2.10.2. Adding a counter to an existing rule

To identify if a rule is matched, you can use a counter.

For more information about a procedure that adds a new rule with a counter, see Creating a rule
with the counter.

Prerequisites

The rule to which you want to add the counter exists.

Procedure

1. Display the rules in the chain including their handles:

nft --handle list chain inet example_table example_chain
table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport ssh accept # handle 4
 }
}

2. Add the counter by replacing the rule but with the counter parameter. The following example
replaces the rule displayed in the previous step and adds a counter:

nft replace rule inet example_table example_chain handle 4 tcp dport 22 counter
accept

3. To display the counter values:

nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport ssh counter packets 6872 bytes 105448565 accept
 }
}

2.10.3. Monitoring packets that match an existing rule

The tracing feature in nftables in combination with the nft monitor command enables administrators to
display packets that match a rule. You can enable tracing for a rule an use it to monitoring packets that
match this rule.

Prerequisites

The rule to which you want to add the counter exists.

Procedure

CHAPTER 2. GETTING STARTED WITH NFTABLES

77

Procedure

1. Display the rules in the chain including their handles:

nft --handle list chain inet example_table example_chain
table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport ssh accept # handle 4
 }
}

2. Add the tracing feature by replacing the rule but with the meta nftrace set 1 parameters. The
following example replaces the rule displayed in the previous step and enables tracing:

nft replace rule inet example_table example_chain handle 4 tcp dport 22 meta nftrace
set 1 accept

3. Use the nft monitor command to display the tracing. The following example filters the output of
the command to display only entries that contain inet example_table example_chain:

nft monitor | grep "inet example_table example_chain"
trace id 3c5eb15e inet example_table example_chain packet: iif "enp1s0" ether saddr
52:54:00:17:ff:e4 ether daddr 52:54:00:72:2f:6e ip saddr 192.0.2.1 ip daddr 192.0.2.2 ip dscp
cs0 ip ecn not-ect ip ttl 64 ip id 49710 ip protocol tcp ip length 60 tcp sport 56728 tcp dport
ssh tcp flags == syn tcp window 64240
trace id 3c5eb15e inet example_table example_chain rule tcp dport ssh nftrace set 1 accept
(verdict accept)
...

WARNING

Depending on the number of rules with tracing enabled and the amount of
matching traffic, the nft monitor command can display a lot of output. Use
grep or other utilities to filter the output.

2.11. BACKING UP AND RESTORING THE NFTABLES RULE SET

You can backup nftables rules to a file and later restoring them. Also, administrators can use a file with
the rules to, for example, transfer the rules to a different server.

2.11.1. Backing up the nftables rule set to a file

You can use the nft utility to back up the nftables rule set to a file.

Procedure

To backup nftables rules:

In a format produced by nft list ruleset format:

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

78

nft list ruleset > file.nft

In JSON format:

nft -j list ruleset > file.json

2.11.2. Restoring the nftables rule set from a file

You can restore the nftables rule set from a file.

Procedure

To restore nftables rules:

If the file to restore is in the format produced by nft list ruleset or contains nft commands
directly:

nft -f file.nft

If the file to restore is in JSON format:

nft -j -f file.json

2.12. ADDITIONAL RESOURCES

Using nftables in Red Hat Enterprise Linux 8

What comes after iptables? Its successor, of course: nftables

Firewalld: The Future is nftables

CHAPTER 2. GETTING STARTED WITH NFTABLES

79

https://www.redhat.com/en/blog/using-nftables-red-hat-enterprise-linux-8
https://developers.redhat.com/blog/2016/10/28/what-comes-after-iptables-its-successor-of-course-nftables/
https://developers.redhat.com/blog/2018/08/10/firewalld-the-future-is-nftables/

CHAPTER 3. USING XDP-FILTER FOR HIGH-PERFORMANCE
TRAFFIC FILTERING TO PREVENT DDOS ATTACKS

Compared to packet filters, such as nftables, Express Data Path (XDP) processes and drops network
packets right at the network interface. Therefore, XDP determines the next step for the package before
it reaches a firewall or other applications. As a result, XDP filters require less resources and can process
network packets at a much higher rate than conventional packet filters to defend against distributed
denial of service (DDoS) attacks. For example, during testing, Red Hat dropped 26 million network
packets per second on a single core, which is significantly higher than the drop rate of nftables on the
same hardware.

The xdp-filter utility allows or drops incoming network packets using XDP. You can create rules to filter
traffic to or from specific:

IP addresses

MAC addresses

Ports

Note that, even if xdp-filter has a significantly higher packet-processing rate, it does not have the same
capabilities as, for example, nftables. Consider xdp-filter a conceptual utility to demonstrate packet
filtering using XDP. Additionally, you can use the code of the utility for a better understanding of how to
write your own XDP applications.

IMPORTANT

On other architectures than AMD and Intel 64-bit, the xdp-filter utility is provided as a
Technology Preview only. Technology Preview features are not supported with Red Hat
production Service Level Agreements (SLAs), might not be functionally complete, and
Red Hat does not recommend using them for production. These previews provide early
access to upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

3.1. DROPPING NETWORK PACKETS THAT MATCH AN XDP-FILTER
RULE

You can use xdp-filter to drop network packets:

To a specific destination port

From a specific IP address

From a specific MAC address

The allow policy of xdp-filter defines that all traffic is allowed and the filter drops only network packets
that match a particular rule. For example, use this method if you know the source IP addresses of
packets you want to drop.

Prerequisites

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

80

https://access.redhat.com/support/offerings/techpreview

The xdp-tools package is installed.

A network driver that supports XDP programs.

Procedure

1. Load xdp-filter to process incoming packets on a certain interface, such as enp1s0:

xdp-filter load enp1s0

By default, xdp-filter uses the allow policy, and the utility drops only traffic that matches any
rule.

Optionally, use the -f feature option to enable only particular features, such as tcp, ipv4, or
ethernet. Loading only the required features instead of all of them increases the speed of
packet processing. To enable multiple features, separate them with a comma.

If the command fails with an error, the network driver does not support XDP programs.

2. Add rules to drop packets that match them. For example:

To drop incoming packets to port 22, enter:

xdp-filter port 22

This command adds a rule that matches TCP and UDP traffic. To match only a particular
protocol, use the -p protocol option.

To drop incoming packets from 192.0.2.1, enter:

xdp-filter ip 192.0.2.1 -m src

Note that xdp-filter does not support IP ranges.

To drop incoming packets from MAC address 00:53:00:AA:07:BE, enter:

xdp-filter ether 00:53:00:AA:07:BE -m src

Verification

Use the following command to display statistics about dropped and allowed packets:

xdp-filter status

Additional resources

xdp-filter(8) man page

If you are a developer and interested in the code of xdp-filter, download and install the
corresponding source RPM (SRPM) from the Red Hat Customer Portal.

3.2. DROPPING ALL NETWORK PACKETS EXCEPT THE ONES THAT
MATCH AN XDP-FILTER RULE

CHAPTER 3. USING XDP-FILTER FOR HIGH-PERFORMANCE TRAFFIC FILTERING TO PREVENT DDOS ATTACKS

81

You can use xdp-filter to allow only network packets:

From and to a specific destination port

From and to a specific IP address

From and to specific MAC address

To do so, use the deny policy of xdp-filter which defines that the filter drops all network packets except
the ones that match a particular rule. For example, use this method if you do not know the source IP
addresses of packets you want to drop.

WARNING

If you set the default policy to deny when you load xdp-filter on an interface, the
kernel immediately drops all packets from this interface until you create rules that
allow certain traffic. To avoid being locked out from the system, enter the
commands locally or connect through a different network interface to the host.

Prerequisites

The xdp-tools package is installed.

You are logged in to the host either locally or using a network interface for which you do not plan
to filter the traffic.

A network driver that supports XDP programs.

Procedure

1. Load xdp-filter to process packets on a certain interface, such as enp1s0:

xdp-filter load enp1s0 -p deny

Optionally, use the -f feature option to enable only particular features, such as tcp, ipv4, or
ethernet. Loading only the required features instead of all of them increases the speed of
packet processing. To enable multiple features, separate them with a comma.

If the command fails with an error, the network driver does not support XDP programs.

2. Add rules to allow packets that match them. For example:

To allow packets to port 22, enter:

xdp-filter port 22

This command adds a rule that matches TCP and UDP traffic. To match only a particular
protocol, pass the -p protocol option to the command.

To allow packets to 192.0.2.1, enter:

Red Hat Enterprise Linux 9 Configuring firewalls and packet filters

82

xdp-filter ip 192.0.2.1

Note that xdp-filter does not support IP ranges.

To allow packets to MAC address 00:53:00:AA:07:BE, enter:

xdp-filter ether 00:53:00:AA:07:BE

IMPORTANT

The xdp-filter utility does not support stateful packet inspection. This requires
that you either do not set a mode using the -m mode option or you add explicit
rules to allow incoming traffic that the machine receives in reply to outgoing
traffic.

Verification

Use the following command to display statistics about dropped and allowed packets:

xdp-filter status

Additional resources

xdp-filter(8) man page.

If you are a developer and you are interested in the code of xdp-filter, download and install the
corresponding source RPM (SRPM) from the Red Hat Customer Portal.

CHAPTER 3. USING XDP-FILTER FOR HIGH-PERFORMANCE TRAFFIC FILTERING TO PREVENT DDOS ATTACKS

83

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. USING AND CONFIGURING FIREWALLD
	1.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES
	1.2. FIREWALL ZONES
	1.3. FIREWALL POLICIES
	1.4. FIREWALL RULES
	1.5. ZONE CONFIGURATION FILES
	1.6. PREDEFINED FIREWALLD SERVICES
	1.7. WORKING WITH FIREWALLD ZONES
	1.7.1. Customizing firewall settings for a specific zone to enhance security
	1.7.2. Changing the default zone
	1.7.3. Assigning a network interface to a zone
	1.7.4. Assigning a zone to a connection using nmcli
	1.7.5. Manually assigning a zone to a network connection in a connection profile file
	1.7.6. Creating a new zone
	1.7.7. Using zone targets to set default behavior for incoming traffic

	1.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD
	1.8.1. Controlling traffic with predefined services using the CLI
	1.8.2. Controlling traffic with predefined services using the GUI
	1.8.3. Configuring firewalld to allow hosting a secure web server
	1.8.4. Closing unused or unnecessary ports to enhance network security
	1.8.5. Controlling traffic through the CLI
	1.8.6. Controlling traffic with protocols using GUI

	1.9. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE
	1.9.1. Adding a source
	1.9.2. Removing a source
	1.9.3. Removing a source port
	1.9.4. Using zones and sources to allow a service for only a specific domain

	1.10. FILTERING FORWARDED TRAFFIC BETWEEN ZONES
	1.10.1. The relationship between policy objects and zones
	1.10.2. Using priorities to sort policies
	1.10.3. Using policy objects to filter traffic between locally hosted containers and a network physically connected to the host
	1.10.4. Setting the default target of policy objects
	1.10.5. Using DNAT to forward HTTPS traffic to a different host

	1.11. CONFIGURING NAT USING FIREWALLD
	1.11.1. Network address translation types
	1.11.2. Configuring IP address masquerading
	1.11.3. Using DNAT to forward incoming HTTP traffic
	1.11.4. Redirecting traffic from a non-standard port to make the web service accessible on a standard port

	1.12. MANAGING ICMP REQUESTS
	1.12.1. Configuring ICMP filtering

	1.13. SETTING AND CONTROLLING IP SETS USING FIREWALLD
	1.13.1. Configuring dynamic updates for allowlisting with IP sets

	1.14. PRIORITIZING RICH RULES
	1.14.1. How the priority parameter organizes rules into different chains
	1.14.2. Setting the priority of a rich rule

	1.15. CONFIGURING FIREWALL LOCKDOWN
	1.15.1. Configuring lockdown using CLI
	1.15.2. Overview of lockdown allowlist configuration files

	1.16. ENABLING TRAFFIC FORWARDING BETWEEN DIFFERENT INTERFACES OR SOURCES WITHIN A FIREWALLD ZONE
	1.16.1. The difference between intra-zone forwarding and zones with the default target set to ACCEPT
	1.16.2. Using intra-zone forwarding to forward traffic between an Ethernet and Wi-Fi network

	1.17. CONFIGURING FIREWALLD BY USING RHEL SYSTEM ROLES
	1.17.1. Introduction to the firewall RHEL System Role
	1.17.2. Resetting the firewalld settings by using a RHEL System Role
	1.17.3. Forwarding incoming traffic in firewalld from one local port to a different local port by using a RHEL System Role
	1.17.4. Managing ports in firewalld by using a RHEL System Role
	1.17.5. Configuring a firewalld DMZ zone by using a RHEL System Role

	CHAPTER 2. GETTING STARTED WITH NFTABLES
	2.1. MIGRATING FROM IPTABLES TO NFTABLES
	2.1.1. When to use firewalld, nftables, or iptables
	2.1.2. Converting iptables and ip6tables rule sets to nftables
	2.1.3. Converting single iptables and ip6tables rules to nftables
	2.1.4. Comparison of common iptables and nftables commands

	2.2. WRITING AND EXECUTING NFTABLES SCRIPTS
	2.2.1. Supported nftables script formats
	2.2.2. Running nftables scripts
	2.2.3. Using comments in nftables scripts
	2.2.4. Using variables in nftables script
	2.2.5. Including files in nftables scripts
	2.2.6. Automatically loading nftables rules when the system boots

	2.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND RULES
	2.3.1. Basics of nftables tables
	2.3.2. Basics of nftables chains
	Chain types
	Chain priorities
	Chain policies

	2.3.3. Basics of nftables rules
	2.3.4. Managing tables, chains, and rules using nft commands

	2.4. CONFIGURING NAT USING NFTABLES
	2.4.1. NAT types
	2.4.2. Configuring masquerading using nftables
	2.4.3. Configuring source NAT using nftables
	2.4.4. Configuring destination NAT using nftables
	2.4.5. Configuring a redirect using nftables
	2.4.6. Configuring flowtable by using nftables

	2.5. USING SETS IN NFTABLES COMMANDS
	2.5.1. Using anonymous sets in nftables
	2.5.2. Using named sets in nftables
	2.5.3. Additional resources

	2.6. USING VERDICT MAPS IN NFTABLES COMMANDS
	2.6.1. Using anonymous maps in nftables
	2.6.2. Using named maps in nftables
	2.6.3. Additional resources

	2.7. EXAMPLE: PROTECTING A LAN AND DMZ USING AN NFTABLES SCRIPT
	2.7.1. Network conditions
	2.7.2. Security requirements to the firewall script
	2.7.3. Configuring logging of dropped packets to a file
	2.7.4. Writing and activating the nftables script

	2.8. CONFIGURING PORT FORWARDING USING NFTABLES
	2.8.1. Forwarding incoming packets to a different local port
	2.8.2. Forwarding incoming packets on a specific local port to a different host

	2.9. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS
	2.9.1. Limiting the number of connections using nftables
	2.9.2. Blocking IP addresses that attempt more than ten new incoming TCP connections within one minute

	2.10. DEBUGGING NFTABLES RULES
	2.10.1. Creating a rule with a counter
	2.10.2. Adding a counter to an existing rule
	2.10.3. Monitoring packets that match an existing rule

	2.11. BACKING UP AND RESTORING THE NFTABLES RULE SET
	2.11.1. Backing up the nftables rule set to a file
	2.11.2. Restoring the nftables rule set from a file

	2.12. ADDITIONAL RESOURCES

	CHAPTER 3. USING XDP-FILTER FOR HIGH-PERFORMANCE TRAFFIC FILTERING TO PREVENT DDOS ATTACKS
	3.1. DROPPING NETWORK PACKETS THAT MATCH AN XDP-FILTER RULE
	3.2. DROPPING ALL NETWORK PACKETS EXCEPT THE ONES THAT MATCH AN XDP-FILTER RULE

