
Red Hat Enterprise Linux 9

Building, running, and managing containers

Using Podman, Buildah, and Skopeo on Red Hat Enterprise Linux 9

Last Updated: 2024-02-20

Red Hat Enterprise Linux 9 Building, running, and managing containers

Using Podman, Buildah, and Skopeo on Red Hat Enterprise Linux 9

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Enterprise Linux 9 provides a number of command-line tools for working with container
images. You can manage pods and container images using Podman. To build, update, and manage
container images you can use Buildah. To copy and inspect images in remote repositories, you can
use Skopeo.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. STARTING WITH CONTAINERS
1.1. CHARACTERISTICS OF PODMAN, BUILDAH, AND SKOPEO
1.2. COMMON PODMAN COMMANDS
1.3. RUNNING CONTAINERS WITHOUT DOCKER
1.4. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS
1.5. GETTING CONTAINER TOOLS
1.6. SETTING UP ROOTLESS CONTAINERS
1.7. UPGRADING TO ROOTLESS CONTAINERS
1.8. SPECIAL CONSIDERATIONS FOR ROOTLESS CONTAINERS
1.9. ADDITIONAL RESOURCES

CHAPTER 2. TYPES OF CONTAINER IMAGES
2.1. GENERAL CHARACTERISTICS OF RHEL CONTAINER IMAGES
2.2. CHARACTERISTICS OF UBI IMAGES
2.3. UNDERSTANDING THE UBI STANDARD IMAGES
2.4. UNDERSTANDING THE UBI INIT IMAGES
2.5. UNDERSTANDING THE UBI MINIMAL IMAGES
2.6. UNDERSTANDING THE UBI MICRO IMAGES

CHAPTER 3. WORKING WITH CONTAINER REGISTRIES
3.1. CONTAINER REGISTRIES
3.2. CONFIGURING CONTAINER REGISTRIES
3.3. SEARCHING FOR CONTAINER IMAGES
3.4. PULLING IMAGES FROM REGISTRIES
3.5. CONFIGURING SHORT-NAME ALIASES

CHAPTER 4. WORKING WITH CONTAINER IMAGES
4.1. PULLING CONTAINER IMAGES USING SHORT-NAME ALIASES
4.2. LISTING IMAGES
4.3. INSPECTING LOCAL IMAGES
4.4. INSPECTING REMOTE IMAGES
4.5. COPYING CONTAINER IMAGES
4.6. COPYING IMAGE LAYERS TO A LOCAL DIRECTORY
4.7. TAGGING IMAGES
4.8. SAVING AND LOADING IMAGES
4.9. REDISTRIBUTING UBI IMAGES
4.10. REMOVING IMAGES

CHAPTER 5. WORKING WITH CONTAINERS
5.1. PODMAN RUN COMMAND
5.2. RUNNING COMMANDS IN A CONTAINER FROM THE HOST
5.3. RUNNING COMMANDS INSIDE THE CONTAINER
5.4. LISTING CONTAINERS
5.5. STARTING CONTAINERS
5.6. INSPECTING CONTAINERS FROM THE HOST
5.7. MOUNTING DIRECTORY ON LOCALHOST TO THE CONTAINER
5.8. MOUNTING A CONTAINER FILESYSTEM
5.9. RUNNING A SERVICE AS A DAEMON WITH A STATIC IP
5.10. EXECUTING COMMANDS INSIDE A RUNNING CONTAINER

7

8

9
9

10
12
13
13
14
15
16
17

18
18
18
19

20
20
21

22
22
23
24
25
26

28
28
29
29
30
31
31
32
33
34
35

37
37
37
38
39
40
40
41

42
43
43

Table of Contents

1

. .

. .

. .

. .

. .

. .

5.11. SHARING FILES BETWEEN TWO CONTAINERS
5.12. EXPORTING AND IMPORTING CONTAINERS
5.13. STOPPING CONTAINERS
5.14. REMOVING CONTAINERS
5.15. CREATING SELINUX POLICIES FOR CONTAINERS
5.16. CONFIGURING PRE-EXECUTION HOOKS IN PODMAN

CHAPTER 6. SELECTING A CONTAINER RUNTIME
6.1. THE RUNC CONTAINER RUNTIME
6.2. THE CRUN CONTAINER RUNTIME
6.3. RUNNING CONTAINERS WITH RUNC AND CRUN
6.4. TEMPORARILY CHANGING THE CONTAINER RUNTIME
6.5. PERMANENTLY CHANGING THE CONTAINER RUNTIME

CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER
7.1. USING THE UBI INIT IMAGES
7.2. USING THE UBI MICRO IMAGES
7.3. ADDING SOFTWARE TO A UBI CONTAINER ON A SUBSCRIBED HOST
7.4. ADDING SOFTWARE IN A STANDARD UBI CONTAINER
7.5. ADDING SOFTWARE IN A MINIMAL UBI CONTAINER
7.6. ADDING SOFTWARE TO A UBI CONTAINER ON A UNSUBSCRIBED HOST
7.7. BUILDING UBI-BASED IMAGES
7.8. USING APPLICATION STREAM RUNTIME IMAGES
7.9. GETTING UBI CONTAINER IMAGE SOURCE CODE

CHAPTER 8. SIGNING CONTAINER IMAGES
8.1. SIGNING CONTAINER IMAGES WITH GPG SIGNATURES
8.2. VERIFYING GPG IMAGE SIGNATURES
8.3. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES USING A PRIVATE KEY
8.4. VERIFYING SIGSTORE IMAGE SIGNATURES USING A PUBLIC KEY
8.5. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES USING FULCIO AND REKOR
8.6. VERIFYING CONTAINER IMAGES WITH SIGSTORE SIGNATURES USING FULCIO AND REKOR
8.7. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES WITH A PRIVATE KEY AND REKOR

CHAPTER 9. MANAGING A CONTAINER NETWORK
9.1. LISTING CONTAINER NETWORKS
9.2. INSPECTING A NETWORK
9.3. CREATING A NETWORK
9.4. CONNECTING A CONTAINER TO A NETWORK
9.5. DISCONNECTING A CONTAINER FROM A NETWORK
9.6. REMOVING A NETWORK
9.7. REMOVING ALL UNUSED NETWORKS

CHAPTER 10. WORKING WITH PODS
10.1. CREATING PODS
10.2. DISPLAYING POD INFORMATION
10.3. STOPPING PODS
10.4. REMOVING PODS

CHAPTER 11. COMMUNICATING AMONG CONTAINERS
11.1. THE NETWORK MODES AND LAYERS
11.2. INSPECTING A NETWORK SETTINGS OF A CONTAINER
11.3. COMMUNICATING BETWEEN A CONTAINER AND AN APPLICATION
11.4. COMMUNICATING BETWEEN A CONTAINER AND A HOST
11.5. COMMUNICATING BETWEEN CONTAINERS USING PORT MAPPING

45
47
49
49
50
51

53
53
53
53
55
55

57
57
58
59
60
61

62
62
64
64

66
66
67
69
70
72
73
74

77
77
77
78
79
80
80
81

83
83
84
85
86

88
88
88
89
89
90

Red Hat Enterprise Linux 9 Building, running, and managing containers

2

. .

. .

. .

. .

. .

. .

11.6. COMMUNICATING BETWEEN CONTAINERS USING DNS
11.7. COMMUNICATING BETWEEN TWO CONTAINERS IN A POD
11.8. COMMUNICATING IN A POD
11.9. ATTACHING A POD TO THE CONTAINER NETWORK

CHAPTER 12. SETTING CONTAINER NETWORK MODES
12.1. RUNNING CONTAINERS WITH A STATIC IP
12.2. RUNNING THE DHCP PLUGIN WITHOUT SYSTEMD
12.3. RUNNING THE DHCP PLUGIN USING SYSTEMD
12.4. THE MACVLAN PLUGIN
12.5. SWITCHING THE NETWORK STACK FROM CNI TO NETAVARK
12.6. SWITCHING THE NETWORK STACK FROM NETAVARK TO CNI

CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING PODMAN
13.1. GENERATING A KUBERNETES YAML FILE USING PODMAN
13.2. GENERATING A KUBERNETES YAML FILE IN OPENSHIFT ENVIRONMENT
13.3. STARTING CONTAINERS AND PODS WITH PODMAN
13.4. STARTING CONTAINERS AND PODS IN OPENSHIFT ENVIRONMENT
13.5. MANUALLY RUNNING CONTAINERS AND PODS USING PODMAN
13.6. GENERATING A YAML FILE USING PODMAN
13.7. AUTOMATICALLY RUNNING CONTAINERS AND PODS USING PODMAN
13.8. AUTOMATICALLY STOPPING AND REMOVING PODS USING PODMAN

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN
14.1. AUTO-GENERATING A SYSTEMD UNIT FILE USING QUADLETS
14.2. ENABLING SYSTEMD SERVICES
14.3. AUTO-STARTING CONTAINERS USING SYSTEMD
14.4. ADVANTAGES OF USING QUADLETS OVER THE PODMAN GENERATE SYSTEMD COMMAND
14.5. GENERATING A SYSTEMD UNIT FILE USING PODMAN
14.6. AUTOMATICALLY GENERATING A SYSTEMD UNIT FILE USING PODMAN
14.7. AUTOMATICALLY STARTING PODS USING SYSTEMD
14.8. AUTOMATICALLY UPDATING CONTAINERS USING PODMAN
14.9. AUTOMATICALLY UPDATING CONTAINERS USING SYSTEMD

CHAPTER 15. MANAGING CONTAINERS USING THE ANSIBLE PLAYBOOK
15.1. CREATING A ROOTLESS CONTAINER WITH BIND MOUNT
15.2. CREATING A ROOTFUL CONTAINER WITH PODMAN VOLUME
15.3. CREATING A QUADLET APPLICATION WITH SECRETS

CHAPTER 16. MANAGING CONTAINER IMAGES BY USING THE RHEL WEB CONSOLE
16.1. PULLING CONTAINER IMAGES IN THE WEB CONSOLE
16.2. PRUNING CONTAINER IMAGES IN THE WEB CONSOLE
16.3. DELETING CONTAINER IMAGES IN THE WEB CONSOLE

CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE
17.1. CREATING CONTAINERS IN THE WEB CONSOLE
17.2. INSPECTING CONTAINERS IN THE WEB CONSOLE
17.3. CHANGING THE STATE OF CONTAINERS IN THE WEB CONSOLE
17.4. COMMITTING CONTAINERS IN THE WEB CONSOLE
17.5. CREATING A CONTAINER CHECKPOINT IN THE WEB CONSOLE
17.6. RESTORING A CONTAINER CHECKPOINT IN THE WEB CONSOLE
17.7. DELETING CONTAINERS IN THE WEB CONSOLE
17.8. CREATING PODS IN THE WEB CONSOLE
17.9. CREATING CONTAINERS IN THE POD IN THE WEB CONSOLE
17.10. CHANGING THE STATE OF PODS IN THE WEB CONSOLE

92
92
93
94

96
96
96
97
98
99

100

102
102
104
104
105
105
107
109

111

113
113
115
115
117
118

120
122
125
127

129
129
131
132

135
135
135
136

137
137
139
139
140
141

142
143
143
144
146

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

17.11. DELETING PODS IN THE WEB CONSOLE

CHAPTER 18. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER
18.1. RUNNING SKOPEO IN A CONTAINER
18.2. RUNNING SKOPEO IN A CONTAINER USING CREDENTIALS
18.3. RUNNING SKOPEO IN A CONTAINER USING AUTHFILES
18.4. COPYING CONTAINER IMAGES TO OR FROM THE HOST
18.5. RUNNING BUILDAH IN A CONTAINER
18.6. PRIVILEGED AND UNPRIVILEGED PODMAN CONTAINERS
18.7. RUNNING PODMAN WITH EXTENDED PRIVILEGES
18.8. RUNNING PODMAN WITH LESS PRIVILEGES
18.9. BUILDING A CONTAINER INSIDE A PODMAN CONTAINER

CHAPTER 19. BUILDING CONTAINER IMAGES WITH BUILDAH
19.1. THE BUILDAH TOOL
19.2. INSTALLING BUILDAH
19.3. GETTING IMAGES WITH BUILDAH
19.4. BUILDING AN IMAGE FROM A CONTAINERFILE WITH BUILDAH
19.5. CREATING IMAGES FROM SCRATCH WITH BUILDAH
19.6. REMOVING IMAGES WITH BUILDAH

CHAPTER 20. WORKING WITH CONTAINERS USING BUILDAH
20.1. RUNNING COMMANDS INSIDE OF THE CONTAINER
20.2. INSPECTING CONTAINERS AND IMAGES WITH BUILDAH
20.3. MODIFYING A CONTAINER USING BUILDAH MOUNT
20.4. MODIFYING A CONTAINER USING BUILDAH COPY AND BUILDAH CONFIG
20.5. PUSHING CONTAINERS TO A PRIVATE REGISTRY
20.6. PUSHING CONTAINERS TO THE DOCKER HUB
20.7. REMOVING CONTAINERS WITH BUILDAH

CHAPTER 21. MONITORING CONTAINERS
21.1. USING A HEALTH CHECK ON A CONTAINER
21.2. PERFORMING A HEALTH CHECK USING THE COMMAND LINE
21.3. PERFORMING A HEALTH CHECK USING A CONTAINERFILE
21.4. DISPLAYING PODMAN SYSTEM INFORMATION
21.5. PODMAN EVENT TYPES
21.6. MONITORING PODMAN EVENTS
21.7. USING PODMAN EVENTS FOR AUDITING

CHAPTER 22. CREATING AND RESTORING CONTAINER CHECKPOINTS
22.1. CREATING AND RESTORING A CONTAINER CHECKPOINT LOCALLY
22.2. REDUCING STARTUP TIME USING CONTAINER RESTORE
22.3. MIGRATING CONTAINERS AMONG SYSTEMS

CHAPTER 23. USING PODMAN IN HPC ENVIRONMENT
23.1. USING PODMAN WITH MPI
23.2. THE MPIRUN OPTIONS

CHAPTER 24. RUNNING SPECIAL CONTAINER IMAGES
24.1. OPENING PRIVILEGES TO THE HOST
24.2. CONTAINER IMAGES WITH RUNLABELS
24.3. RUNNING RSYSLOG WITH RUNLABELS

CHAPTER 25. USING THE CONTAINER-TOOLS API
25.1. ENABLING THE PODMAN API USING SYSTEMD IN ROOT MODE

146

148
148
149
150
151
151

153
153
154
155

157
157
157
158
159
160
162

163
163
163
164
165
167
168
169

170
170
171
172
174
177
179
181

183
183
185
186

189
189
190

192
192
192
192

195
195

Red Hat Enterprise Linux 9 Building, running, and managing containers

4

25.2. ENABLING THE PODMAN API USING SYSTEMD IN ROOTLESS MODE
25.3. RUNNING THE PODMAN API MANUALLY

196
197

Table of Contents

5

Red Hat Enterprise Linux 9 Building, running, and managing containers

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 9 Building, running, and managing containers

8

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. STARTING WITH CONTAINERS
Linux containers have emerged as a key open source application packaging and delivery technology,
combining lightweight application isolation with the flexibility of image-based deployment methods.
Red Hat Enterprise Linux implements Linux containers using core technologies such as:

Control groups (cgroups) for resource management

Namespaces for process isolation

SELinux for security

Secure multi-tenancy

These technologies reduce the potential for security exploits and provide you with an environment for
producing and running enterprise-quality containers.

Red Hat OpenShift provides powerful command-line and Web UI tools for building, managing, and
running containers in units referred to as pods. Red Hat allows you to build and manage individual
containers and container images outside of OpenShift. This guide describes the tools provided to
perform those tasks that run directly on RHEL systems.

Unlike other container tools implementations, the tools described here do not center around the
monolithic Docker container engine and docker command. Instead, Red Hat provides a set of
command-line tools that can operate without a container engine. These include:

podman - for directly managing pods and container images (run, stop, start, ps, attach, exec,
and so on)

buildah - for building, pushing, and signing container images

skopeo - for copying, inspecting, deleting, and signing images

runc - for providing container run and build features to podman and buildah

crun - an optional runtime that can be configured and gives greater flexibility, control, and
security for rootless containers

Because these tools are compatible with the Open Container Initiative (OCI), they can be used to
manage the same Linux containers that are produced and managed by Docker and other OCI-
compatible container engines. However, they are especially suited to run directly on Red Hat Enterprise
Linux, in single-node use cases.

For a multi-node container platform, see OpenShift and Using the CRI-O Container Engine for details.

1.1. CHARACTERISTICS OF PODMAN, BUILDAH, AND SKOPEO

The Podman, Skopeo, and Buildah tools were developed to replace Docker command features. Each
tool in this scenario is more lightweight and focused on a subset of features.

The main advantages of Podman, Skopeo and Buildah tools include:

Running in rootless mode - rootless containers are much more secure, as they run without any
added privileges

No daemon required - these tools have much lower resource requirements at idle, because if

CHAPTER 1. STARTING WITH CONTAINERS

9

https://docs.openshift.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cri-o_runtime/

No daemon required - these tools have much lower resource requirements at idle, because if
you are not running containers, Podman is not running. Docker, conversely, have a daemon
always running

Native systemd integration - Podman allows you to create systemd unit files and run
containers as system services

The characteristics of Podman, Skopeo, and Buildah include:

Podman, Buildah, and the CRI-O container engine all use the same back-end store directory,
/var/lib/containers, instead of using the Docker storage location /var/lib/docker, by default.

Although Podman, Buildah, and CRI-O share the same storage directory, they cannot interact
with each other’s containers. Those tools can share images.

To interact programmatically with Podman, you can use the Podman v2.0 RESTful API, it works
in both a rootful and a rootless environment. For more information, see Using the container-
tools API chapter.

Additional resources

Say "Hello" to Buildah, Podman, and Skopeo

Podman and Buildah for Docker users

Buildah: A tool for building OCI container images

Podman: A tool for managing OCI containers and pods

Skopeo: A tool for copying and inspecting container images

1.2. COMMON PODMAN COMMANDS

You can manage images, containers, and container resources with the podman utility by using the
following basic commands. To display a full list of all Podman commands, use podman -h.

attach

Attach to a running container.

commit

Create new image from changed container.

container checkpoint

Checkpoint one or more running containers.

container restore

Restore one or more containers from a checkpoint.

build

Build an image using Containerfile instructions.

create

Create, but do not start, a container.

diff

Inspect changes on container’s filesystems.

exec

Red Hat Enterprise Linux 9 Building, running, and managing containers

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#using-the-container-tools-api
https://www.redhat.com/en/blog/say-hello-buildah-podman-and-skopeo
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users
https://github.com/containers/buildah
https://github.com/containers/podman
https://github.com/containers/skopeo

Run a process in a running container.

export

Export container’s filesystem contents as a tar archive.

help, h

Show a list of commands or help for one command.

healthcheck

Run a container healthcheck.

history

Show history of a specified image.

images

List images in local storage.

import

Import a tarball to create a filesystem image.

info

Display system information.

inspect

Display the configuration of a container or image.

kill

Send a specific signal to one or more running containers.

kube generate

Generate Kubernetes YAML based on containers, pods or volumes.

kube play

Create containers, pods and volumes based on Kubernetes YAML.

load

Load an image from an archive.

login

Login to a container registry.

logout

Logout of a container registry.

logs

Fetch the logs of a container.

mount

Mount a working container’s root filesystem.

pause

Pause all the processes in one or more containers.

ps

List containers.

port

List port mappings or a specific mapping for the container.

pull

Pull an image from a registry.

CHAPTER 1. STARTING WITH CONTAINERS

11

push

Push an image to a specified destination.

restart

Restart one or more containers.

rm

Remove one or more containers from the host. Add -f if running.

rmi

Remove one or more images from local storage.

run

Run a command in a new container.

save

Save image to an archive.

search

Search registry for image.

start

Start one or more containers.

stats

Display percentage of CPU, memory, network I/O, block I/O and PIDs for one or more containers.

stop

Stop one or more containers.

tag

Add an additional name to a local image.

top

Display the running processes of a container.

umount, unmount

Unmount a working container’s root filesystem.

unpause

Unpause the processes in one or more containers.

version

Display podman version information.

wait

Block on one or more containers.

Additional resources

Podman Basics Cheat Sheet

5 Podman features to try now

1.3. RUNNING CONTAINERS WITHOUT DOCKER

Red Hat removed the Docker container engine and the docker command from RHEL 9.

If you still want to use Docker in RHEL, you can get Docker from different upstream projects, but it is

Red Hat Enterprise Linux 9 Building, running, and managing containers

12

https://developers.redhat.com/cheat-sheets/podman-basics
https://www.redhat.com/sysadmin/podman-features-1

If you still want to use Docker in RHEL, you can get Docker from different upstream projects, but it is
unsupported in RHEL 9.

You can install the podman-docker package, every time you run a docker command, it actually
runs a podman command.

Podman also supports the Docker Socket API, so the podman-docker package also sets up a
link between /var/run/docker.sock and /var/run/podman/podman.sock. As a result, you can
continue to run your Docker API commands with docker-py and docker-compose tools
without requiring the Docker daemon. Podman will service the requests.

The podman command, like the docker command, can build container images from a
Containerfile or Dockerfile. The available commands that are usable inside a Containerfile and
a Dockerfile are equivalent.

Options to the docker command that are not supported by podman include network, node,
plugin (podman does not support plugins), rename (use rm and create to rename containers
with podman), secret, service, stack, and swarm (podman does not support Docker Swarm).
The container and image options are used to run subcommands that are used directly in
podman.

Additional resources

Podman and Buildah for Docker users

1.4. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS

Red Hat provides container images and container-related software for the following computer
architectures:

AMD64 and Intel 64 (base and layered images; no support for 32-bit architectures)

PowerPC 8 and 9 64-bit (base image and most layered images)

64-bit IBM Z (base image and most layered images)

ARM 64-bit (base image only)

Although not all Red Hat images were supported across all architectures at first, nearly all are now
available on all listed architectures.

Additional resources

Universal Base Images (UBI): Images, repositories, and packages

1.5. GETTING CONTAINER TOOLS

This procedure shows how you can install the container-tools meta-package which contains the
Podman, Buildah, Skopeo, CRIU, Udica, and all required libraries.

NOTE

The stable streams are not available on RHEL 9. To receive stable access to Podman,
Buildah, Skopeo, and others, use the RHEL EUS subscription.

CHAPTER 1. STARTING WITH CONTAINERS

13

https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users
https://access.redhat.com/articles/4238681

Procedure

1. Install RHEL.

2. Register RHEL: Enter your user name and password. The user name and password are the same
as your login credentials for Red Hat Customer Portal:

subscription-manager register
Registering to: subscription.rhsm.redhat.com:443/subscription
Username: <username>
Password: <password>

3. Subscribe to RHEL.

To auto-subscribe to RHEL:

subscription-manager attach --auto

To subscribe to RHEL by Pool ID:

subscription-manager attach --pool <PoolID>

4. Install the container-tools meta-package:

dnf install container-tools

5. Optional: Install the podman-docker package:

dnf install podman-docker

The podman-docker package replaces the Docker command-line interface and docker-api
with the matching Podman commands instead.

1.6. SETTING UP ROOTLESS CONTAINERS

Running the container tools such as Podman, Skopeo, or Buildah as a user with superuser privileges
(root user) is the best way to ensure that your containers have full access to any feature available on
your system. However, with the feature called "Rootless Containers" generally available as of Red Hat
Enterprise Linux 8.1, you can work with containers as a regular user.

Although container engines, such as Docker, let you run Docker commands as a regular (non-root) user,
the Docker daemon that carries out those requests runs as root. As a result, regular users can make
requests through their containers that can harm the system. By setting up rootless container users,
system administrators prevent potentially damaging container activities from regular users, while still
allowing those users to safely run most container features under their own accounts.

This procedure describes how to set up your system to use Podman, Skopeo, and Buildah tools to work
with containers as a non-root user (rootless). It also describes some of the limitations you will encounter,
because regular user accounts do not have full access to all operating system features that their
containers might need to run.

Prerequisites

You need to become a root user to set up your RHEL system to allow non-root user accounts to

Red Hat Enterprise Linux 9 Building, running, and managing containers

14

You need to become a root user to set up your RHEL system to allow non-root user accounts to
use container tools.

Procedure

1. Install RHEL.

2. Install the podman package:

dnf install podman -y

3. Create a new user account:

useradd -c "Joe Jones" joe
passwd joe

The user is automatically configured to be able to use rootless Podman.

The useradd command automatically sets the range of accessible user and group IDs
automatically in the /etc/subuid and /etc/subgid files.

If you change the /etc/subuid or /etc/subgid manually, you have to run the podman
system migrate command to allow the new changes to be applied.

4. Connect to the user:

$ ssh joe@server.example.com

NOTE

Do not use su or su - commands because these commands do not set the
correct environment variables.

5. Pull the registry.access.redhat.com/ubi9/ubi container image:

$ podman pull registry.access.redhat.com/ubi9/ubi

6. Run the container named myubi and display the OS version:

$ podman run --rm --name=myubi registry.access.redhat.com/ubi9/ubi \
 cat /etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="9 (Plow)"

Additional resources

Rootless containers with Podman: The basics

podman-system-migrate man page

1.7. UPGRADING TO ROOTLESS CONTAINERS

To upgrade to rootless containers from Red Hat Enterprise Linux 7, you must configure user and group

CHAPTER 1. STARTING WITH CONTAINERS

15

https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics/

To upgrade to rootless containers from Red Hat Enterprise Linux 7, you must configure user and group
IDs manually.

Here are some things to consider when upgrading to rootless containers from Red Hat
Enterprise Linux 7:

If you set up multiple rootless container users, use unique ranges for each user.

Use 65536 UIDs and GIDs for maximum compatibility with existing container images, but the
number can be reduced.

Never use UIDs or GIDs under 1000 or reuse UIDs or GIDs from existing user accounts (which,
by default, start at 1000).

Prerequisites

The user account has been created.

Procedure

Run the usermod command to assign UIDs and GIDs to a user:

usermod --add-subuids 200000-201000 --add-subgids 200000-201000 <username>

The usermod --add-subuid command manually adds a range of accessible user IDs to the
user’s account.

The usermod --add-subgids command manually adds a range of accessible user GIDs and
group IDs to the user’s account.

Verification steps

Check that the UIDs and GIDs are set properly:

grep <username> /etc/subuid /etc/subgid
 /etc/subuid:<username>:200000:1001
 /etc/subgid:<username>:200000:1001

1.8. SPECIAL CONSIDERATIONS FOR ROOTLESS CONTAINERS

There are several considerations when running containers as a non-root user:

The path to the host container storage is different for root users (/var/lib/containers/storage)
and non-root users ($HOME/.local/share/containers/storage).

Users running rootless containers are given special permission to run as a range of user and
group IDs on the host system. However, they have no root privileges to the operating system on
the host.

If you change the /etc/subuid or /etc/subgid manually, you have to run the podman system
migrate command to allow the new changes to be applied.

If you need to configure your rootless container environment, create configuration files in your
home directory ($HOME/.config/containers). Configuration files include storage.conf (for
configuring storage) and containers.conf (for a variety of container settings). You could also

Red Hat Enterprise Linux 9 Building, running, and managing containers

16

create a registries.conf file to identify container registries that are available when you use
Podman to pull, search, or run images.

There are some system features you cannot change without root privileges. For example, you
cannot change the system clock by setting a SYS_TIME capability inside a container and
running the network time service (ntpd). You have to run that container as root, bypassing your
rootless container environment and using the root user’s environment. For example:

podman run -d --cap-add SYS_TIME ntpd

Note that this example allows ntpd to adjust time for the entire system, and not just within the
container.

A rootless container cannot access a port numbered less than 1024. Inside the rootless
container namespace it can, for example, start a service that exposes port 80 from an httpd
service from the container, but it is not accessible outside of the namespace:

$ podman run -d httpd

However, a container would need root privileges, using the root user’s container environment, to
expose that port to the host system:

podman run -d -p 80:80 httpd

The administrator of a workstation can allow users to expose services on ports numbered lower
than 1024, but they should understand the security implications. A regular user could, for
example, run a web server on the official port 80 and make external users believe that it was
configured by the administrator. This is acceptable on a workstation for testing, but might not
be a good idea on a network-accessible development server, and definitely should not be done
on production servers. To allow users to bind to ports down to port 80 run the following
command:

echo 80 > /proc/sys/net/ipv4/ip_unprivileged_port_start

Additional resources

Shortcomings of Rootless Podman

1.9. ADDITIONAL RESOURCES

A Practical Introduction to Container Terminology

CHAPTER 1. STARTING WITH CONTAINERS

17

https://github.com/containers/libpod/blob/main/rootless.md
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction

CHAPTER 2. TYPES OF CONTAINER IMAGES
The container image is a binary that includes all of the requirements for running a single container, and
metadata describing its needs and capabilities.

There are two types of container images:

Red Hat Enterprise Linux Base Images (RHEL base images)

Red Hat Universal Base Images (UBI images)

Both types of container images are built from portions of Red Hat Enterprise Linux. By using these
containers, users can benefit from great reliability, security, performance and life cycles.

The main difference between the two types of container images is that the UBI images allow you to
share container images with others. You can build a containerized application using UBI, push it to your
choice of registry server, easily share it with others, and even deploy it on non-Red Hat platforms. The
UBI images are designed to be a foundation for cloud-native and web applications use cases developed
in containers.

2.1. GENERAL CHARACTERISTICS OF RHEL CONTAINER IMAGES

Following characteristics apply to both RHEL base images and UBI images.

In general, RHEL container images are:

Supported: Supported by Red Hat for use with containerized applications. They contain the
same secured, tested, and certified software packages found in Red Hat Enterprise Linux.

Cataloged: Listed in the Red Hat Container Catalog, with descriptions, technical details, and a
health index for each image.

Updated: Offered with a well-defined update schedule, to get the latest software, see Red Hat
Container Image Updates article.

Tracked: Tracked by Red Hat Product Errata to help understand the changes that are added
into each update.

Reusable: The container images need to be downloaded and cached in your production
environment once. Each container image can be reused by all containers that include it as their
foundation.

2.2. CHARACTERISTICS OF UBI IMAGES

The UBI images allow you to share container images with others. Four UBI images are offered: micro,
minimal, standard, and init. Pre-build language runtime images and DNF repositories are available to
build your applications.

Following characteristics apply to UBI images:

Built from a subset of RHEL content: Red Hat Universal Base images are built from a subset of
normal Red Hat Enterprise Linux content.

Redistributable: UBI images allow standardization for Red Hat customers, partners, ISVs, and
others. With UBI images, you can build your container images on a foundation of official Red Hat
software that can be freely shared and deployed.

Red Hat Enterprise Linux 9 Building, running, and managing containers

18

https://catalog.redhat.com/software/containers/search
https://access.redhat.com/articles/2208321

Provide a set of four base images: micro, minimal, standard, and init.

Provide a set of pre-built language runtime container images: The runtime images based on
Application Streams provide a foundation for applications that can benefit from standard,
supported runtimes such as python, perl, php, dotnet, nodejs, and ruby.

Provide a set of associated DNF repositories: DNF repositories include RPM packages and
updates that allow you to add application dependencies and rebuild UBI container images.

The ubi-9-baseos repository holds the redistributable subset of RHEL packages you can
include in your container.

The ubi-9-appstream repository holds Application streams packages that you can add to a
UBI image to help you standardize the environments you use with applications that require
particular runtimes.

Adding UBI RPMs: You can add RPM packages to UBI images from preconfigured UBI
repositories. If you happen to be in a disconnected environment, you must allowlist the UBI
Content Delivery Network (https://cdn-ubi.redhat.com) to use that feature. See the
Connect to https://cdn-ubi.redhat.com solution for details.

Licensing: You are free to use and redistribute UBI images, provided you adhere to the Red Hat
Universal Base Image End User Licensing Agreement.

NOTE

All of the layered images are based on UBI images. To check on which UBI image is your
image based, display the Containerfile in the Red Hat Container Catalog and ensure that
the UBI image contains all required content.

Additional resources

Introducing the Red Hat Universal Base Image

Universal Base Images (UBI): Images, repositories, and packages

All You Need to Know About Red Hat Universal Base Image

FAQ - Universal Base Images

2.3. UNDERSTANDING THE UBI STANDARD IMAGES

The standard images (named ubi) are designed for any application that runs on RHEL. The key features
of UBI standard images include:

init system: All the features of the systemd initialization system you need to manage systemd
services are available in the standard base images. These init systems let you install RPM
packages that are pre-configured to start up services automatically, such as a Web server
(httpd) or FTP server (vsftpd).

dnf: You have access to free dnf repositories for adding and updating software. You can use the
standard set of dnf commands (dnf, dnf-config-manager, dnfdownloader, and so on).

utilities: Utilities include tar, dmidecode, gzip, getfacl and further acl commands, dmsetup and
further device mapper commands, between other utilities not mentioned here.

CHAPTER 2. TYPES OF CONTAINER IMAGES

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_managing_and_removing_user-space_components/using-appstream_using-appstream#application-streams_using-appstream
https://cdn-ubi.redhat.com
https://access.redhat.com/solutions/4165521
https://www.redhat.com/licenses/EULA_Red_Hat_Universal_Base_Image_English_20190422.pdf
https://catalog.redhat.com/software/containers/search
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image
https://access.redhat.com/articles/4238681
http://crunchtools.com/all-you-need-to-know-about-red-hat-universal-base-image/
https://developers.redhat.com/articles/ubi-faq

2.4. UNDERSTANDING THE UBI INIT IMAGES

The UBI init images, named ubi-init, contain the systemd initialization system, making them useful for
building images in which you want to run systemd services, such as a web server or file server. The init
image contents are less than what you get with the standard images, but more than what is in the
minimal images.

NOTE

Because the ubi9-init image builds on top of the ubi9 image, their contents are mostly
the same. However, there are a few critical differences:

ubi9-init:

CMD is set to /sbin/init to start the systemd Init service by default

includes ps and process related commands (procps-ng package)

sets SIGRTMIN+3 as the StopSignal, as systemd in ubi9-init ignores normal
signals to exit (SIGTERM and SIGKILL), but will terminate if it receives
SIGRTMIN+3

ubi9:

CMD is set to /bin/bash

does not include ps and process related commands (procps-ng package)

does not ignore normal signals to exit (SIGTERM and SIGKILL)

2.5. UNDERSTANDING THE UBI MINIMAL IMAGES

The UBI minimal images, named ubi-minimal offer a minimized pre-installed content set and a package
manager (microdnf`). As a result, you can use a Containerfile while minimizing the dependencies
included in the image.

The key features of UBI minimal images include:

Small size: Minimal images are about 92M on disk and 32M, when compressed. This makes it less
than half the size of the standard images.

Software installation (microdnf): Instead of including the fully-developed dnf facility for
working with software repositories and RPM software packages, the minimal images includes
the microdnf utility. The microdnf is a scaled-down version of dnf allowing you to enable and
disable repositories, remove and update packages, and clean out cache after packages have
been installed.

Based on RHEL packaging: Minimal images incorporate regular RHEL software RPM packages,
with a few features removed. Minimal images do not include initialization and service
management system, such as systemd or System V init, Python run-time environment, and
some shell utilities. You can rely on RHEL repositories for building your images, while carrying
the smallest possible amount of overhead.

Modules for microdnf are supported: Modules used with microdnf command let you install
multiple versions of the same software, when available. You can use microdnf module enable,
microdnf module disable, and microdnf module reset to enable, disable, and reset a module

Red Hat Enterprise Linux 9 Building, running, and managing containers

20

stream, respectively.

For example, to enable the nodejs:14 module stream inside the UBI minimal container,
enter:

microdnf module enable nodejs:14
Downloading metadata...
...
Enabling module streams:
 nodejs:14

Running transaction test...

Red Hat only supports the latest version of UBI and does not support parking on a dot release. If you
need to park on a specific dot release, please take a look at Extended Update Support.

2.6. UNDERSTANDING THE UBI MICRO IMAGES

The ubi-micro is the smallest possible UBI image, obtained by excluding a package manager and all of
its dependencies which are normally included in a container image. This minimizes the attack surface of
container images based on the ubi-micro image and is suitable for minimal applications, even if you use
UBI Standard, Minimal, or Init for other applications. The container image without the Linux distribution
packaging is called a Distroless container image.

CHAPTER 2. TYPES OF CONTAINER IMAGES

21

https://access.redhat.com/articles/rhel-eus

CHAPTER 3. WORKING WITH CONTAINER REGISTRIES
A container image registry is a repository or collection of repositories for storing container images and
container-based application artifacts. The /etc/containers/registries.conf file is a system-wide
configuration file containing the container image registries that can be used by the various container
tools such as Podman, Buildah, and Skopeo.

If the container image given to a container tool is not fully qualified, then the container tool references
the registries.conf file. Within the registries.conf file, you can specify aliases for short names, granting
administrators full control over where images are pulled from when not fully qualified. For example, the
podman pull example.com/example_image command pulls a container image from the example.com
registry to your local system as specified in the registries.conf file.

3.1. CONTAINER REGISTRIES

A container registry is a repository or collection of repositories for storing container images and
container-based application artifacts. The registries that Red Hat provides are:

registry.redhat.io (requires authentication)

registry.access.redhat.com (requires no authentication)

registry.connect.redhat.com (holds Red Hat Partner Connect program images)

To get container images from a remote registry, such as Red Hat’s own container registry, and add them
to your local system, use the podman pull command:

podman pull <registry>[:<port>]/[<namespace>/]<name>:<tag>

where <registry>[:<port>]/[<namespace>/]<name>:<tag> is the name of the container image.

For example, the registry.redhat.io/ubi9/ubi container image is identified by:

Registry server (registry.redhat.io)

Namespace (ubi9)

Image name (ubi)

If there are multiple versions of the same image, add a tag to explicitly specify the image name. By
default, Podman uses the :latest tag, for example ubi9/ubi:latest.

Some registries also use <namespace> to distinguish between images with the same <name> owned by
different users or organizations. For example:

Namespace Examples (<namespace>/<name>)

organization redhat/kubernetes, google/kubernetes

login (user name) alice/application, bob/application

role devel/database, test/database, prod/database

Red Hat Enterprise Linux 9 Building, running, and managing containers

22

https://connect.redhat.com/

For details on the transition to registry.redhat.io, see Red Hat Container Registry Authentication . Before
you can pull containers from registry.redhat.io, you need to authenticate using your RHEL Subscription
credentials.

3.2. CONFIGURING CONTAINER REGISTRIES

You can display the container registries using the podman info --format command:

$ podman info -f json | jq '.registries["search"]'
[
 "registry.access.redhat.com",
 "registry.redhat.io",
 "docker.io"
]

NOTE

The podman info command is available in Podman 4.0.0 or later.

You can edit the list of container registries in the registries.conf configuration file. As a root user, edit
the /etc/containers/registries.conf file to change the default system-wide search settings.

As a user, create the $HOME/.config/containers/registries.conf file to override the system-wide
settings.

unqualified-search-registries = ["registry.access.redhat.com", "registry.redhat.io", "docker.io"]
short-name-mode = "enforcing"

By default, the podman pull and podman search commands search for container images from
registries listed in the unqualified-search-registries list in the given order.

Configuring a local container registry

You can configure a local container registry without the TLS verification. You have two options on
how to disable TLS verification. First, you can use the --tls-verify=false option in Podman. Second,
you can set insecure=true in the registries.conf file:

[[registry]]
location="localhost:5000"
insecure=true

Blocking a registry, namespace, or image

You can define registries the local system is not allowed to access. You can block a specific registry
by setting blocked=true.

[[registry]]
location = "registry.example.org"
blocked = true

You can also block a namespace by setting the prefix to
prefix="registry.example.org/namespace". For example, pulling the image using the podman pull
registry. example.org/example/image:latest command will be blocked, because the specified
prefix is matched.

CHAPTER 3. WORKING WITH CONTAINER REGISTRIES

23

https://access.redhat.com/RegistryAuthentication

[[registry]]
location = "registry.example.org"
prefix="registry.example.org/namespace"
blocked = true

NOTE

prefix is optional, default value is the same as the location value.

You can block a specific image by setting prefix="registry.example.org/namespace/image".

[[registry]]
location = "registry.example.org"
prefix="registry.example.org/namespace/image"
blocked = true

Mirroring registries

You can set a registry mirror in cases you cannot access the original registry. For example, you
cannot connect to the internet, because you work in a highly-sensitive environment. You can specify
multiple mirrors that are contacted in the specified order. For example, when you run podman pull
registry.example.com/myimage:latest command, the mirror-1.com is tried first, then mirror-
2.com.

[[registry]]
location="registry.example.com"
[[registry.mirror]]
location="mirror-1.com"
[[registry.mirror]]
location="mirror-2.com"

Additional resources

How to manage Linux container registries

podman-pull man page

podman-info man page

3.3. SEARCHING FOR CONTAINER IMAGES

Using the podman search command you can search selected container registries for images. You can
also search for images in the Red Hat Container Catalog. The Red Hat Container Registry includes the
image description, contents, health index, and other information.

NOTE

The podman search command is not a reliable way to determine the presence or
existence of an image. The podman search behavior of the v1 and v2 Docker distribution
API is specific to the implementation of each registry. Some registries may not support
searching at all. Searching without a search term only works for registries that implement
the v2 API. The same holds for the docker search command.

Red Hat Enterprise Linux 9 Building, running, and managing containers

24

https://www.redhat.com/sysadmin/manage-container-registries
https://catalog.redhat.com/software/containers/search

To search for the postgresql-10 images in the quay.io registry, follow the steps.

Prerequisites

The container-tools meta-package is installed.

The registry is configured.

Procedure

1. Authenticate to the registry:

podman login quay.io

2. Search for the image:

To search for a particular image on a specific registry, enter:

podman search quay.io/postgresql-10
INDEX NAME DESCRIPTION STARS OFFICIAL
AUTOMATED
redhat.io registry.redhat.io/rhel8/postgresql-10 This container image ... 0
redhat.io registry.redhat.io/rhscl/postgresql-10-rhel7 PostgreSQL is an ... 0

Alternatively, to display all images provided by a particular registry, enter:

podman search quay.io/

To search for the image name in all registries, enter:

podman search postgresql-10

To display the full descriptions, pass the --no-trunc option to the command.

Additional resources

podman-search man page

3.4. PULLING IMAGES FROM REGISTRIES

Use the podman pull command to get the image to your local system.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Log in to the registry.redhat.io registry:

$ podman login registry.redhat.io
Username: <username>
Password: <password>

CHAPTER 3. WORKING WITH CONTAINER REGISTRIES

25

Login Succeeded!

2. Pull the registry.redhat.io/ubi9/ubi container image:

$ podman pull registry.redhat.io/ubi9/ubi

Verification steps

List all images pulled to your local system:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi9/ubi latest 3269c37eae33 7 weeks ago 208 MB

Additional resources

podman-pull man page

3.5. CONFIGURING SHORT-NAME ALIASES

Red Hat recommends always to pull an image by its fully-qualified name. However, it is customary to pull
images by short names. For example, you can use ubi9 instead of
registry.access.redhat.com/ubi9:latest.

The registries.conf file allows to specify aliases for short names, giving administrators full control over
where images are pulled from. Aliases are specified in the [aliases] table in the form "name" = "value".
You can see the lists of aliases in the /etc/containers/registries.conf.d directory. Red Hat ships a set of
aliases in this directory. For example, podman pull ubi9 directly resolves to the right image, that is
registry.access.redhat.com/ubi9:latest.

For example:

unqualified-search-registries=["registry.fedoraproject.org", “quay.io"]

[aliases]
"fedora"="registry.fedoraproject.org/fedora"

The short-names modes are:

enforcing: If no matching alias is found during the image pull, Podman prompts the user to
choose one of the unqualified-search registries. If the selected image is pulled successfully,
Podman automatically records a new short-name alias in the $HOME/.cache/containers/short-
name-aliases.conf file (rootless user) or in the /var/cache/containers/short-name-
aliases.conf (root user). If the user cannot be prompted (for example, stdin or stdout are not a
TTY), Podman fails. Note that the short-name-aliases.conf file has precedence over the
registries.conf file if both specify the same alias.

permissive: Similar to enforcing mode, but Podman does not fail if the user cannot be
prompted. Instead, Podman searches in all unqualified-search registries in the given order. Note
that no alias is recorded.

disabled: All unqualified-search registries are tried in a given order, no alias is recorded.

NOTE

Red Hat Enterprise Linux 9 Building, running, and managing containers

26

NOTE

Red Hat recommends using fully qualified image names including registry, namespace,
image name, and tag. When using short names, there is always an inherent risk of
spoofing. Add registries that are trusted, that is, registries that do not allow unknown or
anonymous users to create accounts with arbitrary names. For example, a user wants to
pull the example container image from example.registry.com registry. If
example.registry.com is not first in the search list, an attacker could place a different
example image at a registry earlier in the search list. The user would accidentally pull and
run the attacker image rather than the intended content.

Additional resources

Container image short names in Podman

CHAPTER 3. WORKING WITH CONTAINER REGISTRIES

27

https://www.redhat.com/sysadmin/container-image-short-names

CHAPTER 4. WORKING WITH CONTAINER IMAGES
The Podman tool is designed to work with container images. You can use this tool to pull the image,
inspect, tag, save, load, redistribute, and define the image signature.

4.1. PULLING CONTAINER IMAGES USING SHORT-NAME ALIASES

You can use secure short names to get the image to your local system. The following procedure
describes how to pull a fedora or nginx container image.

Prerequisites

The container-tools meta-package is installed.

Procedure

Pull the container image:

Pull the fedora image:

$ podman pull fedora
Resolved "fedora" as an alias (/etc/containers/registries.conf.d/000-shortnames.conf)
Trying to pull registry.fedoraproject.org/fedora:latest…
...
Storing signatures
...

Alias is found and the registry.fedoraproject.org/fedora image is securely pulled. The
unqualified-search-registries list is not used to resolve fedora image name.

Pull the nginx image:

$ podman pull nginx
? Please select an image:
registry.access.redhat.com/nginx:latest
registry.redhat.io/nginx:latest
 ▸ docker.io/library/nginx:latest
✔ docker.io/library/nginx:latest
Trying to pull docker.io/library/nginx:latest…
...
Storing signatures
...

If no matching alias is found, you are prompted to choose one of the unqualified-search-
registries list. If the selected image is pulled successfully, a new short-name alias is
recorded locally, otherwise an error occurs.

Verification

List all images pulled to your local system:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.fedoraproject.org/fedora latest 28317703decd 12 days ago 184 MB

Red Hat Enterprise Linux 9 Building, running, and managing containers

28

docker.io/library/nginx latest 08b152afcfae 13 days ago 137 MB

Additional resources

Container image short names in Podman

4.2. LISTING IMAGES

Use the podman images command to list images in your local storage.

Prerequisites

The container-tools meta-package is installed.

A pulled image is available on the local system.

Procedure

List all images in the local storage:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9/ubi latest 3269c37eae33 6 weeks ago 208 MB

Additional resources

podman-images man page

4.3. INSPECTING LOCAL IMAGES

After you pull an image to your local system and run it, you can use the podman inspect command to
investigate the image. For example, use it to understand what the image does and check what software
is inside the image. The podman inspect command displays information about containers and images
identified by name or ID.

Prerequisites

The container-tools meta-package is installed.

A pulled image is available on the local system.

Procedure

Inspect the registry.redhat.io/ubi9/ubi image:

$ podman inspect registry.redhat.io/ubi9/ubi
…
 "Cmd": [
 "/bin/bash"
],
 "Labels": {
 "architecture": "x86_64",
 "build-date": "2020-12-10T01:59:40.343735",

CHAPTER 4. WORKING WITH CONTAINER IMAGES

29

https://www.redhat.com/sysadmin/container-image-short-names

 "com.redhat.build-host": "cpt-1002.osbs.prod.upshift.rdu2.redhat.com",
 "com.redhat.component": "ubi9-container",
 "com.redhat.license_terms": "https://www.redhat.com/...,
 "description": "The Universal Base Image is ...
 }
...

The "Cmd" key specifies a default command to run within a container. You can override this
command by specifying a command as an argument to the podman run command. This
ubi9/ubi container will execute the bash shell if no other argument is given when you start it with
podman run. If an "Entrypoint" key was set, its value would be used instead of the "Cmd"
value, and the value of "Cmd" is used as an argument to the Entrypoint command.

Additional resources

podman-inspect man page

4.4. INSPECTING REMOTE IMAGES

Use the skopeo inspect command to display information about an image from a remote container
registry before you pull the image to your system.

Prerequisites

The container-tools meta-package is installed.

Procedure

The container-tools meta-package is installed.

Inspect the registry.redhat.io/ubi9/ubi-init image:

skopeo inspect docker://registry.redhat.io/ubi9/ubi-init
{
 "Name": "registry.redhat.io/ubi9/ubi9-init",
 "Digest": "sha256:c6d1e50ab...",
 "RepoTags": [
 ...
 "latest"
],
 "Created": "2020-12-10T07:16:37.250312Z",
 "DockerVersion": "1.13.1",
 "Labels": {
 "architecture": "x86_64",
 "build-date": "2020-12-10T07:16:11.378348",
 "com.redhat.build-host": "cpt-1007.osbs.prod.upshift.rdu2.redhat.com",
 "com.redhat.component": "ubi9-init-container",
 "com.redhat.license_terms": "https://www.redhat.com/en/about/red-hat-end-user-
license-agreements#UBI",
 "description": "The Universal Base Image Init is designed to run an init system as PID 1
for running multi-services inside a container
 ...
 }
}

Red Hat Enterprise Linux 9 Building, running, and managing containers

30

Additional resources

skopeo-inspect man page

4.5. COPYING CONTAINER IMAGES

You can use the skopeo copy command to copy a container image from one registry to another. For
example, you can populate an internal repository with images from external registries, or sync image
registries in two different locations.

Prerequisites

The container-tools meta-package is installed.

Procedure

Copy the skopeo container image from docker://quay.io to docker://registry.example.com:

$ skopeo copy docker://quay.io/skopeo/stable:latest
docker://registry.example.com/skopeo:latest

Additional resources

skopeo-copy man page

4.6. COPYING IMAGE LAYERS TO A LOCAL DIRECTORY

You can use the skopeo copy command to copy the layers of a container image to a local directory.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create the /var/lib/images/nginx directory:

$ mkdir -p /var/lib/images/nginx

2. Copy the layers of the docker://docker.io/nginx:latest image to the newly created directory:

$ skopeo copy docker://docker.io/nginx:latest dir:/var/lib/images/nginx

Verification

Display the content of the /var/lib/images/nginx directory:

$ ls /var/lib/images/nginx
08b11a3d692c1a2e15ae840f2c15c18308dcb079aa5320e15d46b62015c0f6f3
...
4fcb23e29ba19bf305d0d4b35412625fea51e82292ec7312f9be724cb6e31ffd manifest.json
version

CHAPTER 4. WORKING WITH CONTAINER IMAGES

31

Additional resources

skopeo-copy man page

4.7. TAGGING IMAGES

Use the podman tag command to add an additional name to a local image. This additional name can
consist of several parts: <registryhost>/<username>/<name>:<tag>.

Prerequisites

The container-tools meta-package is installed.

A pulled image is available on the local system.

Procedure

1. List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi9/ubi latest 3269c37eae33 7 weeks ago 208 MB

2. Assign the myubi name to the registry.redhat.io/ubi9/ubi image using one of the following
options:

The image name:

$ podman tag registry.redhat.io/ubi9/ubi myubi

The image ID:

$ podman tag 3269c37eae33 myubi

Both commands give you the same result.

3. List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi9/ubi latest 3269c37eae33 2 months ago 208 MB
localhost/myubi latest 3269c37eae33 2 months ago 208 MB

Notice that the default tag is latest for both images. You can see all the image names are
assigned to the single image ID 3269c37eae33.

4. Add the 9 tag to the registry.redhat.io/ubi9/ubi image using either:

The image name:

$ podman tag registry.redhat.io/ubi9/ubi myubi:9

The image ID:

Red Hat Enterprise Linux 9 Building, running, and managing containers

32

$ podman tag 3269c37eae33 myubi:9

Both commands give you the same result.

5. List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi9/ubi latest 3269c37eae33 2 months ago 208 MB
localhost/myubi latest 3269c37eae33 2 months ago 208 MB
localhost/myubi 9 3269c37eae33 2 months ago 208 MB

Notice that the default tag is latest for both images. You can see all the image names are
assigned to the single image ID 3269c37eae33.

After tagging the registry.redhat.io/ubi9/ubi image, you have three options to run the container:

by ID (3269c37eae33)

by name (localhost/myubi:latest)

by name (localhost/myubi:9)

Additional resources

podman-tag man page

4.8. SAVING AND LOADING IMAGES

Use the podman save command to save an image to a container archive. You can restore it later to
another container environment or send it to someone else. You can use --format option to specify the
archive format. The supported formats are:

docker-archive

oci-archive

oci-dir (directory with oci manifest type)

docker-dir (directory with v2s2 manifest type)

The default format is the docker-dir format.

Use the podman load command to load an image from the container image archive into the container
storage.

Prerequisites

The container-tools meta-package is installed.

A pulled image is available on the local system.

Procedure

1. Save the registry.redhat.io/rhel9/rsyslog image as a tarball:

In the default docker-dir format:

CHAPTER 4. WORKING WITH CONTAINER IMAGES

33

In the default docker-dir format:

$ podman save -o myrsyslog.tar registry.redhat.io/rhel9/rsyslog:latest

In the oci-archive format, using the --format option:

$ podman save -o myrsyslog-oci.tar --format=oci-archive
registry.redhat.io/rhel9/rsyslog

The myrsyslog.tar and myrsyslog-oci.tar archives are stored in your current directory. The
next steps are performed with the myrsyslog.tar tarball.

2. Check the file type of myrsyslog.tar:

$ file myrsyslog.tar
myrsyslog.tar: POSIX tar archive

3. To load the registry.redhat.io/rhel9/rsyslog:latest image from the myrsyslog.tar:

$ podman load -i myrsyslog.tar
...
Loaded image(s): registry.redhat.io/rhel9/rsyslog:latest

Additional resources

podman-save man page

4.9. REDISTRIBUTING UBI IMAGES

Use podman push command to push a UBI image to your own, or a third party, registry and share it with
others. You can upgrade or add to that image from UBI dnf repositories as you like.

Prerequisites

The container-tools meta-package is installed.

A pulled image is available on the local system.

Procedure

1. Optional: Add an additional name to the ubi image:

podman tag registry.redhat.io/ubi9/ubi registry.example.com:5000/ubi9/ubi

2. Push the registry.example.com:5000/ubi9/ubi image from your local storage to a registry:

podman push registry.example.com:5000/ubi9/ubi

IMPORTANT

While there are few restrictions on how you use these images, there are some restrictions
about how you can refer to them. For example, you cannot call those images Red Hat
certified or Red Hat supported unless you certify it through the Red Hat Partner Connect

Red Hat Enterprise Linux 9 Building, running, and managing containers

34

https://connect.redhat.com

Program, either with Red Hat Container Certification or Red Hat OpenShift Operator
Certification.

4.10. REMOVING IMAGES

Use the podman rmi command to remove locally stored container images. You can remove an image by
its ID or name.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. List all images on your local system:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/rhel8/rsyslog latest 4b32d14201de 7 weeks ago 228 MB
registry.redhat.io/ubi8/ubi latest 3269c37eae33 7 weeks ago 208 MB
localhost/myubi X.Y 3269c37eae33 7 weeks ago 208 MB

2. List all containers:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
7ccd6001166e registry.redhat.io/rhel8/rsyslog:latest /bin/rsyslog.sh 6 seconds ago Up 5
seconds ago mysyslog

To remove the registry.redhat.io/rhel8/rsyslog image, you have to stop all containers running
from this image using the podman stop command. You can stop a container by its ID or name.

3. Stop the mysyslog container:

$ podman stop mysyslog
7ccd6001166e9720c47fbeb077e0afd0bb635e74a1b0ede3fd34d09eaf5a52e9

4. Remove the registry.redhat.io/rhel8/rsyslog image:

$ podman rmi registry.redhat.io/rhel8/rsyslog

To remove multiple images:

$ podman rmi registry.redhat.io/rhel8/rsyslog registry.redhat.io/ubi8/ubi

To remove all images from your system:

$ podman rmi -a

To remove images that have multiple names (tags) associated with them, add the -f option
to remove them:

CHAPTER 4. WORKING WITH CONTAINER IMAGES

35

$ podman rmi -f 1de7d7b3f531
1de7d7b3f531...

Additional resources

podman-rmi man page

Red Hat Enterprise Linux 9 Building, running, and managing containers

36

CHAPTER 5. WORKING WITH CONTAINERS
Containers represent a running or stopped process created from the files located in a decompressed
container image. You can use the Podman tool to work with containers.

5.1. PODMAN RUN COMMAND

The podman run command runs a process in a new container based on the container image. If the
container image is not already loaded then podman run pulls the image, and all image dependencies,
from the repository in the same way running podman pull image, before it starts the container from
that image. The container process has its own file system, its own networking, and its own isolated
process tree.

The podman run command has the form:

podman run [options] image [command [arg ...]]

Basic options are:

--detach (-d): Runs the container in the background and prints the new container ID.

--attach (-a): Runs the container in the foreground mode.

--name (-n): Assigns a name to the container. If a name is not assigned to the container with --
name then it generates a random string name. This works for both background and foreground
containers.

--rm: Automatically remove the container when it exits. Note that the container will not be
removed when it could not be created or started successfully.

--tty (-t): Allocates and attaches the pseudo-terminal to the standard input of the container.

--interactive (-i): For interactive processes, use -i and -t together to allocate a terminal for the
container process. The -i -t is often written as -it.

5.2. RUNNING COMMANDS IN A CONTAINER FROM THE HOST

Use the podman run command to display the type of operating system of the container.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Display the type of operating system of the container based on the
registry.access.redhat.com/ubi9/ubi container image using the cat /etc/os-release command:

$ podman run --rm registry.access.redhat.com/ubi9/ubi cat /etc/os-release
NAME="Red Hat Enterprise Linux"
...
ID="rhel"
...
HOME_URL="https://www.redhat.com/"

CHAPTER 5. WORKING WITH CONTAINERS

37

BUG_REPORT_URL="https://bugzilla.redhat.com/"

REDHAT_BUGZILLA_PRODUCT=" Red Hat Enterprise Linux 9"
...

2. Optional: List all containers.

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Because of the --rm option you should not see any container. The container was removed.

Additional resources

podman-run man page

5.3. RUNNING COMMANDS INSIDE THE CONTAINER

Use the podman run command to run a container interactively.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Run the container named myubi based on the registry.redhat.io/ubi9/ubi image:

$ podman run --name=myubi -it registry.access.redhat.com/ubi9/ubi /bin/bash
[root@6ccffd0f6421 /]#

The -i option creates an interactive session. Without the -t option, the shell stays open, but
you cannot type anything to the shell.

The -t option opens a terminal session. Without the -i option, the shell opens and then exits.

2. Install the procps-ng package containing a set of system utilities (for example ps, top, uptime,
and so on):

[root@6ccffd0f6421 /]# dnf install procps-ng

3. Use the ps -ef command to list current processes:

ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 12:55 pts/0 00:00:00 /bin/bash
root 31 1 0 13:07 pts/0 00:00:00 ps -ef

4. Enter exit to exit the container and return to the host:

exit

5. Optional: List all containers:

Red Hat Enterprise Linux 9 Building, running, and managing containers

38

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
1984555a2c27 registry.redhat.io/ubi9/ubi:latest /bin/bash 21 minutes ago Exited (0) 21
minutes ago myubi

You can see that the container is in Exited status.

Additional resources

podman-run man page

5.4. LISTING CONTAINERS

Use the podman ps command to list the running containers on the system.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Run the container based on registry.redhat.io/rhel9/rsyslog image:

$ podman run -d registry.redhat.io/rhel8/rsyslog

2. List all containers:

To list all running containers:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
74b1da000a11 rhel9/rsyslog /bin/rsyslog.sh 2 minutes ago Up About a minute
musing_brown

To list all containers, running or stopped:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES IS INFRA
d65aecc325a4 ubi9/ubi /bin/bash 3 secs ago Exited (0) 5 secs ago peaceful_hopper
false
74b1da000a11 rhel9/rsyslog rsyslog.sh 2 mins ago Up About a minute musing_brown
false

If there are containers that are not running, but were not removed (--rm option), the containers are
present and can be restarted.

Additional resources

podman-ps man page

CHAPTER 5. WORKING WITH CONTAINERS

39

5.5. STARTING CONTAINERS

If you run the container and then stop it, and not remove it, the container is stored on your local system
ready to run again. You can use the podman start command to re-run the containers. You can specify
the containers by their container ID or name.

Prerequisites

The container-tools meta-package is installed.

At least one container has been stopped.

Procedure

1. Start the myubi container:

In the non interactive mode:

$ podman start myubi

Alternatively, you can use podman start 1984555a2c27.

In the interactive mode, use -a (--attach) and -i (--interactive) options to work with
container bash shell:

$ podman start -a -i myubi

Alternatively, you can use podman start -a -i 1984555a2c27.

2. Enter exit to exit the container and return to the host:

[root@6ccffd0f6421 /]# exit

Additional resources

podman-start man page

5.6. INSPECTING CONTAINERS FROM THE HOST

Use the podman inspect command to inspect the metadata of an existing container in a JSON format.
You can specify the containers by their container ID or name.

Prerequisites

The container-tools meta-package is installed.

Procedure

Inspect the container defined by ID 64ad95327c74:

To get all metadata:

$ podman inspect 64ad95327c74
[

Red Hat Enterprise Linux 9 Building, running, and managing containers

40

 {
 "Id":
"64ad95327c740ad9de468d551c50b6d906344027a0e645927256cd061049f681",
 "Created": "2021-03-02T11:23:54.591685515+01:00",
 "Path": "/bin/rsyslog.sh",
 "Args": [
 "/bin/rsyslog.sh"
],
 "State": {
 "OciVersion": "1.0.2-dev",
 "Status": "running",
 ...

To get particular items from the JSON file, for example, the StartedAt timestamp:

$ podman inspect --format='{{.State.StartedAt}}' 64ad95327c74
2021-03-02 11:23:54.945071961 +0100 CET

The information is stored in a hierarchy. To see the container StartedAt timestamp
(StartedAt is under State), use the --format option and the container ID or name.

Examples of other items you might want to inspect include:

.Path to see the command run with the container

.Args arguments to the command

.Config.ExposedPorts TCP or UDP ports exposed from the container

.State.Pid to see the process id of the container

.HostConfig.PortBindings port mapping from container to host

Additional resources

podman-inspect man page

5.7. MOUNTING DIRECTORY ON LOCALHOST TO THE CONTAINER

You can make log messages from inside a container available to the host system by mounting the host
/dev/log device inside the container.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Run the container named log_test and mount the host /dev/log device inside the container:

podman run --name="log_test" -v /dev/log:/dev/log --rm \
 registry.redhat.io/ubi9/ubi logger "Testing logging to the host"

2. Use the journalctl utility to display logs:

CHAPTER 5. WORKING WITH CONTAINERS

41

journalctl -b | grep Testing
Dec 09 16:55:00 localhost.localdomain root[14634]: Testing logging to the host

The --rm option removes the container when it exits.

Additional resources

podman-run man page

5.8. MOUNTING A CONTAINER FILESYSTEM

Use the podman mount command to mount a working container root filesystem in a location accessible
from the host.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Run the container named mysyslog:

podman run -d --name=mysyslog registry.redhat.io/rhel9/rsyslog

2. Optional: List all containers:

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
c56ef6a256f8 registry.redhat.io/rhel9/rsyslog:latest /bin/rsyslog.sh 20 minutes ago Up 20
minutes ago mysyslog

3. Mount the mysyslog container:

podman mount mysyslog
/var/lib/containers/storage/overlay/990b5c6ddcdeed4bde7b245885ce4544c553d108310e2b797
d7be46750894719/merged

4. Display the content of the mount point using ls command:

ls
/var/lib/containers/storage/overlay/990b5c6ddcdeed4bde7b245885ce4544c553d108310
e2b797d7be46750894719/merged
bin boot dev etc home lib lib64 lost+found media mnt opt proc root run sbin srv sys
tmp usr var

5. Display the OS version:

cat
/var/lib/containers/storage/overlay/990b5c6ddcdeed4bde7b245885ce4544c553d108310
e2b797d7be46750894719/merged/etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="9 (Ootpa)"

Red Hat Enterprise Linux 9 Building, running, and managing containers

42

ID="rhel"
ID_LIKE="fedora"
...

Additional resources

podman-mount man page

5.9. RUNNING A SERVICE AS A DAEMON WITH A STATIC IP

The following example runs the rsyslog service as a daemon process in the background. The --ip option
sets the container network interface to a particular IP address (for example, 10.88.0.44). After that, you
can run the podman inspect command to check that you set the IP address properly.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Set the container network interface to the IP address 10.88.0.44:

podman run -d --ip=10.88.0.44 registry.access.redhat.com/rhel9/rsyslog
efde5f0a8c723f70dd5cb5dc3d5039df3b962fae65575b08662e0d5b5f9fbe85

2. Check that the IP address is set properly:

podman inspect efde5f0a8c723 | grep 10.88.0.44
"IPAddress": "10.88.0.44",

Additional resources

podman-inspect man page

podman-run man page

5.10. EXECUTING COMMANDS INSIDE A RUNNING CONTAINER

Use the podman exec command to execute a command in a running container and investigate that
container. The reason for using the podman exec command instead of podman run command is that
you can investigate the running container without interrupting the container activity.

Prerequisites

The container-tools meta-package is installed.

The container is running.

Procedure

1. Execute the rpm -qa command inside the myrsyslog container to list all installed packages:

CHAPTER 5. WORKING WITH CONTAINERS

43

$ podman exec -it myrsyslog rpm -qa
tzdata-2020d-1.el8.noarch
python3-pip-wheel-9.0.3-18.el8.noarch
redhat-release-8.3-1.0.el8.x86_64
filesystem-3.8-3.el8.x86_64
...

2. Execute a /bin/bash command in the myrsyslog container:

$ podman exec -it myrsyslog /bin/bash

3. Install the procps-ng package containing a set of system utilities (for example ps, top, uptime,
and so on):

dnf install procps-ng

4. Inspect the container:

To list every process on the system:

ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 10:23 ? 00:00:01 /usr/sbin/rsyslogd -n
root 8 0 0 11:07 pts/0 00:00:00 /bin/bash
root 47 8 0 11:13 pts/0 00:00:00 ps -ef

To display file system disk space usage:

df -h
Filesystem Size Used Avail Use% Mounted on
fuse-overlayfs 27G 7.1G 20G 27% /
tmpfs 64M 0 64M 0% /dev
tmpfs 269M 936K 268M 1% /etc/hosts
shm 63M 0 63M 0% /dev/shm
...

To display system information:

uname -r
4.18.0-240.10.1.el8_3.x86_64

To display amount of free and used memory in megabytes:

free --mega
total used free shared buff/cache available
Mem: 2818 615 1183 12 1020 1957
Swap: 3124 0 3124

Additional resources

podman-exec man page

Red Hat Enterprise Linux 9 Building, running, and managing containers

44

5.11. SHARING FILES BETWEEN TWO CONTAINERS

You can use volumes to persist data in containers even when a container is deleted. Volumes can be
used for sharing data among multiple containers. The volume is a folder which is stored on the host
machine. The volume can be shared between the container and the host.

Main advantages are:

Volumes can be shared among the containers.

Volumes are easier to back up or migrate.

Volumes do not increase the size of the containers.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a volume:

$ podman volume create hostvolume

2. Display information about the volume:

$ podman volume inspect hostvolume
[
 {
 "name": "hostvolume",
 "labels": {},
 "mountpoint":
"/home/username/.local/share/containers/storage/volumes/hostvolume/_data",
 "driver": "local",
 "options": {},
 "scope": "local"
 }
]

Notice that it creates a volume in the volumes directory. You can save the mount point path to
the variable for easier manipulation: $ mntPoint=$(podman volume inspect hostvolume --
format {{.Mountpoint}}).

Notice that if you run sudo podman volume create hostvolume, then the mount point
changes to /var/lib/containers/storage/volumes/hostvolume/_data.

3. Create a text file inside the directory using the path that is stored in the mntPoint variable:

$ echo "Hello from host" >> $mntPoint/host.txt

4. List all files in the directory defined by the mntPoint variable:

$ ls $mntPoint/
host.txt

CHAPTER 5. WORKING WITH CONTAINERS

45

5. Run the container named myubi1 and map the directory defined by the hostvolume volume
name on the host to the /containervolume1 directory on the container:

$ podman run -it --name myubi1 -v hostvolume:/containervolume1
registry.access.redhat.com/ubi9/ubi /bin/bash

Note that if you use the volume path defined by the mntPoint variable (-v
$mntPoint:/containervolume1), data can be lost when running podman volume prune
command, which removes unused volumes. Always use -v
hostvolume_name:/containervolume_name.

6. List the files in the shared volume on the container:

ls /containervolume1
host.txt

You can see the host.txt file which you created on the host.

7. Create a text file inside the /containervolume1 directory:

echo "Hello from container 1" >> /containervolume1/container1.txt

8. Detach from the container with CTRL+p and CTRL+q.

9. List the files in the shared volume on the host, you should see two files:

$ ls $mntPoint
container1.rxt host.txt

At this point, you are sharing files between the container and host. To share files between two
containers, run another container named myubi2.

10. Run the container named myubi2 and map the directory defined by the hostvolume volume
name on the host to the /containervolume2 directory on the container:

$ podman run -it --name myubi2 -v hostvolume:/containervolume2
registry.access.redhat.com/ubi9/ubi /bin/bash

11. List the files in the shared volume on the container:

ls /containervolume2
container1.txt host.txt

You can see the host.txt file which you created on the host and container1.txt which you
created inside the myubi1 container.

12. Create a text file inside the /containervolume2 directory:

echo "Hello from container 2" >> /containervolume2/container2.txt

13. Detach from the container with CTRL+p and CTRL+q.

14. List the files in the shared volume on the host, you should see three files:

Red Hat Enterprise Linux 9 Building, running, and managing containers

46

$ ls $mntPoint
container1.rxt container2.txt host.txt

Additional resources

podman-volume man page

5.12. EXPORTING AND IMPORTING CONTAINERS

You can use the podman export command to export the file system of a running container to a tarball
on your local machine. For example, if you have a large container that you use infrequently or one that
you want to save a snapshot of in order to revert back to it later, you can use the podman export
command to export a current snapshot of your running container into a tarball.

You can use the podman import command to import a tarball and save it as a filesystem image. Then
you can run this filesystem image or you can use it as a layer for other images.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Run the myubi container based on the registry.access.redhat.com/ubi9/ubi image:

$ podman run -dt --name=myubi registry.access.redhat.com/9/ubi

2. Optional: List all containers:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
a6a6d4896142 registry.access.redhat.com/9:latest /bin/bash 7 seconds ago Up 7
seconds ago myubi

3. Attach to the myubi container:

$ podman attach myubi

4. Create a file named testfile:

[root@a6a6d4896142 /]# echo "hello" > testfile

5. Detach from the container with CTRL+p and CTRL+q.

6. Export the file system of the myubi as a myubi-container.tar on the local machine:

$ podman export -o myubi.tar a6a6d4896142

7. Optional: List the current directory content:

CHAPTER 5. WORKING WITH CONTAINERS

47

$ ls -l
-rw-r--r--. 1 user user 210885120 Apr 6 10:50 myubi-container.tar
...

8. Optional: Create a myubi-container directory, extract all files from the myubi-container.tar
archive. List a content of the myubi-directory in a tree-like format:

$ mkdir myubi-container
$ tar -xf myubi-container.tar -C myubi-container
$ tree -L 1 myubi-container
├── bin -> usr/bin
├── boot
├── dev
├── etc
├── home
├── lib -> usr/lib
├── lib64 -> usr/lib64
├── lost+found
├── media
├── mnt
├── opt
├── proc
├── root
├── run
├── sbin -> usr/sbin
├── srv
├── sys
├── testfile
├── tmp
├── usr
└── var

20 directories, 1 file

You can see that the myubi-container.tar contains the container file system.

9. Import the myubi.tar and saves it as a filesystem image:

$ podman import myubi.tar myubi-imported
Getting image source signatures
Copying blob 277cab30fe96 done
Copying config c296689a17 done
Writing manifest to image destination
Storing signatures
c296689a17da2f33bf9d16071911636d7ce4d63f329741db679c3f41537e7cbf

10. List all images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/myubi-imported latest c296689a17da 51 seconds ago 211 MB

11. Display the content of the testfile file:

Red Hat Enterprise Linux 9 Building, running, and managing containers

48

$ podman run -it --name=myubi-imported docker.io/library/myubi-imported cat testfile
hello

Additional resources

podman-export man page

podman-import man page

5.13. STOPPING CONTAINERS

Use the podman stop command to stop a running container. You can specify the containers by their
container ID or name.

Prerequisites

The container-tools meta-package is installed.

At least one container is running.

Procedure

Stop the myubi container:

Using the container name:

$ podman stop myubi

Using the container ID:

$ podman stop 1984555a2c27

To stop a running container that is attached to a terminal session, you can enter the exit command
inside the container.

The podman stop command sends a SIGTERM signal to terminate a running container. If the container
does not stop after a defined period (10 seconds by default), Podman sends a SIGKILL signal.

You can also use the podman kill command to kill a container (SIGKILL) or send a different signal to a
container. Here is an example of sending a SIGHUP signal to a container (if supported by the application,
a SIGHUP causes the application to re-read its configuration files):

podman kill --signal="SIGHUP" 74b1da000a11
74b1da000a114015886c557deec8bed9dfb80c888097aa83f30ca4074ff55fb2

Additional resources

podman-stop man page

podman-kill man page

5.14. REMOVING CONTAINERS

CHAPTER 5. WORKING WITH CONTAINERS

49

Use the podman rm command to remove containers. You can specify containers with the container ID
or name.

Prerequisites

The container-tools meta-package is installed.

At least one container has been stopped.

Procedure

1. List all containers, running or stopped:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
IS INFRA
d65aecc325a4 ubi9/ubi /bin/bash 3 secs ago Exited (0) 5 secs ago peaceful_hopper false
74b1da000a11 rhel9/rsyslog rsyslog.sh 2 mins ago Up About a minute musing_brown
false

2. Remove the containers:

To remove the peaceful_hopper container:

$ podman rm peaceful_hopper

Notice that the peaceful_hopper container was in Exited status, which means it was
stopped and it can be removed immediately.

To remove the musing_brown container, first stop the container and then remove it:

$ podman stop musing_brown
$ podman rm musing_brown

NOTE

To remove multiple containers:

$ podman rm clever_yonath furious_shockley

To remove all containers from your local system:

$ podman rm -a

Additional resources

podman-rm man page

5.15. CREATING SELINUX POLICIES FOR CONTAINERS

To generate SELinux policies for containers, use the UDICA tool. For more information, see Introduction
to the udica SELinux policy generator.

Red Hat Enterprise Linux 9 Building, running, and managing containers

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/creating-selinux-policies-for-containers_using-selinux#introduction-to-udica_creating-selinux-policies-for-containers

5.16. CONFIGURING PRE-EXECUTION HOOKS IN PODMAN

You can create plugin scripts to define a fine-control over container operations, especially blocking
unauthorized actions, for example pulling, running, or listing container images.

NOTE

The file /etc/containers/podman_preexec_hooks.txt must be created by an
administrator and can be empty. If the /etc/containers/podman_preexec_hooks.txt
does not exist, the plugin scripts will not be executed.

The following rules apply to the plugin scripts:

Have to be root-owned and not writable.

Have to be located in the /usr/libexec/podman/pre-exec-hooks and /etc/containers/pre-exec-
hooks directories.

Execute in sequentially and alphanumeric order.

If all plugin scripts return zero value, then the podman command is executed.

If any of the plugin scripts return a non-zero value, it indicates a failure. The podman command
exits and returns the non-zero value of the first-failed script.

Red Hat recommends using the following naming convention to execute the scripts in the
correct order: DDD_name.lang, where:

The DDD is the decimal number indicating the order of script execution. Use one or two
leading zeros if necessary.

The name is the name of the plugin script.

The lang (optional) is the file extension for the given programming language. For example,
the name of the plugin script can be: 001-check-groups.sh.

NOTE

The plugin scripts are valid at the time of creation. Containers created before plugin
scripts are not affected.

Prerequisites

The container-tools meta-package is installed.

Procedure

Create the script plugin named 001-check-groups.sh. For example:

#!/bin/bash
if id -nG "$USER" 2> /dev/null | grep -qw "$GROUP" 2> /dev/null ; then
 exit 0
else
 exit 1
fi

CHAPTER 5. WORKING WITH CONTAINERS

51

The script checks if a user is in a specified group.

The USER and GROUP are environment variables set by Podman.

Exit code provided by the 001-check-groups.sh script would be provided to the podman
binary.

The podman command exits and returns the non-zero value of the first-failed script.

Verification

Check if the 001-check-groups.sh script works correctly:

$ podman run image
...

If the user is not in the correct group, the following error appears:

external preexec hook /etc/containers/pre-exec-hooks/001-check-groups.sh failed

Red Hat Enterprise Linux 9 Building, running, and managing containers

52

CHAPTER 6. SELECTING A CONTAINER RUNTIME
The runc and crun are container runtimes and can be used interchangeably as both implement the OCI
runtime specification. The crun container runtime has a couple of advantages over runc, as it is faster
and requires less memory. Due to that, the crun container runtime is the recommended container
runtime for use.

6.1. THE RUNC CONTAINER RUNTIME

The runc container runtime is a lightweight, portable implementation of the Open Container Initiative
(OCI) container runtime specification. The runc runtime shares a lot of low-level code with Docker but it
is not dependent on any of the components of the Docker platform. The runc supports Linux
namespaces, live migration, and has portable performance profiles.

It also provides full support for Linux security features such as SELinux, control groups (cgroups),
seccomp, and others. You can build and run images with runc, or you can run OCI-compatible images
with runc.

6.2. THE CRUN CONTAINER RUNTIME

The crun is a fast and low-memory footprint OCI container runtime written in C. The crun binary is up to
50 times smaller and up to twice as fast as the runc binary. Using crun, you can also set a minimal
number of processes when running your container. The crun runtime also supports OCI hooks.

Additional features of crun include:

Sharing files by group for rootless containers

Controlling the stdout and stderr of OCI hooks

Running older versions of systemd on cgroup v2

A C library that is used by other programs

Extensibility

Portability

Additional resources

An introduction to crun, a fast and low-memory footprint container runtime

6.3. RUNNING CONTAINERS WITH RUNC AND CRUN

With runc or crun, containers are configured using bundles. A bundle for a container is a directory that
includes a specification file named config.json and a root filesystem. The root filesystem contains the
contents of the container.

NOTE

The <runtime> can be crun or runc.

Prerequisites

CHAPTER 6. SELECTING A CONTAINER RUNTIME

53

https://www.redhat.com/sysadmin/introduction-crun

The container-tools meta-package is installed.

Procedure

1. Pull the registry.access.redhat.com/ubi9/ubi container image:

podman pull registry.access.redhat.com/ubi9/ubi

2. Export the registry.access.redhat.com/ubi9/ubi image to the rhel.tar archive:

podman export $(podman create registry.access.redhat.com/ubi9/ubi) > rhel.tar

3. Create the bundle/rootfs directory:

mkdir -p bundle/rootfs

4. Extract the rhel.tar archive into the bundle/rootfs directory:

tar -C bundle/rootfs -xf rhel.tar

5. Create a new specification file named config.json for the bundle:

<runtime> spec -b bundle

The -b option specifies the bundle directory. The default value is the current directory.

6. Optional: Change the settings:

vi bundle/config.json

7. Create an instance of a container named myubi for a bundle:

<runtime> create -b bundle/ myubi

8. Start a myubi container:

<runtime> start myubi

NOTE

The name of a container instance must be unique to the host. To start a new instance of a
container: # <runtime> start <container_name>

Verification

List containers started by <runtime>:

<runtime> list
ID PID STATUS BUNDLE CREATED OWNER
myubi 0 stopped /root/bundle 2021-09-14T09:52:26.659714605Z root

Additional resources

Red Hat Enterprise Linux 9 Building, running, and managing containers

54

Additional resources

crun man page

runc man page

An introduction to crun, a fast and low-memory footprint container runtime

6.4. TEMPORARILY CHANGING THE CONTAINER RUNTIME

You can use the podman run command with the --runtime option to change the container runtime.

NOTE

The <runtime> can be crun or runc.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Pull the registry.access.redhat.com/ubi9/ubi container image:

$ podman pull registry.access.redhat.com/ubi9/ubi

2. Change the container runtime using the --runtime option:

$ podman run --name=myubi -dt --runtime=<runtime> ubi9
e4654eb4df12ac031f1d0f2657dc4ae6ff8eb0085bf114623b66cc664072e69b

3. Optional. List all images:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
e4654eb4df12 registry.access.redhat.com/ubi9:latest bash 4 seconds ago Up 4 seconds
ago myubi

Verification

Ensure that the OCI runtime is set to <runtime> in the myubi container:

$ podman inspect myubi --format "{{.OCIRuntime}}"
<runtime>

Additional resources

An introduction to crun, a fast and low-memory footprint container runtime

6.5. PERMANENTLY CHANGING THE CONTAINER RUNTIME

You can set the container runtime and its options in the /etc/containers/containers.conf configuration

CHAPTER 6. SELECTING A CONTAINER RUNTIME

55

https://www.redhat.com/sysadmin/introduction-crun
https://www.redhat.com/sysadmin/introduction-crun

You can set the container runtime and its options in the /etc/containers/containers.conf configuration
file as a root user or in the $HOME/.config/containers/containers.conf configuration file as a non-root
user.

NOTE

The <runtime> can be crun or runc runtime.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Change the runtime in the /etc/containers/containers.conf file:

vim /etc/containers/containers.conf
[engine]
runtime = "<runtime>"

2. Run the container named myubi:

podman run --name=myubi -dt ubi9 bash
Resolved "ubi9" as an alias (/etc/containers/registries.conf.d/001-rhel-shortnames.conf)
Trying to pull registry.access.redhat.com/ubi9:latest…
...
Storing signatures

Verification

Ensure that the OCI runtime is set to <runtime> in the myubi container:

podman inspect myubi --format "{{.OCIRuntime}}"
<runtime>

Additional resources

An introduction to crun, a fast and low-memory footprint container runtime

containers.conf man page

Red Hat Enterprise Linux 9 Building, running, and managing containers

56

https://www.redhat.com/sysadmin/introduction-crun

CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER
Red Hat Universal Base Images (UBIs) are built from a subset of the RHEL content. UBIs also provide a
subset of RHEL packages that are freely available to install for use with UBI. To add or update software
to a running container, you can use the dnf repositories that include RPM packages and updates. UBIs
provide a set of pre-built language runtime container images such as Python, Perl, Node.js, Ruby, and so
on.

To add packages from UBI repositories to running UBI containers:

On UBI init and UBI standard images, use the dnf command

On UBI minimal images, use the microdnf command

NOTE

Installing and working with software packages directly in running containers adds
packages temporarily. The changes are not saved in the container image. To make
package changes persistent, see section Building an image from a Containerfile with
Buildah.

NOTE

When you add software to a UBI container, procedures differ for updating UBIs on a
subscribed RHEL host or on an unsubscribed (or non-RHEL) system.

7.1. USING THE UBI INIT IMAGES

You can build a container using a Containerfile that installs and configures a Web server (httpd) to start
automatically by the systemd service (/sbin/init) when the container is run on a host system. The
podman build command builds an image using instructions in one or more Containerfiles and a
specified build context directory. The context directory can be specified as the URL of an archive, Git
repository or Containerfile. If no context directory is specified, then the current working directory is
considered as the build context, and must contain the Containerfile. You can also specify a
Containerfile with the --file option.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a Containerfile with the following contents to a new directory:

FROM registry.access.redhat.com/ubi9/ubi-init
RUN dnf -y install httpd; dnf clean all; systemctl enable httpd;
RUN echo "Successful Web Server Test" > /var/www/html/index.html
RUN mkdir /etc/systemd/system/httpd.service.d/; echo -e '[Service]\nRestart=always' >
/etc/systemd/system/httpd.service.d/httpd.conf
EXPOSE 80
CMD ["/sbin/init"]

The Containerfile installs the httpd package, enables the httpd service to start at boot time,

CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER

57

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_building-an-image-from-a-containerfile-with-buildah_assembly_building-container-images-with-buildah

The Containerfile installs the httpd package, enables the httpd service to start at boot time,
creates a test file (index.html), exposes the Web server to the host (port 80), and starts the
systemd init service (/sbin/init) when the container starts.

2. Build the container:

podman build --format=docker -t mysysd .

3. Optional: If you want to run containers with systemd and SELinux is enabled on your system,
you must set the container_manage_cgroup boolean variable:

setsebool -P container_manage_cgroup 1

4. Run the container named mysysd_run:

podman run -d --name=mysysd_run -p 80:80 mysysd

The mysysd image runs as the mysysd_run container as a daemon process, with port 80 from
the container exposed to port 80 on the host system.

NOTE

In rootless mode, you have to choose host port number >= 1024. For example:

$ podman run -d --name=mysysd -p 8081:80 mysysd

To use port numbers < 1024, you have to modify the
net.ipv4.ip_unprivileged_port_start variable:

sysctl net.ipv4.ip_unprivileged_port_start=80

5. Check that the container is running:

podman ps
a282b0c2ad3d localhost/mysysd:latest /sbin/init 15 seconds ago Up 14 seconds ago
0.0.0.0:80->80/tcp mysysd_run

6. Test the web server:

curl localhost/index.html
Successful Web Server Test

Additional resources

Shortcomings of Rootless Podman

7.2. USING THE UBI MICRO IMAGES

You can build a ubi-micro container image using the Buildah tool.

Prerequisites

Red Hat Enterprise Linux 9 Building, running, and managing containers

58

https://github.com/containers/podman/blob/main/rootless.md#shortcomings-of-rootless-podman

The container-tools meta-package is installed.

Prerequisites

The podman tool, provided by the containers-tool meta-package, is installed.

Procedure

1. Pull and build the registry.access.redhat.com/ubi8/ubi-micro image:

microcontainer=$(buildah from registry.access.redhat.com/ubi9/ubi-micro)

2. Mount a working container root filesystem:

micromount=$(buildah mount $microcontainer)

3. Install the httpd service to the micromount directory:

dnf install \
 --installroot $micromount \
 --releasever=/ \
 --setopt install_weak_deps=false \
 --setopt=reposdir=/etc/yum.repos.d/ \
 --nodocs -y \
 httpd
dnf clean all \
 --installroot $micromount

4. Unmount the root file system on the working container:

buildah umount $microcontainer

5. Create the ubi-micro-httpd image from a working container:

buildah commit $microcontainer ubi-micro-httpd

Verification steps

1. Display details about the ubi-micro-httpd image:

podman images ubi-micro-httpd
localhost/ubi-micro-httpd latest 7c557e7fbe9f 22 minutes ago 151 MB

7.3. ADDING SOFTWARE TO A UBI CONTAINER ON A SUBSCRIBED
HOST

If you are running a UBI container on a registered and subscribed RHEL host, the RHEL Base and
AppStream repositories are enabled inside the standard UBI container, along with all the UBI
repositories.

Additional resources

CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER

59

Universal Base Images (UBI): Images, repositories, packages, and source code

7.4. ADDING SOFTWARE IN A STANDARD UBI CONTAINER

To add software inside the standard UBI container, disable non-UBI dnf repositories to ensure the
containers you build can be redistributed.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Pull and run the registry.access.redhat.com/ubi9/ubi image:

$ podman run -it --name myubi registry.access.redhat.com/ubi9/ubi

2. Add a package to the myubi container.

To add a package that is in the UBI repository, disable all dnf repositories except for UBI
repositories. For example, to add the bzip2 package:

dnf install --disablerepo=* --enablerepo=ubi-8-appstream-rpms --enablerepo=ubi-
8-baseos-rpms bzip2

To add a package that is not in the UBI repository, do not disable any repositories. For
example, to add the zsh package:

dnf install zsh

To add a package that is in a different host repository, explicitly enable the repository you
need. For example, to install the python38-devel package from the codeready-builder-for-
rhel-8-x86_64-rpms repository:

dnf install --enablerepo=codeready-builder-for-rhel-8-x86_64-rpms python38-
devel

Verification steps

1. List all enabled repositories inside the container:

dnf repolist

2. Ensure that the required repositories are listed.

3. List all installed packages:

rpm -qa

4. Ensure that the required packages are listed.

NOTE

Red Hat Enterprise Linux 9 Building, running, and managing containers

60

https://access.redhat.com/articles/4238681

NOTE

Installing Red Hat packages that are not inside the Red Hat UBI repositories can limit the
ability to distribute the container outside of subscribed RHEL systems.

7.5. ADDING SOFTWARE IN A MINIMAL UBI CONTAINER

UBI dnf repositories are enabled inside UBI Minimal images by default.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Pull and run the registry.access.redhat.com/ubi9/ubi-minimal image:

$ podman run -it --name myubimin registry.access.redhat.com/ubi9/ubi-minimal

2. Add a package to the myubimin container:

To add a package that is in the UBI repository, do not disable any repositories. For example,
to add the bzip2 package:

microdnf install bzip2

To add a package that is in a different host repository, explicitly enable the repository you
need. For example, to install the python38-devel package from the codeready-builder-for-
rhel-8-x86_64-rpms repository:

microdnf install --enablerepo=codeready-builder-for-rhel-8-x86_64-rpms
python38-devel

Verification steps

1. List all enabled repositories inside the container:

microdnf repolist

2. Ensure that the required repositories are listed.

3. List all installed packages:

rpm -qa

4. Ensure that the required packages are listed.

NOTE

Installing Red Hat packages that are not inside the Red Hat UBI repositories can limit the
ability to distribute the container outside of subscribed RHEL systems.

CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER

61

7.6. ADDING SOFTWARE TO A UBI CONTAINER ON A UNSUBSCRIBED
HOST

You do not have to disable any repositories when adding software packages on unsubscribed RHEL
systems.

Prerequisites

The container-tools meta-package is installed.

Procedure

Add a package to a running container based on the UBI standard or UBI init images. Do not
disable any repositories. Use the podman run command to run the container. then use the dnf
install command inside a container.

For example, to add the bzip2 package to the UBI standard based container:

$ podman run -it --name myubi registry.access.redhat.com/ubi9/ubi
dnf install bzip2

For example, to add the bzip2 package to the UBI init based container:

$ podman run -it --name myubimin registry.access.redhat.com/ubi9/ubi-minimal
microdnf install bzip2

Verification steps

1. List all enabled repositories:

To list all enabled repositories inside the containers based on UBI standard or UBI init
images:

dnf repolist

To list all enabled repositories inside the containers based on UBI minimal containers:

microdnf repolist

2. Ensure that the required repositories are listed.

3. List all installed packages:

rpm -qa

4. Ensure that the required packages are listed.

7.7. BUILDING UBI-BASED IMAGES

You can create a UBI-based web server container from a Containerfile using the Buildah utility. You
have to disable all non-UBI dnf repositories to ensure that your image contains only Red Hat software
that you can redistribute.

NOTE

Red Hat Enterprise Linux 9 Building, running, and managing containers

62

NOTE

For UBI minimal images, use microdnf instead of dnf: RUN microdnf update -y && rm -
rf /var/cache/yum and RUN microdnf install httpd -y && microdnf clean all
commands.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a Containerfile:

FROM registry.access.redhat.com/ubi9/ubi
USER root
LABEL maintainer="John Doe"
Update image
RUN dnf update --disablerepo=* --enablerepo=ubi-8-appstream-rpms --enablerepo=ubi-8-
baseos-rpms -y && rm -rf /var/cache/yum
RUN dnf install --disablerepo=* --enablerepo=ubi-8-appstream-rpms --enablerepo=ubi-8-
baseos-rpms httpd -y && rm -rf /var/cache/yum
Add default Web page and expose port
RUN echo "The Web Server is Running" > /var/www/html/index.html
EXPOSE 80
Start the service
CMD ["-D", "FOREGROUND"]
ENTRYPOINT ["/usr/sbin/httpd"]

2. Build the container image:

buildah bud -t johndoe/webserver .
STEP 1: FROM registry.access.redhat.com/ubi9/ubi:latest
STEP 2: USER root
STEP 3: LABEL maintainer="John Doe"
STEP 4: RUN dnf update --disablerepo=* --enablerepo=ubi-8-appstream-rpms --
enablerepo=ubi-8-baseos-rpms -y
...
Writing manifest to image destination
Storing signatures
--> f9874f27050
f9874f270500c255b950e751e53d37c6f8f6dba13425d42f30c2a8ef26b769f2

Verification steps

1. Run the web server:

podman run -d --name=myweb -p 80:80 johndoe/webserver
bbe98c71d18720d966e4567949888dc4fb86eec7d304e785d5177168a5965f64

2. Test the web server:

curl http://localhost/index.html
The Web Server is Running

CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER

63

7.8. USING APPLICATION STREAM RUNTIME IMAGES

Runtime images based on Application Streams offer a set of container images that you can use as the
basis for your container builds.

Supported runtime images are Python, Ruby, s2-core, s2i-base, .NET Core, PHP. The runtime images
are available in the Red Hat Container Catalog.

NOTE

Because these UBI images contain the same basic software as their legacy image
counterparts, you can learn about those images from the Using Red Hat Software
Collections Container Images guide.

Additional resources

Red Hat Container Catalog

Red Hat Container Image Updates

7.9. GETTING UBI CONTAINER IMAGE SOURCE CODE

Source code is available for all Red Hat UBI-based images in the form of downloadable container
images. Source container images cannot be run, despite being packaged as containers. To install Red
Hat source container images on your system, use the skopeo command, not the podman pull
command.

Source container images are named based on the binary containers they represent. For example, for a
particular standard RHEL UBI 9 container registry.access.redhat.com/ubi9:8.1-397 append -source to
get the source container image (registry.access.redhat.com/ubi9:8.1-397-source).

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Use the skopeo copy command to copy the source container image to a local directory:

$ skopeo copy \
docker://registry.access.redhat.com/ubi9:8.1-397-source \
dir:$HOME/TEST
...
Copying blob 477bc8106765 done
Copying blob c438818481d3 done
...
Writing manifest to image destination
Storing signatures

2. Use the skopeo inspect command to inspect the source container image:

$ skopeo inspect dir:$HOME/TEST
{
 "Digest":

Red Hat Enterprise Linux 9 Building, running, and managing containers

64

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_managing_and_removing_user-space_components/using-appstream_using-appstream#application-streams_using-appstream
https://catalog.redhat.com/software/containers/search?p=1&product_listings_names=Red Hat Enterprise Linux 8&application_categories_list=Programming Languages %26 Runtimes
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/index
https://access.redhat.com/containers
https://access.redhat.com/articles/2208321

"sha256:7ab721ef3305271bbb629a6db065c59bbeb87bc53e7cbf88e2953a1217ba7322",
 "RepoTags": [],
 "Created": "2020-02-11T12:14:18.612461174Z",
 "DockerVersion": "",
 "Labels": null,
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 "sha256:1ae73d938ab9f11718d0f6a4148eb07d38ac1c0a70b1d03e751de8bf3c2c87fa",
 "sha256:9fe966885cb8712c47efe5ecc2eaa0797a0d5ffb8b119c4bd4b400cc9e255421",
 "sha256:61b2527a4b836a4efbb82dfd449c0556c0f769570a6c02e112f88f8bbcd90166",
 ...
 "sha256:cc56c782b513e2bdd2cc2af77b69e13df4ab624ddb856c4d086206b46b9b9e5f",
 "sha256:dcf9396fdada4e6c1ce667b306b7f08a83c9e6b39d0955c481b8ea5b2a465b32",

"sha256:feb6d2ae252402ea6a6fca8a158a7d32c7e4572db0e6e5a5eab15d4e0777951e"
],
 "Env": null
}

3. Unpack all the content:

$ cd $HOME/TEST
$ for f in $(ls); do tar xvf $f; done

4. Check the results:

$ find blobs/ rpm_dir/
blobs/
blobs/sha256
blobs/sha256/10914f1fff060ce31388f5ab963871870535aaaa551629f5ad182384d60fdf82
rpm_dir/
rpm_dir/gzip-1.9-4.el8.src.rpm

If the results are correct, the image is ready to be used.

NOTE

It could take several hours after a container image is released for its associated source
container to become available.

Additional resources

skopeo-copy man page

skopeo-inspect man page

CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER

65

CHAPTER 8. SIGNING CONTAINER IMAGES
You can use a GNU Privacy Guard (GPG) signature or a sigstore signature to sign your container image.
Both signing techniques are generally compatible with any OCI compliant container registries. You can
use Podman to sign the image before pushing it into a remote registry and configure consumers so that
any unsigned image is rejected. Signing container images helps to prevent supply chain attacks.

Signing using GPG keys requires deploying a separate lookaside server to distribute signatures. The
lookaside server can be any HTTP server. Starting with Podman version 4.2, you can use the sigstore
format of container signatures. Compared to the GPG keys, the separate lookaside server is not
required because the sigstore signatures are stored in the container registry.

8.1. SIGNING CONTAINER IMAGES WITH GPG SIGNATURES

You can sign images using a GNU Privacy Guard (GPG) key.

Prerequisites

The container-tools meta-package is installed.

The GPG tool is installed.

The lookaside web server is set up and you can publish files on it.

You can check the system-wide registries configuration in the
/etc/containers/registries.d/default.yaml file. The lookaside-staging option references a
file path for signature writing and is typically set on hosts publishing signatures.

cat /etc/containers/registries.d/default.yaml
docker:
 <registry>:
 lookaside: https://registry-lookaside.example.com
 lookaside-staging: file:///var/lib/containers/sigstore
...

Procedure

1. Generate a GPG key:

gpg --full-gen-key

2. Export the public key:

gpg --output <path>/key.gpg --armor --export <username@domain.com>

3. Build the container image using Containerfile in the current directory:

$ podman build -t <registry>/<namespace>/<image>

Replace <registry>, <namespace>, and <image> with the container image identifiers. For
more details, see Container registries.

4. Sign the image and push it to the registry:

Red Hat Enterprise Linux 9 Building, running, and managing containers

66

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#con_container-registries_working-with-container-registries

 $ podman push \
 --sign-by <username@domain.com> \
 <registry>/<namespace>/<image>

NOTE

If you need to sign existing images while moving them across container registries,
you can use the skopeo copy command.

5. Optional: Display the new image signature:

(cd /var/lib/containers/sigstore/; find . -type f)
./<image>@sha256=<digest>/signature-1

6. Copy your local signatures to the lookaside web server:

rsync -a /var/lib/containers/sigstore <user@registry-
lookaside.example.com>:/registry-lookaside/webroot/sigstore

The signatures are stored in the location determined by the lookaside-staging option, in this case,
/var/lib/containers/sigstore directory.

Verification

For more details, see Verifying GPG image signatures .

Additional resources

podman-image-trust man page

podman-push man page

podman-build man page

How to generate GPG key pairs

8.2. VERIFYING GPG IMAGE SIGNATURES

You can verify that a container image is correctly signed with a GPG key using the following procedure.

Prerequisites

The container-tools meta-package is installed.

The web server for a signature reading is set up and you can publish files on it.

You can check the system-wide registries configuration in the
/etc/containers/registries.d/default.yaml file. The lookaside option references a web
server for signature reading. The lookaside option has to be set for verifying signatures.

cat /etc/containers/registries.d/default.yaml
docker:
 <registry>:

CHAPTER 8. SIGNING CONTAINER IMAGES

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_verifying-gpg-image-signatures_assembly_signing-container-images
https://www.redhat.com/sysadmin/creating-gpg-keypairs

 lookaside: https://registry-lookaside.example.com
 lookaside-staging: file:///var/lib/containers/sigstore
...

Procedure

1. Update a trust scope for the <registry>:

$ podman image trust set -f <path>/key.gpg <registry>/<namespace>

2. Optional: Verify the trust policy configuration by displaying the /etc/containers/policy.json file:

$ cat /etc/containers/policy.json
{
 ...
 "transports": {
 "docker": {
 "<registry>/<namespace>": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "<path>/key.gpg"
 }
]
 }
 }
}

NOTE

Typically, the /etc/containers.policy.json file is configured at a level of
organization where the same keys are used. For example,
<registry>/<namespace> for a public registry, or just a <registry> for a single-
company dedicated registry.

3. Pull the image:

podman pull <registry>/<namespace>/<image>
...
Storing signatures
e7d92cdc71feacf90708cb59182d0df1b911f8ae022d29e8e95d75ca6a99776a

The podman pull command enforces signature presence as configured, no extra options are
required.

NOTE

You can edit the system-wide registry configuration in the
/etc/containers/registries.d/default.yaml file. You can also edit the registry or
repository configuration section in any YAML file in the /etc/containers/registries.d
directory. All YAML files are read and the filename can be arbitrary. A single scope
(default-docker, registry, or namespace) can only exist in one file within the
/etc/containers/registries.d directory.

Red Hat Enterprise Linux 9 Building, running, and managing containers

68

IMPORTANT

The system-wide registries configuration in the
/etc/containers/registries.d/default.yaml file allows accessing the published signatures.
The sigstore and sigstore-staging options are now deprecated. These options refer to
signing storage, and they are not connected to the sigstore signature format. Use the
new equivalent lookaside and lookaside-staging options instead.

Additional resources

podman-image-trust man page

podman-pull man page

8.3. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES
USING A PRIVATE KEY

Starting with Podman version 4.2, you can use the sigstore format of container signatures.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Generate a sigstore public/private key pair:

$ skopeo generate-sigstore-key --output-prefix myKey

The public and private keys myKey.pub and myKey.private are generated.

NOTE

The skopeo generate-sigstore-key command is available from RHEL 9.2.
Otherwise, you must use the upstream Cosign project to generate
public/private key pair:

Install the cosign tool:

$ git clone -b v2.0.0 https://github.com/sigstore/cosign
$ cd cosign
$ make ./cosign

Generate a public/private key pair:

$./cosign generate-key-pair
...
Private key written to cosign.key
Public key written to cosign.pub

2. Add the following content to the /etc/containers/registries.d/default.yaml file:

CHAPTER 8. SIGNING CONTAINER IMAGES

69

docker:
 <registry>:
 use-sigstore-attachments: true

By setting the use-sigstore-attachments option, Podman and Skopeo can read and write the
container sigstore signatures together with the image and save them in the same repository as
the signed image.

NOTE

You can edit the system-wide registry configuration in the
/etc/containers/registries.d/default.yaml file. You can also edit the registry or
repository configuration section in any YAML file in the
/etc/containers/registries.d directory. All YAML files are read and the filename
can be arbitrary. A single scope (default-docker, registry, or namespace) can only
exist in one file within the /etc/containers/registries.d directory.

3. Build the container image using Containerfile in the current directory:

$ podman build -t <registry>/<namespace>/<image>

4. Sign the image and push it to the registry:

$ podman push --sign-by-sigstore-private-key ./myKey.private
<registry>/<namespace>/image>

The podman push command pushes the <registry>/<namespace>/<image> local image to
the remote registry as <registry>/<namespace>/<image>. The --sign-by-sigstore-private-key
option adds a sigstore signature using the myKey.private private key to the
<registry>/<namespace>/<image> image. The image and the sigstore signature are uploaded
to the remote registry.

NOTE

If you need to sign existing images while moving them across container registries, you can
use the skopeo copy command.

Verification

For more details, see Verifying sigstore image signatures using a public key .

Additional resources

podman-push man page

podman-build man page

Sigstore: An open answer to software supply chain trust and security

8.4. VERIFYING SIGSTORE IMAGE SIGNATURES USING A PUBLIC KEY

You can verify that a container image is correctly signed using the following procedure.

Prerequisites

Red Hat Enterprise Linux 9 Building, running, and managing containers

70

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_verifying-sigstore-image-signatures-using-a-public-key_assembly_signing-container-images
https://www.redhat.com/en/blog/sigstore-open-answer-software-supply-chain-trust-and-security

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Add the following content to the /etc/containers/registries.d/default.yaml file:

docker:
 <registry>:
 use-sigstore-attachments: true

By setting the use-sigstore-attachments option, Podman and Skopeo can read and write the
container sigstore signatures together with the image and save them in the same repository as
the signed image.

NOTE

You can edit the system-wide registry configuration in the
/etc/containers/registries.d/default.yaml file. You can also edit the registry or
repository configuration section in any YAML file in the
/etc/containers/registries.d directory. All YAML files are read and the filename
can be arbitrary. A single scope (default-docker, registry, or namespace) can only
exist in one file within the /etc/containers/registries.d directory.

2. Edit the /etc/containers/policy.json file to enforce sigstore signature presence:

...
"transports": {
 "docker": {
 "<registry>/<namespace>": [
 {
 "type": "sigstoreSigned",
 "keyPath": "/some/path/to/cosign.pub"
 }
]
 }
 }
...

By modifying the /etc/containers/policy.json configuration file, you change the trust policy
configuration. Podman, Buildah, and Skopeo enforce the existence of the container image
signatures.

3. Pull the image:

$ podman pull <registry>/<namespace>/<image>

The podman pull command enforces signature presence as configured, no extra options are required.

Additional resources

Sigstore: An open answer to software supply chain trust and security

CHAPTER 8. SIGNING CONTAINER IMAGES

71

https://www.redhat.com/en/blog/sigstore-open-answer-software-supply-chain-trust-and-security

8.5. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES
USING FULCIO AND REKOR

With Fulcio and Rekor servers, you can now create signatures by using short-term certificates based on
an OpenID Connect (OIDC) server authentication, instead of manually managing a private key.

Prerequisites

The container-tools meta-package is installed.

You have Fulcio (https://<your-fulcio-server>) and Rekor (https://<your-rekor-server>) servers
running and configured.

You have Podman v4.4 or higher installed.

Procedure

1. Add the following content to the /etc/containers/registries.conf.d/default.yaml file:

docker:
 <registry>:
 use-sigstore-attachments: true

By setting the use-sigstore-attachments option, Podman and Skopeo can read and write
the container sigstore signatures together with the image and save them in the same
repository as the signed image.

NOTE

You can edit the registry or repository configuration section in any YAML file
in the /etc/containers/registries.d directory. A single scope (default-docker,
registry, or namespace) can only exist in one file within the
/etc/containers/registries.d directory. You can also edit the system-wide
registry configuration in the /etc/containers/registries.d/default.yaml file.
Please note that all YAML files are read and the filename is arbitrary.

2. Create the file.yml file:

fulcio:
 fulcioURL: "https://<your-fulcio-server>"
 oidcMode: "interactive"
 oidcIssuerURL: "https://<your-OIDC-provider>"
 oidcClientID: "sigstore"
rekorURL: "https://<your-rekor-server>"

The file.yml is the sigstore signing parameter YAML file used to store options required to
create sigstore signatures.

3. Sign the image and push it to the registry:

$ podman push --sign-by-sigstore=file.yml <registry>/<namespace>/<image>

You can alternatively use the skopeo copy command with similar --sign-by-sigstore
options to sign existing images while moving them across container registries.

Red Hat Enterprise Linux 9 Building, running, and managing containers

72

WARNING

Note that your submission for public servers includes data about the public key and
certificate, metadata about the signature.

Verification

Verifying container images with sigstore signatures using Fulcio and Rekor

Additional resources

containers-sigstore-signing-params.yaml man page

podman-push man page

container-registries.d man page

8.6. VERIFYING CONTAINER IMAGES WITH SIGSTORE SIGNATURES
USING FULCIO AND REKOR

You can verify image signatures by adding the Fulcio and Rekor-related information to the policy.json
file. Verifying container images signatures ensures that the images come from a trusted source and has
not been tampered or modified.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Add the following content to the /etc/containers/registries.conf.d/default.yaml file:

docker:
 <registry>:
 use-sigstore-attachments: true

By setting the use-sigstore-attachments option, Podman and Skopeo can read and write
the container sigstore signatures together with the image and save them in the same
repository as the signed image.

NOTE

You can edit the registry or repository configuration section in any YAML file
in the /etc/containers/registries.d directory. A single scope (default-docker,
registry, or namespace) can only exist in one file within the
/etc/containers/registries.d directory. You can also edit the system-wide
registry configuration in the /etc/containers/registries.d/default.yaml file.
Please note that all YAML files are read and the filename is arbitrary.

2. Add the fulcio section and the rekorPublicKeyPath or rekorPublicKeyData fields in the



CHAPTER 8. SIGNING CONTAINER IMAGES

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#verifying-container-images-with-sigstore-signatures-using-fulcio-and-rekor_assembly_signing-container-images

2. Add the fulcio section and the rekorPublicKeyPath or rekorPublicKeyData fields in the
/etc/containers/policy.json file:

{
 ...
 "transports": {
 "docker": {
 "<registry>/<namespace>": [
 {
 "type": "sigstoreSigned",
 "fulcio": {
 "caPath": "/path/to/local/CA/file",
 "oidcIssuer": "https://expected.OIDC.issuer/",
 "subjectEmail", "expected-signing-user@example.com",
 },
 "rekorPublicKeyPath": "/path/to/local/public/key/file",
 }
]
 ...
 }
 }
 ...
}

The fulcio section provides that the signature is based on a Fulcio-issued certificate.

You have to specify one of caPath and caData fields, containing the CA certificate of the
Fulcio instance.

Both oidcIssuer and subjectEmail are mandatory, exactly specifying the expected identity
provider, and the identity of the user obtaining the Fulcio certificate.

You have to specify one of rekorPublicKeyPath and rekorPublicKeyData fields.

3. Pull the image:

$ podman pull <registry>/<namespace>/<image>

The podman pull command enforces signature presence as configured, no extra options are required.

Additional resources

policy.json man page

container-registries.d man page

8.7. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES
WITH A PRIVATE KEY AND REKOR

Starting with Podman version 4.4, you can use the sigstore format of container signatures together with
Rekor servers. You can also upload public signatures to the public rekor.sigstore.dev server, which
increases the interoperability with Cosign. You can then use the cosign verify command to verify your
signatures without having to explicitly disable Rekor.

Red Hat Enterprise Linux 9 Building, running, and managing containers

74

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Generate a sigstore public/private key pair:

$ skopeo generate-sigstore-key --output-prefix myKey

The public and private keys myKey.pub and myKey.private are generated.

2. Add the following content to the /etc/containers/registries.conf.d/default.yaml file:

docker:
 <registry>:
 use-sigstore-attachments: true

By setting the use-sigstore-attachments option, Podman and Skopeo can read and write
the container sigstore signatures together with the image and save them in the same
repository as the signed image.

NOTE

You can edit the registry or repository configuration section in any YAML file
in the /etc/containers/registries.d directory. A single scope (default-docker,
registry, or namespace) can only exist in one file within the
/etc/containers/registries.d directory. You can also edit the system-wide
registry configuration in the /etc/containers/registries.d/default.yaml file.
Please note that all YAML files are read and the filename is arbitrary.

3. Build the container image using Containerfile in the current directory:

$ podman build -t <registry>/<namespace>/<image>

4. Create the file.yml file:

privateKeyFile: "/home/user/sigstore/myKey.private"
privateKeyPassphraseFile: "/mnt/user/sigstore-myKey-passphrase"
rekorURL: "https://<your-rekor-server>"

The file.yml is the sigstore signing parameter YAML file used to store options required to
create sigstore signatures.

5. Sign the image and push it to the registry:

$ podman push --sign-by-sigstore=file.yml <registry>/<namespace>/<image>

You can alternatively use the skopeo copy command with similar --sign-by-sigstore
options to sign existing images while moving them across container registries.

CHAPTER 8. SIGNING CONTAINER IMAGES

75

WARNING

Note that your submission for public servers includes data about the public key and
metadata about the signature.

Verification

Use one of the following methods to verify that a container image is correctly signed:

Use the cosign verify command:

$ cosign verify <registry>/<namespace>/<image> --key myKey.pub

Use the podman pull command:

Add the rekorPublicKeyPath or rekorPublicKeyData fields in the
/etc/containers/policy.json file:

{
 ...
 "transports": {
 "docker": {
 "<registry>/<namespace>": [
 {
 "type": "sigstoreSigned",
 "rekorPublicKeyPath": "/path/to/local/public/key/file",
 }
]
 ...
 }
 }
 ...
}

Pull the image:

$ podman pull <registry>/<namespace>/<image>

The podman pull command enforces signature presence as configured, no extra
options are required.

Additional resources

podman-push man page

podman-build man page

container-registries.d man page

Sigstore: An open answer to software supply chain trust and security



Red Hat Enterprise Linux 9 Building, running, and managing containers

76

https://www.redhat.com/en/blog/sigstore-open-answer-software-supply-chain-trust-and-security

CHAPTER 9. MANAGING A CONTAINER NETWORK
The chapter provides information about how to communicate among containers.

9.1. LISTING CONTAINER NETWORKS

In Podman, there are two network behaviors - rootless and rootful:

Rootless networking - the network is setup automatically, the container does not have an IP
address.

Rootful networking - the container has an IP address.

Prerequisites

The container-tools meta-package is installed.

Procedure

List all networks as a root user:

podman network ls
NETWORK ID NAME VERSION PLUGINS
2f259bab93aa podman 0.4.0 bridge,portmap,firewall,tuning

By default, Podman provides a bridged network.

List of networks for a rootless user is the same as for a rootful user.

Additional resources

podman-network-ls man page

9.2. INSPECTING A NETWORK

Display the IP range, enabled plugins, type of network, and so on, for a specified network listed by the
podman network ls command.

Prerequisites

The container-tools meta-package is installed.

Procedure

Inspect the default podman network:

$ podman network inspect podman
[
 {
 "cniVersion": "0.4.0",
 "name": "podman",
 "plugins": [
 {

CHAPTER 9. MANAGING A CONTAINER NETWORK

77

 "bridge": "cni-podman0",
 "hairpinMode": true,
 "ipMasq": true,
 "ipam": {
 "ranges": [
 [
 {
 "gateway": "10.88.0.1",
 "subnet": "10.88.0.0/16"
 }
]
],
 "routes": [
 {
 "dst": "0.0.0.0/0"
 }
],
 "type": "host-local"
 },
 "isGateway": true,
 "type": "bridge"
 },
 {
 "capabilities": {
 "portMappings": true
 },
 "type": "portmap"
 },
 {
 "type": "firewall"
 },
 {
 "type": "tuning"
 }
]
 }
]

You can see the IP range, enabled plugins, type of network, and other network settings.

Additional resources

podman-network-inspect man page

9.3. CREATING A NETWORK

Use the podman network create command to create a new network.

NOTE

By default, Podman creates an external network. You can create an internal network using
the podman network create --internal command. Containers in an internal network can
communicate with other containers on the host, but cannot connect to the network
outside of the host nor be reached from it.

Red Hat Enterprise Linux 9 Building, running, and managing containers

78

Prerequisites

The container-tools meta-package is installed.

Procedure

Create the external network named mynet:

podman network create mynet
/etc/cni/net.d/mynet.conflist

Verification

List all networks:

podman network ls
NETWORK ID NAME VERSION PLUGINS
2f259bab93aa podman 0.4.0 bridge,portmap,firewall,tuning
11c844f95e28 mynet 0.4.0 bridge,portmap,firewall,tuning,dnsname

You can see the created mynet network and default podman network.

NOTE

Beginning with Podman 4.0, the DNS plugin is enabled by default if you create a new
external network using the podman network create command.

Additional resources

podman-network-create man page

9.4. CONNECTING A CONTAINER TO A NETWORK

Use the podman network connect command to connect the container to the network.

Prerequisites

The container-tools meta-package is installed.

A network has been created using the podman network create command.

A container has been created.

Procedure

Connect a container named mycontainer to a network named mynet:

podman network connect mynet mycontainer

Verification

Verify that the mycontainer is connected to the mynet network:

CHAPTER 9. MANAGING A CONTAINER NETWORK

79

podman inspect --format='{{.NetworkSettings.Networks}}' mycontainer
map[podman:0xc00042ab40 mynet:0xc00042ac60]

You can see that mycontainer is connected to mynet and podman networks.

Additional resources

podman-network-connect man page

9.5. DISCONNECTING A CONTAINER FROM A NETWORK

Use the podman network disconnect command to disconnect the container from the network.

Prerequisites

The container-tools meta-package is installed.

A network has been created using the podman network create command.

A container is connected to a network.

Procedure

Disconnect the container named mycontainer from the network named mynet:

podman network disconnect mynet mycontainer

Verification

Verify that the mycontainer is disconnected from the mynet network:

podman inspect --format='{{.NetworkSettings.Networks}}' mycontainer
map[podman:0xc000537440]

You can see that mycontainer is disconnected from the mynet network, mycontainer is only
connected to the default podman network.

Additional resources

podman-network-disconnect man page

9.6. REMOVING A NETWORK

Use the podman network rm command to remove a specified network.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. List all networks:

Red Hat Enterprise Linux 9 Building, running, and managing containers

80

podman network ls
NETWORK ID NAME VERSION PLUGINS
2f259bab93aa podman 0.4.0 bridge,portmap,firewall,tuning
11c844f95e28 mynet 0.4.0 bridge,portmap,firewall,tuning,dnsname

2. Remove the mynet network:

podman network rm mynet
mynet

NOTE

If the removed network has associated containers with it, you have to use the podman
network rm -f command to delete containers and pods.

Verification

Check if mynet network was removed:

podman network ls
NETWORK ID NAME VERSION PLUGINS
2f259bab93aa podman 0.4.0 bridge,portmap,firewall,tuning

Additional resources

podman-network-rm man page

9.7. REMOVING ALL UNUSED NETWORKS

Use the podman network prune to remove all unused networks. An unused network is a network which
has no containers connected to it. The podman network prune command does not remove the default
podman network.

Prerequisites

The container-tools meta-package is installed.

Procedure

Remove all unused networks:

podman network prune
WARNING! This will remove all networks not used by at least one container.
Are you sure you want to continue? [y/N] y

Verification

Verify that all networks were removed:

podman network ls
NETWORK ID NAME VERSION PLUGINS
2f259bab93aa podman 0.4.0 bridge,portmap,firewall,tuning

CHAPTER 9. MANAGING A CONTAINER NETWORK

81

Additional resources

podman-network-prune man page

Red Hat Enterprise Linux 9 Building, running, and managing containers

82

CHAPTER 10. WORKING WITH PODS
Containers are the smallest unit that you can manage with Podman, Skopeo and Buildah container tools.
A Podman pod is a group of one or more containers. The Pod concept was introduced by Kubernetes.
Podman pods are similar to the Kubernetes definition. Pods are the smallest compute units that you can
create, deploy, and manage in OpenShift or Kubernetes environments. Every Podman pod includes an
infra container. This container holds the namespaces associated with the pod and allows Podman to
connect other containers to the pod. It allows you to start and stop containers within the pod and the
pod will stay running. The default infra container on the registry.access.redhat.com/ubi9/pause
image.

10.1. CREATING PODS

You can create a pod with one container.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create an empty pod:

$ podman pod create --name mypod
223df6b390b4ea87a090a4b5207f7b9b003187a6960bd37631ae9bc12c433aff
The pod is in the initial state Created.

The pod is in the initial state Created.

2. Optional: List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
223df6b390b4 mypod Created Less than a second ago 1 3afdcd93de3e

Notice that the pod has one container in it.

3. Optional: List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES POD
3afdcd93de3e registry.access.redhat.com/ubi9/pause Less than a second ago
Created 223df6b390b4-infra 223df6b390b4

You can see that the pod ID from podman ps command matches the pod ID in the podman
pod ps command. The default infra container is based on the
registry.access.redhat.com/ubi9/pause image.

4. Run a container named myubi in the existing pod named mypod:

$ podman run -dt --name myubi --pod mypod registry.access.redhat.com/ubi9/ubi
/bin/bash
5df5c48fea87860cf75822ceab8370548b04c78be9fc156570949013863ccf71

CHAPTER 10. WORKING WITH PODS

83

5. Optional: List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
223df6b390b4 mypod Running Less than a second ago 2 3afdcd93de3e

You can see that the pod has two containers in it.

6. Optional: List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES POD
5df5c48fea87 registry.access.redhat.com/ubi9/ubi:latest /bin/bash Less than a second ago
Up Less than a second ago myubi 223df6b390b4
3afdcd93de3e registry.access.redhat.com/ubi9/pause Less than a
second ago Up Less than a second ago 223df6b390b4-infra 223df6b390b4

Additional resources

podman-pod-create man page

Podman: Managing pods and containers in a local container runtime

10.2. DISPLAYING POD INFORMATION

Learn about how to display pod information.

Prerequisites

The container-tools meta-package is installed.

The pod has been created. For details, see section Creating pods.

Procedure

Display active processes running in a pod:

To display the running processes of containers in a pod, enter:

$ podman pod top mypod
USER PID PPID %CPU ELAPSED TTY TIME COMMAND
0 1 0 0.000 24.077433518s ? 0s /pause
root 1 0 0.000 24.078146025s pts/0 0s /bin/bash

To display a live stream of resource usage stats for containers in one or more pods, enter:

$ podman pod stats -a --no-stream
ID NAME CPU % MEM USAGE / LIMIT MEM % NET IO BLOCK IO
PIDS
a9f807ffaacd frosty_hodgkin -- 3.092MB / 16.7GB 0.02% -- / -- -- / -- 2
3b33001239ee sleepy_stallman -- -- / -- -- -- / -- -- / -- --

To display information describing the pod, enter:

Red Hat Enterprise Linux 9 Building, running, and managing containers

84

https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-pods_assembly_working-with-pods

$ podman pod inspect mypod
{
 "Id": "db99446fa9c6d10b973d1ce55a42a6850357e0cd447d9bac5627bb2516b5b19a",
 "Name": "mypod",
 "Created": "2020-09-08T10:35:07.536541534+02:00",
 "CreateCommand": [
 "podman",
 "pod",
 "create",
 "--name",
 "mypod"
],
 "State": "Running",
 "Hostname": "mypod",
 "CreateCgroup": false,
 "CgroupParent": "/libpod_parent",
 "CgroupPath":
"/libpod_parent/db99446fa9c6d10b973d1ce55a42a6850357e0cd447d9bac5627bb2516b5
b19a",
 "CreateInfra": false,
 "InfraContainerID":
"891c54f70783dcad596d888040700d93f3ead01921894bc19c10b0a03c738ff7",
 "SharedNamespaces": [
 "uts",
 "ipc",
 "net"
],
 "NumContainers": 2,
 "Containers": [
 {
 "Id":
"891c54f70783dcad596d888040700d93f3ead01921894bc19c10b0a03c738ff7",
 "Name": "db99446fa9c6-infra",
 "State": "running"
 },
 {
 "Id":
"effc5bbcfe505b522e3bf8fbb5705a39f94a455a66fd81e542bcc27d39727d2d",
 "Name": "myubi",
 "State": "running"
 }
]
}

You can see information about containers in the pod.

Additional resources

podman pod top man page

podman-pod-stats man page

podman-pod-inspect man page

10.3. STOPPING PODS

CHAPTER 10. WORKING WITH PODS

85

You can stop one or more pods using the podman pod stop command.

Prerequisites

The container-tools meta-package is installed.

The pod has been created. For details, see section Creating pods.

Procedure

1. Stop the pod mypod:

$ podman pod stop mypod

2. Optional: List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD ID PODNAME
5df5c48fea87 registry.redhat.io/ubi9/ubi:latest /bin/bash About a minute ago Exited (0) 7
seconds ago myubi 223df6b390b4 mypod

3afdcd93de3e registry.access.redhat.com/9/pause About a minute ago
Exited (0) 7 seconds ago 8a4e6527ac9d-infra 223df6b390b4 mypod

You can see that the pod mypod and container myubi are in "Exited" status.

Additional resources

podman-pod-stop man page

10.4. REMOVING PODS

You can remove one or more stopped pods and containers using the podman pod rm command.

Prerequisites

The container-tools meta-package is installed.

The pod has been created. For details, see section Creating pods.

The pod has been stopped. For details, see section Stopping pods.

Procedure

1. Remove the pod mypod, type:

$ podman pod rm mypod
223df6b390b4ea87a090a4b5207f7b9b003187a6960bd37631ae9bc12c433aff

Note that removing the pod automatically removes all containers inside it.

2. Optional: Check that all containers and pods were removed:

Red Hat Enterprise Linux 9 Building, running, and managing containers

86

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-pods_assembly_working-with-pods
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-pods_assembly_working-with-pods
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_stopping-pods_assembly_working-with-pods

$ podman ps
$ podman pod ps

Additional resources

podman-pod-rm man page

CHAPTER 10. WORKING WITH PODS

87

CHAPTER 11. COMMUNICATING AMONG CONTAINERS
This chapter provides information about how to communicate among containers.

11.1. THE NETWORK MODES AND LAYERS

There are several different network modes in Podman:

bridge - creates another network on the default bridge network

container:<id> - uses the same network as the container with <id> id

host - uses the host network stack

network-id - uses a user-defined network created by the podman network create command

private - creates a new network for the container

slirp4nets - creates a user network stack with slirp4netns, the default option for rootless
containers

NOTE

The host mode gives the container full access to local system services such as D-bus, a
system for interprocess communication (IPC), and is therefore considered insecure.

11.2. INSPECTING A NETWORK SETTINGS OF A CONTAINER

Use the podman inspect command with the --format option to display individual items from the
podman inspect output.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Display the IP address of a container:

podman inspect --format='{{.NetworkSettings.IPAddress}}' <containerName>

2. Display all networks to which container is connected:

podman inspect --format='{{.NetworkSettings.Networks}}' <containerName>

3. Display port mappings:

podman inspect --format='{{.NetworkSettings.Ports}}' <containerName>

Additional resources

podman-inspect man page

Red Hat Enterprise Linux 9 Building, running, and managing containers

88

11.3. COMMUNICATING BETWEEN A CONTAINER AND AN
APPLICATION

You can communicate between a container and an application. An application ports are in either listening
or open state. These ports are automatically exposed to the container network, therefore, you can reach
those containers using these networks. By default, the web server listens on port 80. Using this
procedure, the myubi container communicates with the web-container application.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Start the container named web-container:

podman run -dt --name=web-container docker.io/library/httpd

2. List all containers:

podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
b8c057333513 docker.io/library/httpd:latest httpd-foreground 4 seconds ago Up 5 seconds
ago web-container

3. Inspect the container and display the IP address:

podman inspect --format='{{.NetworkSettings.IPAddress}}' web-container

10.88.0.2

4. Run the myubi container and verify that web server is running:

podman run -it --name=myubi ubi9/ubi curl 10.88.0.2:80

<html><body><h1>It works!</h1></body></html>

11.4. COMMUNICATING BETWEEN A CONTAINER AND A HOST

By default, the podman network is a bridge network. It means that a network device is bridging a
container network to your host network.

Prerequisites

The container-tools meta-package is installed.

The web-container is running. For more information, see section Communicating between a
container and an application.

Procedure

CHAPTER 11. COMMUNICATING AMONG CONTAINERS

89

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers//index#proc_communicating-between-a-container-and-an-application_assembly_communicating-among-containers

1. Verify that the bridge is configured:

podman network inspect podman | grep bridge

 "bridge": "cni-podman0",
 "type": "bridge"

2. Display the host network configuration:

ip addr show cni-podman0

6: cni-podman0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default qlen 1000
 link/ether 62:af:a1:0a:ca:2e brd ff:ff:ff:ff:ff:ff
 inet 10.88.0.1/16 brd 10.88.255.255 scope global cni-podman0
 valid_lft forever preferred_lft forever
 inet6 fe80::60af:a1ff:fe0a:ca2e/64 scope link
 valid_lft forever preferred_lft forever

You can see that the web-container has an IP of the cni-podman0 network and the network is
bridged to the host.

3. Inspect the web-container and display its IP address:

podman inspect --format='{{.NetworkSettings.IPAddress}}' web-container

10.88.0.2

4. Access the web-container directly from the host:

$ curl 10.88.0.2:80

<html><body><h1>It works!</h1></body></html>

Additional resources

podman-network man page

11.5. COMMUNICATING BETWEEN CONTAINERS USING PORT
MAPPING

The most convenient way to communicate between two containers is to use published ports. Ports can
be published in two ways: automatically or manually.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Run the unpublished container:

podman run -dt --name=web1 ubi9/httpd-24

Red Hat Enterprise Linux 9 Building, running, and managing containers

90

2. Run the automatically published container:

podman run -dt --name=web2 -P ubi9/httpd-24

3. Run the manually published container and publish container port 80:

podman run -dt --name=web3 -p 9090:80 ubi9/httpd-24

4. List all containers:

podman ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
f12fa79b8b39 registry.access.redhat.com/ubi9/httpd-24:latest /usr/bin/run-http... 23
seconds ago Up 24 seconds ago web1
9024d9e815e2 registry.access.redhat.com/ubi9/httpd-24:latest /usr/bin/run-http... 13
seconds ago Up 13 seconds ago 0.0.0.0:43595->8080/tcp, 0.0.0.0:42423->8443/tcp web2
03bc2a019f1b registry.access.redhat.com/ubi9/httpd-24:latest /usr/bin/run-http... 2 seconds
ago Up 2 seconds ago 0.0.0.0:9090->80/tcp web3

You can see that:

Container web1 has no published ports and can be reached only by container network or a
bridge.

Container web2 has automatically mapped ports 43595 and 42423 to publish the
application ports 8080 and 8443, respectively.

NOTE

The automatic port mapping is possible because the
registry.access.redhat.com/9/httpd-24 image has the EXPOSE 8080 and
EXPOSE 8443 commands in the Containerfile.

Container web3 has a manually published port. The host port 9090 is mapped to the
container port 80.

5. Display the IP addresses of web1 and web3 containers:

podman inspect --format='{{.NetworkSettings.IPAddress}}' web1
podman inspect --format='{{.NetworkSettings.IPAddress}}' web3

6. Reach web1 container using <IP>:<port> notation:

curl 10.88.0.14:8080
...
<title>Test Page for the HTTP Server on Red Hat Enterprise Linux</title>
...

7. Reach web2 container using localhost:<port> notation:

curl localhost:43595

CHAPTER 11. COMMUNICATING AMONG CONTAINERS

91

https://catalog.redhat.com/software/containers/ubi9/httpd-24/6065b844aee24f523c207943?container-tabs=dockerfile

...
<title>Test Page for the HTTP Server on Red Hat Enterprise Linux</title>
...

8. Reach web3 container using <IP>:<port> notation:

curl 10.88.0.14:9090
...
<title>Test Page for the HTTP Server on Red Hat Enterprise Linux</title>
...

11.6. COMMUNICATING BETWEEN CONTAINERS USING DNS

When a DNS plugin is enabled, use a container name to address containers.

Prerequisites

The container-tools meta-package is installed.

A network with the enabled DNS plugin has been created using the podman network create
command.

Procedure

1. Run a receiver container attached to the mynet network:

podman run -d --net mynet --name receiver ubi9 sleep 3000

2. Run a sender container and reach the receiver container by its name:

podman run -it --rm --net mynet --name sender alpine ping receiver

PING rcv01 (10.89.0.2): 56 data bytes
64 bytes from 10.89.0.2: seq=0 ttl=42 time=0.041 ms
64 bytes from 10.89.0.2: seq=1 ttl=42 time=0.125 ms
64 bytes from 10.89.0.2: seq=2 ttl=42 time=0.109 ms

Exit using the CTRL+C.

You can see that the sender container can ping the receiver container using its name.

11.7. COMMUNICATING BETWEEN TWO CONTAINERS IN A POD

All containers in the same pod share the IP addresses, MAC addresses and port mappings. You can
communicate between containers in the same pod using localhost:port notation.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a pod named web-pod:

Red Hat Enterprise Linux 9 Building, running, and managing containers

92

$ podman pod create --name=web-pod

2. Run the web container named web-container in the pod:

$ podman container run -d --pod web-pod --name=web-container
docker.io/library/httpd

3. List all pods and containers associated with them:

$ podman ps --pod

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD ID PODNAME
58653cf0cf09 k8s.gcr.io/pause:3.5 4 minutes ago Up 3 minutes ago
4e61a300c194-infra 4e61a300c194 web-pod
b3f4255afdb3 docker.io/library/httpd:latest httpd-foreground 3 minutes ago Up 3 minutes
ago web-container 4e61a300c194 web-pod

4. Run the container in the web-pod based on the docker.io/library/fedora image:

$ podman container run -it --rm --pod web-pod docker.io/library/fedora curl localhost

<html><body><h1>It works!</h1></body></html>

You can see that the container can reach the web-container.

11.8. COMMUNICATING IN A POD

You must publish the ports for the container in a pod when a pod is created.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a pod named web-pod:

podman pod create --name=web-pod-publish -p 80:80

2. List all pods:

podman pod ls

POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS
26fe5de43ab3 publish-pod Created 5 seconds ago 7de09076d2b3 1

3. Run the web container named web-container inside the web-pod:

podman container run -d --pod web-pod-publish --name=web-container
docker.io/library/httpd

CHAPTER 11. COMMUNICATING AMONG CONTAINERS

93

4. List containers

podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
7de09076d2b3 k8s.gcr.io/pause:3.5 About a minute ago Up 23 seconds ago
0.0.0.0:80->80/tcp 26fe5de43ab3-infra
088befb90e59 docker.io/library/httpd httpd-foreground 23 seconds ago Up 23 seconds
ago 0.0.0.0:80->80/tcp web-container

5. Verify that the web-container can be reached:

$ curl localhost:80

<html><body><h1>It works!</h1></body></html>

11.9. ATTACHING A POD TO THE CONTAINER NETWORK

Attach containers in pod to the network during the pod creation.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a network named pod-net:

podman network create pod-net

/etc/cni/net.d/pod-net.conflist

2. Create a pod web-pod:

podman pod create --net pod-net --name web-pod

3. Run a container named web-container inside the web-pod:

podman run -d --pod webt-pod --name=web-container docker.io/library/httpd

4. Optional: Display the pods the containers are associated with:

podman ps -p

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD ID PODNAME
b7d6871d018c registry.access.redhat.com/ubi9/pause:latest 9 minutes
ago Up 6 minutes ago a8e7360326ba-infra a8e7360326ba web-pod
645835585e24 docker.io/library/httpd:latest httpd-foreground 6 minutes ago Up 6 minutes
ago web-container a8e7360326ba web-pod

Verification

Red Hat Enterprise Linux 9 Building, running, and managing containers

94

Verification

Show all networks connected to the container:

podman ps --format="{{.Networks}}"

pod-net

CHAPTER 11. COMMUNICATING AMONG CONTAINERS

95

CHAPTER 12. SETTING CONTAINER NETWORK MODES
The chapter provides information about how to set different network modes.

12.1. RUNNING CONTAINERS WITH A STATIC IP

The podman run command with the --ip option sets the container network interface to a particular IP
address (for example, 10.88.0.44). To verify that you set the IP address correctly, run the podman
inspect command.

Prerequisites

The container-tools meta-package is installed.

Procedure

Set the container network interface to the IP address 10.88.0.44:

podman run -d --name=myubi --ip=10.88.0.44 registry.access.redhat.com/ubi9/ubi
efde5f0a8c723f70dd5cb5dc3d5039df3b962fae65575b08662e0d5b5f9fbe85

Verification

Check that the IP address is set properly:

podman inspect --format='{{.NetworkSettings.IPAddress}}' myubi
10.88.0.44

12.2. RUNNING THE DHCP PLUGIN WITHOUT SYSTEMD

Use the podman run --network command to connect to a user-defined network. While most of the
container images do not have a DHCP client, the dhcp plugin acts as a proxy DHCP client for the
containers to interact with a DHCP server.

NOTE

This procedure only applies to rootfull containers. Rootless containers do not use the
dhcp plugin.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Manually run the dhcp plugin:

/usr/libexec/cni/dhcp daemon &
[1] 4966

2. Check that the dhcp plugin is running:

Red Hat Enterprise Linux 9 Building, running, and managing containers

96

ps -a | grep dhcp
4966 pts/1 00:00:00 dhcp

3. Run the alpine container:

podman run -it --rm --network=example alpine ip addr show enp1s0
Resolved "alpine" as an alias (/etc/containers/registries.conf.d/000-shortnames.conf)
Trying to pull docker.io/library/alpine:latest...
...
Storing signatures

2: eth0@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP
 link/ether f6:dd:1b:a7:9b:92 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.22/24 brd 192.168.1.255 scope global eth0
 ...

In this example:

The --network=example option specifies the network named example to connect.

The ip addr show enp1s0 command inside the alpine container checks the IP address of
the network interface enp1s0.

The host network is 192.168.1.0/24

The eth0 interface leases an IP address of 192.168.1.122 for the alpine container.

NOTE

This configuration may exhaust the available DHCP addresses if you have a large number
of short-lived containers and a DHCP server with long leases.

Additional resources

Leasing routable IP addresses with Podman containers

12.3. RUNNING THE DHCP PLUGIN USING SYSTEMD

You can use the systemd unit file to run the dhcp plugin.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create the socket unit file:

cat /usr/lib/systemd/system/io.podman.dhcp.socket
[Unit]
Description=DHCP Client for CNI

[Socket]

CHAPTER 12. SETTING CONTAINER NETWORK MODES

97

https://www.redhat.com/sysadmin/leasing-ips-podman

ListenStream=%t/cni/dhcp.sock
SocketMode=0600

[Install]
WantedBy=sockets.target

2. Create the service unit file:

cat /usr/lib/systemd/system/io.podman.dhcp.service
[Unit]
Description=DHCP Client CNI Service
Requires=io.podman.dhcp.socket
After=io.podman.dhcp.socket

[Service]
Type=simple
ExecStart=/usr/libexec/cni/dhcp daemon
TimeoutStopSec=30
KillMode=process

[Install]
WantedBy=multi-user.target
Also=io.podman.dhcp.socket

3. Start the service immediately:

systemctl --now enable io.podman.dhcp.socket

Verification

Check the status of the socket:

systemctl status io.podman.dhcp.socket
io.podman.dhcp.socket - DHCP Client for CNI
Loaded: loaded (/usr/lib/systemd/system/io.podman.dhcp.socket; enabled; vendor preset:
disabled)
Active: active (listening) since Mon 2022-01-03 18:08:10 CET; 39s ago
Listen: /run/cni/dhcp.sock (Stream)
CGroup: /system.slice/io.podman.dhcp.socket

Additional resources

Leasing routable IP addresses with Podman containers

12.4. THE MACVLAN PLUGIN

Most of the container images do not have a DHCP client, the dhcp plugin acts as a proxy DHCP client
for the containers to interact with a DHCP server.

The host system does not have network access to the container. To allow network connections from
outside the host to the container, the container has to have an IP on the same network as the host. The
macvlan plugin enables you to connect a container to the same network as the host.

NOTE

Red Hat Enterprise Linux 9 Building, running, and managing containers

98

https://www.redhat.com/sysadmin/leasing-ips-podman

NOTE

This procedure only applies to rootfull containers. Rootless containers are not able to use
the macvlan and dhcp plugins.

NOTE

You can create a macvlan network using the podman network create --macvlan
command.

Additional resources

Leasing routable IP addresses with Podman containers

podman-network-create man page

12.5. SWITCHING THE NETWORK STACK FROM CNI TO NETAVARK

Previously, containers were able to use DNS only when connected to the single Container Network
Interface (CNI) plugin. Netavark is a network stack for containers. You can use Netavark with Podman
and other Open Container Initiative (OCI) container management applications. The advanced network
stack for Podman is compatible with advanced Docker functionalities. Now, containers in multiple
networks access containers on any of those networks.

Netavark is capable of the following:

Create, manage, and remove network interfaces, including bridge and MACVLAN interfaces.

Configure firewall settings, such as network address translation (NAT) and port mapping rules.

Support IPv4 and IPv6.

Improve support for containers in multiple networks.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. If the /etc/containers/containers.conf file does not exist, copy the
/usr/share/containers/containers.conf file to the /etc/containers/ directory:

cp /usr/share/containers/containers.conf /etc/containers/

2. Edit the /etc/containers/containers.conf file, and add the following content to the [network]
section:

network_backend="netavark"

3. If you have any containers or pods, reset the storage back to the initial state:

podman system reset

CHAPTER 12. SETTING CONTAINER NETWORK MODES

99

https://www.redhat.com/sysadmin/leasing-ips-podman

4. Reboot the system:

reboot

Verification

Verify that the network stack is changed to Netavark:

cat /etc/containers/containers.conf
...
[network]
network_backend="netavark"
...

NOTE

If you are using Podman 4.0.0 or later, use the podman info command to check the
network stack setting.

Additional resources

Podman 4.0’s new network stack: What you need to know

podman-system-reset man page

12.6. SWITCHING THE NETWORK STACK FROM NETAVARK TO CNI

You can switch the network stack from Netavark to CNI.

WARNING

The CNI network stack is going to be deprecated. Red Hat recommends using the
Netavark network stack instead.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. If the /etc/containers/containers.conf file does not exist, copy the
/usr/share/containers/containers.conf file to the /etc/containers/ directory:

cp /usr/share/containers/containers.conf /etc/containers/

2. Edit the /etc/containers/containers.conf file, and add the following content to the [network]
section:



Red Hat Enterprise Linux 9 Building, running, and managing containers

100

https://www.redhat.com/sysadmin/podman-new-network-stack

network_backend="cni"

3. If you have any containers or pods, reset the storage back to the initial state:

podman system reset

4. Reboot the system:

reboot

Verification

Verify that the network stack is changed to CNI:

cat /etc/containers/containers.conf
...
[network]
network_backend="cni"
...

NOTE

If you are using Podman 4.0.0 or later, use the podman info command to check the
network stack setting.

Additional resources

Podman 4.0’s new network stack: What you need to know

podman-system-reset man page

CHAPTER 12. SETTING CONTAINER NETWORK MODES

101

https://www.redhat.com/sysadmin/podman-new-network-stack

CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING
PODMAN

You can generate portable descriptions of containers and pods by using the YAML ("YAML Ain’t Markup
Language") format. The YAML is a text format used to describe the configuration data.

The YAML files are:

Readable.

Easy to generate.

Portable between environments (for example between RHEL and OpenShift).

Portable between programming languages.

Convenient to use (no need to add all the parameters to the command line).

Reasons to use YAML files:

1. You can re-run a local orchestrated set of containers and pods with minimal input required
which can be useful for iterative development.

2. You can run the same containers and pods on another machine. For example, to run an
application in an OpenShift environment and to ensure that the application is working correctly.
You can use podman generate kube command to generate a Kubernetes YAML file. Then, you
can use podman play command to test the creation of pods and containers on your local
system before you transfer the generated YAML files to the Kubernetes or OpenShift
environment. Using the podman play command, you can also recreate pods and containers
originally created in OpenShift or Kubernetes environments.

NOTE

The podman kube play command supports a subset of Kubernetes YAML capabilities.
For more information, see the support matrix of supported YAML fields.

13.1. GENERATING A KUBERNETES YAML FILE USING PODMAN

You can create a pod with one container and generate the Kubernetes YAML file using the podman
generate kube command.

Prerequisites

The container-tools meta-package is installed.

The pod has been created. For details, see section Creating pods.

Procedure

1. List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES POD

Red Hat Enterprise Linux 9 Building, running, and managing containers

102

https://docs.podman.io/en/latest/markdown/podman-kube-play.1.html#podman-kube-play-support
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-pods_assembly_working-with-pods

5df5c48fea87 registry.access.redhat.com/ubi9/ubi:latest /bin/bash Less than a second ago
Up Less than a second ago myubi 223df6b390b4
3afdcd93de3e k8s.gcr.io/pause:3.1 Less than a second ago Up Less
than a second ago 223df6b390b4-infra 223df6b390b4

2. Use the pod name or ID to generate the Kubernetes YAML file:

$ podman generate kube mypod > mypod.yaml

Note that the podman generate command does not reflect any Logical Volume Manager
(LVM) logical volumes or physical volumes that might be attached to the container.

3. Display the mypod.yaml file:

$ cat mypod.yaml
Generation of Kubernetes YAML is still under development!
#
Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-1.6.4
apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: "2020-06-09T10:31:56Z"
 labels:
app: mypod
 name: mypod
spec:
 containers:
 - command:
 - /bin/bash
 env:
 - name: PATH
 value: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - name: TERM
 value: xterm
 - name: HOSTNAME
 - name: container
 value: oci
 image: registry.access.redhat.com/ubi9/ubi:latest
 name: myubi
 resources: {}
 securityContext:
 allowPrivilegeEscalation: true
 capabilities: {}
 privileged: false
 readOnlyRootFilesystem: false
 tty: true
 workingDir: /
status: {}

Additional resources

podman-generate-kube man page

CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING PODMAN

103

Podman: Managing pods and containers in a local container runtime

13.2. GENERATING A KUBERNETES YAML FILE IN OPENSHIFT
ENVIRONMENT

In the OpenShift environment, use the oc create command to generate the YAML files describing your
application.

Procedure

Generate the YAML file for your myapp application:

$ oc create myapp --image=me/myapp:v1 -o yaml --dry-run > myapp.yaml

The oc create command creates and run the myapp image. The object is printed using the --
dry-run option and redirected into the myapp.yaml output file.

NOTE

In the Kubernetes environment, you can use the kubectl create command with the same
flags.

13.3. STARTING CONTAINERS AND PODS WITH PODMAN

With the generated YAML files, you can automatically start containers and pods in any environment. The
YAML files can be generated using tools other than Podman, such as Kubernetes or Openshift. The
podman play kube command allows you to recreate pods and containers based on the YAML input file.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create the pod and the container from the mypod.yaml file:

$ podman play kube mypod.yaml
Pod:
b8c5b99ba846ccff76c3ef257e5761c2d8a5ca4d7ffa3880531aec79c0dacb22
Container:
848179395ebd33dd91d14ffbde7ae273158d9695a081468f487af4e356888ece

2. List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
b8c5b99ba846 mypod Running 19 seconds ago 2 aa4220eaf4bb

3. List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS

Red Hat Enterprise Linux 9 Building, running, and managing containers

104

https://developers.redhat.com/blog/2019/01/15/podman-managing-containers-pods/

PORTS NAMES POD
848179395ebd registry.access.redhat.com/ubi9/ubi:latest /bin/bash About a minute ago Up
About a minute ago myubi b8c5b99ba846
aa4220eaf4bb k8s.gcr.io/pause:3.1 About a minute ago Up About a
minute ago b8c5b99ba846-infra b8c5b99ba846

The pod IDs from podman ps command matches the pod ID from the podman pod ps
command.

Additional resources

podman-play-kube man page

Podman can now ease the transition to Kubernetes and CRI-O

13.4. STARTING CONTAINERS AND PODS IN OPENSHIFT
ENVIRONMENT

You can use the oc create command to create pods and containers in the OpenShift environment.

Procedure

Create a pod from the YAML file in the OpenShift environment:

$ oc create -f mypod.yaml

NOTE

In the Kubernetes environment, you can use the kubectl create command with the same
flags.

13.5. MANUALLY RUNNING CONTAINERS AND PODS USING PODMAN

The following procedure shows how to manually create a WordPress content management system
paired with a MariaDB database using Podman.

Suppose the following directory layout:

├── mariadb-conf
│ ├── Containerfile
│ ├── my.cnf

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Display the mariadb-conf/Containerfile file:

CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING PODMAN

105

https://developers.redhat.com/blog/2019/01/29/podman-kubernetes-yaml

$ cat mariadb-conf/Containerfile
FROM docker.io/library/mariadb
COPY my.cnf /etc/mysql/my.cnf

2. Display the mariadb-conf/my.cnf file:

[client-server]
Port or socket location where to connect
port = 3306
socket = /run/mysqld/mysqld.sock

Import all .cnf files from the configuration directory
[mariadbd]
skip-host-cache
skip-name-resolve
bind-address = 127.0.0.1

!includedir /etc/mysql/mariadb.conf.d/
!includedir /etc/mysql/conf.d/

3. Build the docker.io/library/mariadb image using mariadb-conf/Containerfile:

$ cd mariadb-conf
$ podman build -t mariadb-conf .
$ cd ..
STEP 1: FROM docker.io/library/mariadb
Trying to pull docker.io/library/mariadb:latest...
Getting image source signatures
Copying blob 7b1a6ab2e44d done
...
Storing signatures
STEP 2: COPY my.cnf /etc/mysql/my.cnf
STEP 3: COMMIT mariadb-conf
--> ffae584aa6e
Successfully tagged localhost/mariadb-conf:latest
ffae584aa6e733ee1cdf89c053337502e1089d1620ff05680b6818a96eec3c17

4. Optional: List all images:

$ podman images
LIST IMAGES
REPOSITORY TAG IMAGE ID CREATED
SIZE
localhost/mariadb-conf latest b66fa0fa0ef2 57 seconds ago
416 MB

5. Create the pod named wordpresspod and configure port mappings between the container and
the host system:

$ podman pod create --name wordpresspod -p 8080:80

6. Create the mydb container inside the wordpresspod pod:

$ podman run --detach --pod wordpresspod \

Red Hat Enterprise Linux 9 Building, running, and managing containers

106

 -e MYSQL_ROOT_PASSWORD=1234 \
 -e MYSQL_DATABASE=mywpdb \
 -e MYSQL_USER=mywpuser \
 -e MYSQL_PASSWORD=1234 \
 --name mydb localhost/mariadb-conf

7. Create the myweb container inside the wordpresspod pod:

$ podman run --detach --pod wordpresspod \
 -e WORDPRESS_DB_HOST=127.0.0.1 \
 -e WORDPRESS_DB_NAME=mywpdb \
 -e WORDPRESS_DB_USER=mywpuser \
 -e WORDPRESS_DB_PASSWORD=1234 \
 --name myweb docker.io/wordpress

8. Optional. List all pods and containers associated with them:

$ podman ps --pod -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES POD ID PODNAME
9ea56f771915 k8s.gcr.io/pause:3.5 Less than a second ago Up Less
than a second ago 0.0.0.0:8080->80/tcp 4b7f054a6f01-infra 4b7f054a6f01 wordpresspod
60e8dbbabac5 localhost/mariadb-conf:latest mariadbd Less than a second ago
Up Less than a second ago 0.0.0.0:8080->80/tcp mydb 4b7f054a6f01
wordpresspod
045d3d506e50 docker.io/library/wordpress:latest apache2-foregroun... Less than a second
ago Up Less than a second ago 0.0.0.0:8080->80/tcp myweb 4b7f054a6f01
wordpresspod

Verification

Verify that the pod is running: Visit the http://localhost:8080/wp-admin/install.php page or use
the curl command:

$ curl http://localhost:8080/wp-admin/install.php
<!DOCTYPE html>
<html lang="en-US" xml:lang="en-US">
<head>
...
</head>
<body class="wp-core-ui">
<p id="logo">WordPress</p>
 <h1>Welcome</h1>
...

Additional resources

Build Kubernetes pods with Podman play kube

podman-play-kube man page

13.6. GENERATING A YAML FILE USING PODMAN

You can generate a Kubernetes YAML file using the podman generate kube command.

CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING PODMAN

107

https://www.redhat.com/sysadmin/podman-play-kube-updates

Prerequisites

The container-tools meta-package is installed.

The pod named wordpresspod has been created. For details, see section Creating pods.

Procedure

1. List all pods and containers associated with them:

$ podman ps --pod -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES POD ID PODNAME
9ea56f771915 k8s.gcr.io/pause:3.5 Less than a second ago Up Less
than a second ago 0.0.0.0:8080->80/tcp 4b7f054a6f01-infra 4b7f054a6f01 wordpresspod
60e8dbbabac5 localhost/mariadb-conf:latest mariadbd Less than a second ago
Up Less than a second ago 0.0.0.0:8080->80/tcp mydb 4b7f054a6f01
wordpresspod
045d3d506e50 docker.io/library/wordpress:latest apache2-foregroun... Less than a second
ago Up Less than a second ago 0.0.0.0:8080->80/tcp myweb 4b7f054a6f01
wordpresspod

2. Use the pod name or ID to generate the Kubernetes YAML file:

$ podman generate kube wordpresspod >> wordpresspod.yaml

Verification

Display the wordpresspod.yaml file:

$ cat wordpresspod.yaml
...
apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: "2021-12-09T15:09:30Z"
 labels:
 app: wordpresspod
 name: wordpresspod
spec:
 containers:
 - args:
 value: podman
 - name: MYSQL_PASSWORD
 value: "1234"
 - name: MYSQL_MAJOR
 value: "8.0"
 - name: MYSQL_VERSION
 value: 8.0.27-1debian10
 - name: MYSQL_ROOT_PASSWORD
 value: "1234"
 - name: MYSQL_DATABASE
 value: mywpdb
 - name: MYSQL_USER
 value: mywpuser

Red Hat Enterprise Linux 9 Building, running, and managing containers

108

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-pods_assembly_working-with-pods

 image: mariadb
 name: mydb
 ports:
 - containerPort: 80
 hostPort: 8080
 protocol: TCP
 - args:
 - name: WORDPRESS_DB_NAME
 value: mywpdb
 - name: WORDPRESS_DB_PASSWORD
 value: "1234"
 - name: WORDPRESS_DB_HOST
 value: 127.0.0.1
 - name: WORDPRESS_DB_USER
 value: mywpuser
 image: docker.io/library/wordpress:latest
 name: myweb

Additional resources

Build Kubernetes pods with Podman play kube

podman-play-kube man page

13.7. AUTOMATICALLY RUNNING CONTAINERS AND PODS USING
PODMAN

You can use the podman play kube command to test the creation of pods and containers on your local
system before you transfer the generated YAML files to the Kubernetes or OpenShift environment.

The podman play kube command can also automatically build and run multiple pods with multiple
containers in the pod using the YAML file similarly to the docker compose command. The images are
automatically built if the following conditions are met:

1. a directory with the same name as the image used in YAML file exists

2. that directory contains a Containerfile

Prerequisites

The container-tools meta-package is installed.

The pod named wordpresspod has been created. For details, see section Manually running
containers and pods using Podman.

The YAML file has been generated. For details, see section Generating a YAML file using
Podman.

To repeat the whole scenario from the beginning, delete locally stored images:

$ podman rmi localhost/mariadb-conf
$ podman rmi docker.io/library/wordpress
$ podman rmi docker.io/library/mysql

CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING PODMAN

109

https://www.redhat.com/sysadmin/podman-play-kube-updates
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_manually-running-containers-and-pods-using-podman_assembly_porting-containers-to-openshift-using-podman
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_generating-a-yaml-file-using-podman_assembly_porting-containers-to-openshift-using-podman

Procedure

1. Create the wordpress pod using the wordpress.yaml file:

$ podman play kube wordpress.yaml
STEP 1/2: FROM docker.io/library/mariadb
STEP 2/2: COPY my.cnf /etc/mysql/my.cnf
COMMIT localhost/mariadb-conf:latest
--> 428832c45d0
Successfully tagged localhost/mariadb-conf:latest
428832c45d07d78bb9cb34e0296a7dc205026c2fe4d636c54912c3d6bab7f399
Trying to pull docker.io/library/wordpress:latest...
Getting image source signatures
Copying blob 99c3c1c4d556 done
...
Storing signatures
Pod:
3e391d091d190756e655219a34de55583eed3ef59470aadd214c1fc48cae92ac
Containers:
6c59ebe968467d7fdb961c74a175c88cb5257fed7fb3d375c002899ea855ae1f
29717878452ff56299531f79832723d3a620a403f4a996090ea987233df0bc3d

The podman play kube command:

Automatically build the localhost/mariadb-conf:latest image based on
docker.io/library/mariadb image.

Pull the docker.io/library/wordpress:latest image.

Create a pod named wordpresspod with two containers named wordpresspod-mydb and
wordpresspod-myweb.

2. List all containers and pods:

$ podman ps --pod -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD ID PODNAME
a1dbf7b5606c k8s.gcr.io/pause:3.5 3 minutes ago Up 2 minutes ago
0.0.0.0:8080->80/tcp 3e391d091d19-infra 3e391d091d19 wordpresspod
6c59ebe96846 localhost/mariadb-conf:latest mariadbd 2 minutes ago Exited (1)
2 minutes ago 0.0.0.0:8080->80/tcp wordpresspod-mydb 3e391d091d19 wordpresspod
29717878452f docker.io/library/wordpress:latest apache2-foregroun... 2 minutes ago Up 2
minutes ago 0.0.0.0:8080->80/tcp wordpresspod-myweb 3e391d091d19
wordpresspod

Verification

Verify that the pod is running: Visit the http://localhost:8080/wp-admin/install.php page or use
the curl command:

$ curl http://localhost:8080/wp-admin/install.php
<!DOCTYPE html>
<html lang="en-US" xml:lang="en-US">
<head>
...

Red Hat Enterprise Linux 9 Building, running, and managing containers

110

</head>
<body class="wp-core-ui">
<p id="logo">WordPress</p>
 <h1>Welcome</h1>
...

Additional resources

Build Kubernetes pods with Podman play kube

podman-play-kube man page

13.8. AUTOMATICALLY STOPPING AND REMOVING PODS USING
PODMAN

The podman play kube --down command stops and removes all pods and their containers.

NOTE

If a volume is in use, it is not removed.

Prerequisites

The container-tools meta-package is installed.

The pod named wordpresspod has been created. For details, see section Manually running
containers and pods using Podman.

The YAML file has been generated. For details, see section Generating a YAML file using
Podman.

The pod is running. For details, see section Automatically running containers and pods using
Podman.

Procedure

Remove all pods and containers created by the wordpresspod.yaml file:

$ podman play kube --down wordpresspod.yaml
Pods stopped:
3e391d091d190756e655219a34de55583eed3ef59470aadd214c1fc48cae92ac
Pods removed:
3e391d091d190756e655219a34de55583eed3ef59470aadd214c1fc48cae92ac

Verification

Verify that all pods and containers created by the wordpresspod.yaml file were removed:

$ podman ps --pod -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES POD ID PODNAME

Additional resources

CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING PODMAN

111

https://www.redhat.com/sysadmin/podman-play-kube-updates
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_manually-running-containers-and-pods-using-podman_assembly_porting-containers-to-openshift-using-podman
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_generating-a-yaml-file-using-podman_assembly_porting-containers-to-openshift-using-podman
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_automatically-running-containers-and-pods-using-podman_assembly_porting-containers-to-openshift-using-podman

Build Kubernetes pods with Podman play kube

podman-play-kube man page

Red Hat Enterprise Linux 9 Building, running, and managing containers

112

https://www.redhat.com/sysadmin/podman-play-kube-updates

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING
PODMAN

Podman (Pod Manager) is a simple daemonless tool fully featured container engine. Podman provides a
Docker-CLI comparable command line that makes the transition from other container engines easier
and enables the management of pods, containers, and images.

Originally, Podman was not designed to provide an entire Linux system or manage services, such as
start-up order, dependency checking, and failed service recovery. systemd was responsible for a
complete system initialization. Due to Red Hat integrating containers with systemd, you can manage
OCI and Docker-formatted containers built by Podman in the same way as other services and features
are managed in a Linux system. You can use the systemd initialization service to work with pods and
containers.

With systemd unit files, you can:

Set up a container or pod to start as a systemd service.

Define the order in which the containerized service runs and check for dependencies (for
example making sure another service is running, a file is available or a resource is mounted).

Control the state of the systemd system using the systemctl command.

You can generate portable descriptions of containers and pods by using systemd unit files.

14.1. AUTO-GENERATING A SYSTEMD UNIT FILE USING QUADLETS

With Quadlet, you describe how to run a container in a format that is very similar to regular systemd unit
files. The container descriptions focus on the relevant container details and hide technical details of
running containers under systemd. Create the <CTRNAME>.container unit file in one of the following
directories:

For root users: /usr/share/containers/systemd/ or /etc/containers/systemd/

For rootless users: $HOME/.config/containers/systemd/,
$XDG_CONFIG_HOME/containers/systemd/, /etc/containers/systemd/users/$(UID), or
/etc/containers/systemd/users/

NOTE

Quadlet is available beginning with Podman v4.6.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create the mysleep.container unit file:

$ cat $HOME/.config/containers/systemd/mysleep.container
[Unit]
Description=The sleep container
After=local-fs.target

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

113

[Container]
Image=registry.access.redhat.com/ubi9-minimal:latest
Exec=sleep 1000

[Install]
Start by default on boot
WantedBy=multi-user.target default.target

In the [Container] section you must specify:

Image - container mage you want to tun

Exec - the command you want to run inside the container
This enables you to use all other fields specified in a systemd unit file.

2. Create the mysleep.service based on the mysleep.container file:

$ systemctl --user daemon-reload

3. Optional: Check the status of the mysleep.service:

$ systemctl --user status mysleep.service
○ mysleep.service - The sleep container
 Loaded: loaded (/home/username/.config/containers/systemd/mysleep.container;
generated)
 Active: inactive (dead)

4. Start the mysleep.service:

$ systemctl --user start mysleep.service

Verification

1. Check the status of the mysleep.service:

$ systemctl --user status mysleep.service
● mysleep.service - The sleep container
 Loaded: loaded (/home/username/.config/containers/systemd/mysleep.container;
generated)
 Active: active (running) since Thu 2023-02-09 18:07:23 EST; 2s ago
 Main PID: 265651 (conmon)
 Tasks: 3 (limit: 76815)
 Memory: 1.6M
 CPU: 94ms
 CGroup: ...

2. List all containers:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
421c8293fc1b registry.access.redhat.com/ubi9-minimal:latest sleep 1000 30
seconds ago Up 10 seconds ago systemd-mysleep

Red Hat Enterprise Linux 9 Building, running, and managing containers

114

Note that the name of the created container consists of the following elements:

a systemd- prefix

a name of the systemd unit, that is systemd-mysleep
This naming helps to distinguish common containers from containers running in systemd
units. It also helps to determine which unit a container runs in. If you want to change the
name of the container, use the ContainerName field in the [Container] section.

Additional resources

Make systemd better for Podman with Quadlet

Quadlet upstream documentation

14.2. ENABLING SYSTEMD SERVICES

When enabling the service, you have different options.

Procedure

Enable the service:

To enable a service at system start, no matter if user is logged in or not, enter:

systemctl enable <service>

You have to copy the systemd unit files to the /etc/systemd/system directory.

To start a service at user login and stop it at user logout, enter:

$ systemctl --user enable <service>

You have to copy the systemd unit files to the $HOME/.config/systemd/user directory.

To enable users to start a service at system start and persist over logouts, enter:

loginctl enable-linger <username>

Additional resources

systemctl man page

loginctl man page

Enabling a system service to start at boot

14.3. AUTO-STARTING CONTAINERS USING SYSTEMD

You can control the state of the systemd system and service manager using the systemctl command.
You can enable, start, stop the service as a non-root user. To install the service as a root user, omit the --
user option.

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

115

https://www.redhat.com/sysadmin/quadlet-podman
https://docs.podman.io/en/latest/markdown/podman-systemd.unit.5.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#enabling-a-system-service_managing-system-services-with-systemctl

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Reload systemd manager configuration:

systemctl --user daemon-reload

2. Enable the service container.service and start it at boot time:

systemctl --user enable container.service

3. Start the service immediately:

systemctl --user start container.service

4. Check the status of the service:

$ systemctl --user status container.service
● container.service - Podman container.service
 Loaded: loaded (/home/user/.config/systemd/user/container.service; enabled; vendor
preset: enabled)
 Active: active (running) since Wed 2020-09-16 11:56:57 CEST; 8s ago
 Docs: man:podman-generate-systemd(1)
 Process: 80602 ExecStart=/usr/bin/podman run --conmon-pidfile
//run/user/1000/container.service-pid --cidfile //run/user/1000/container.service-cid -d ubi9-
minimal:>
 Process: 80601 ExecStartPre=/usr/bin/rm -f //run/user/1000/container.service-pid
//run/user/1000/container.service-cid (code=exited, status=0/SUCCESS)
 Main PID: 80617 (conmon)
 CGroup: /user.slice/user-1000.slice/user@1000.service/container.service
 ├─ 2870 /usr/bin/podman
 ├─80612 /usr/bin/slirp4netns --disable-host-loopback --mtu 65520 --enable-sandbox -
-enable-seccomp -c -e 3 -r 4 --netns-type=path /run/user/1000/netns/cni->
 ├─80614 /usr/bin/fuse-overlayfs -o
lowerdir=/home/user/.local/share/containers/storage/overlay/l/YJSPGXM2OCDZPLMLXJOW3N
RF6Q:/home/user/.local/share/contain>
 ├─80617 /usr/bin/conmon --api-version 1 -c
cbc75d6031508dfd3d78a74a03e4ace1732b51223e72a2ce4aa3bfe10a78e4fa -u
cbc75d6031508dfd3d78a74a03e4ace1732b51223e72>
 └─cbc75d6031508dfd3d78a74a03e4ace1732b51223e72a2ce4aa3bfe10a78e4fa
 └─80626 /usr/bin/coreutils --coreutils-prog-shebang=sleep /usr/bin/sleep 1d

You can check if the service is enabled using the systemctl is-enabled container.service
command.

Verification steps

List containers that are running or have exited:

podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

Red Hat Enterprise Linux 9 Building, running, and managing containers

116

PORTS NAMES
f20988d59920 registry.access.redhat.com/ubi9-minimal:latest top 12 seconds ago Up 11
seconds ago funny_zhukovsky

NOTE

To stop container.service, enter:

systemctl --user stop container.service

Additional resources

systemctl man page

Running containers with Podman and shareable systemd services

Enabling a system service to start at boot

14.4. ADVANTAGES OF USING QUADLETS OVER THE PODMAN
GENERATE SYSTEMD COMMAND

You can use the Quadlets tool, which describes how to run a container in a format similar to regular
systemd unit files.

NOTE

Quadlet is available beginning with Podman v4.6.

Quadlets have many advantages over generating unit files using the podman generate systemd
command, such as:

Easy to maintain: The container descriptions focus on the relevant container details and hide
technical details of running containers under systemd.

Automatically updated: Quadlets do not require manually regenerating unit files after an
update. If a newer version of Podman is released, your service is automatically updated when the
systemclt daemon-reload command is executed, for example, at boot time.

Simplified workflow: Thanks to the simplified syntax, you can create Quadlet files from scratch
and deploy them anywhere.

Support standard systemd options: Quadlet extends the existing systemd-unit syntax with new
tables, for example, a table to configure a container.

NOTE

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

117

https://www.redhat.com/sysadmin/podman-shareable-systemd-services
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#enabling-a-system-service_managing-system-services-with-systemctl

NOTE

Quadlet supports a subset of Kubernetes YAML capabilities. For more information, see
the support matrix of supported YAML fields. You can generate the YAML files by using
one of the following tools:

Podman: podman generate kube command

OpenShift: oc generate command with the --dry-run option

Kubernetes: kubectl create command with the --dry-run option

Quadlet supports these unit file types:

Container units: Used to manage containers by running the podman run command.

File extension: .container

Section name: [Container]

Required fields: Image describing the container image the service runs

Kube units: Used to manage containers defined in Kubernetes YAML files by running the
podman kube play command.

File extension: .kube

Section name: [Kube]

Required fields: Yaml defining the path to the Kubernetes YAML file

Network units: Used to create Podman networks that may be referenced in .container or
.kube files.

File extension: .network

Section name: [Network]

Required fields: None

Volume units: Used to create Podman volumes that may be referenced in .container files.

File extension: .volume

Section name: [Volume]

Required fields: None

Additional resources

Quadlet upstream documentation

14.5. GENERATING A SYSTEMD UNIT FILE USING PODMAN

Podman allows systemd to control and manage container processes. You can generate a systemd unit
file for the existing containers and pods using podman generate systemd command. It is
recommended to use podman generate systemd because the generated units files change frequently

Red Hat Enterprise Linux 9 Building, running, and managing containers

118

https://docs.podman.io/en/latest/markdown/podman-kube-play.1.html#podman-kube-play-support
https://docs.podman.io/en/latest/markdown/podman-systemd.unit.5.html

(via updates to Podman) and the podman generate systemd ensures that you get the latest version of
unit files.

NOTE

Starting with Podman v4.6, you can use the Quadlets that describe how to run a
container in a format similar to regular systemd unit files and hides the complexity of
running containers under systemd.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a container (for example myubi):

$ podman create --name myubi registry.access.redhat.com/ubi9:latest sleep infinity
0280afe98bb75a5c5e713b28de4b7c5cb49f156f1cce4a208f13fee2f75cb453

2. Use the container name or ID to generate the systemd unit file and direct it into the
~/.config/systemd/user/container-myubi.service file:

$ podman generate systemd --name myubi > ~/.config/systemd/user/container-
myubi.service

Verification steps

Display the content of generated systemd unit file:

$ cat ~/.config/systemd/user/container-myubi.service
container-myubi.service
autogenerated by Podman 3.3.1
Wed Sep 8 20:34:46 CEST 2021

[Unit]
Description=Podman container-myubi.service
Documentation=man:podman-generate-systemd(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=/run/user/1000/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman start myubi
ExecStop=/usr/bin/podman stop -t 10 myubi
ExecStopPost=/usr/bin/podman stop -t 10 myubi
PIDFile=/run/user/1000/containers/overlay-
containers/9683103f58a32192c84801f0be93446cb33c1ee7d9cdda225b78049d7c5deea4/user
data/conmon.pid
Type=forking

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

119

[Install]
WantedBy=multi-user.target default.target

The Restart=on-failure line sets the restart policy and instructs systemd to restart when
the service cannot be started or stopped cleanly, or when the process exits non-zero.

The ExecStart line describes how we start the container.

The ExecStop line describes how we stop and remove the container.

Additional resources

Running containers with Podman and shareable systemd services

14.6. AUTOMATICALLY GENERATING A SYSTEMD UNIT FILE USING
PODMAN

By default, Podman generates a unit file for existing containers or pods. You can generate more
portable systemd unit files using the podman generate systemd --new. The --new flag instructs
Podman to generate unit files that create, start and remove containers.

NOTE

Starting with Podman v4.6, you can use the Quadlets that describe how to run a
container in a format similar to regular systemd unit files and hides the complexity of
running containers under systemd.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Pull the image you want to use on your system. For example, to pull the httpd-24 image:

podman pull registry.access.redhat.com/ubi9/httpd-24

2. Optional: List all images available on your system:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9/httpd-24 latest 8594be0a0b57 2 weeks ago 462
MB

3. Create the httpd container:

podman create --name httpd -p 8080:8080 registry.access.redhat.com/ubi9/httpd-24
cdb9f981cf143021b1679599d860026b13a77187f75e46cc0eac85293710a4b1

4. Optional: Verify the container has been created:

podman ps -a

Red Hat Enterprise Linux 9 Building, running, and managing containers

120

https://www.redhat.com/sysadmin/podman-shareable-systemd-services

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
cdb9f981cf14 registry.access.redhat.com/ubi9/httpd-24:latest /usr/bin/run-http... 5 minutes
ago Created 0.0.0.0:8080->8080/tcp httpd

5. Generate a systemd unit file for the httpd container:

podman generate systemd --new --files --name httpd
/root/container-httpd.service

6. Display the content of the generated container-httpd.service systemd unit file:

cat /root/container-httpd.service
container-httpd.service
autogenerated by Podman 3.3.1
Wed Sep 8 20:41:44 CEST 2021

[Unit]
Description=Podman container-httpd.service
Documentation=man:podman-generate-systemd(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=%t/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStartPre=/bin/rm -f %t/%n.ctr-id
ExecStart=/usr/bin/podman run --cidfile=%t/%n.ctr-id --sdnotify=conmon --cgroups=no-
conmon --rm -d --replace --name httpd -p 8080:8080 registry.access.redhat.com/ubi9/httpd-
24
ExecStop=/usr/bin/podman stop --ignore --cidfile=%t/%n.ctr-id
ExecStopPost=/usr/bin/podman rm -f --ignore --cidfile=%t/%n.ctr-id
Type=notify
NotifyAccess=all

[Install]
WantedBy=multi-user.target default.target

NOTE

Unit files generated using the --new option do not expect containers and pods to exist.
Therefore, they perform the podman run command when starting the service (see the
ExecStart line) instead of the podman start command. For example, see section
Generating a systemd unit file using Podman .

The podman run command uses the following command-line options:

The --conmon-pidfile option points to a path to store the process ID for the conmon
process running on the host. The conmon process terminates with the same exit status as
the container, which allows systemd to report the correct service status and restart the
container if needed.

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

121

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_generating-a-systemd-unit-file-using-podman_assembly_porting-containers-to-systemd-using-podman

The --cidfile option points to the path that stores the container ID.

The %t is the path to the run time directory root, for example /run/user/$UserID.

The %n is the full name of the service.

1. Copy unit files to /etc/systemd/system for installing them as a root user:

cp -Z container-httpd.service /etc/systemd/system

2. Enable and start the container-httpd.service:

systemctl daemon-reload
systemctl enable --now container-httpd.service
Created symlink /etc/systemd/system/multi-user.target.wants/container-httpd.service
→ /etc/systemd/system/container-httpd.service.
Created symlink /etc/systemd/system/default.target.wants/container-httpd.service →
/etc/systemd/system/container-httpd.service.

Verification steps

Check the status of the container-httpd.service:

systemctl status container-httpd.service
 ● container-httpd.service - Podman container-httpd.service
 Loaded: loaded (/etc/systemd/system/container-httpd.service; enabled; vendor preset:
disabled)
 Active: active (running) since Tue 2021-08-24 09:53:40 EDT; 1min 5s ago
 Docs: man:podman-generate-systemd(1)
 Process: 493317 ExecStart=/usr/bin/podman run --conmon-pidfile /run/container-
httpd.pid --cidfile /run/container-httpd.ctr-id --cgroups=no-conmon -d --repla>
 Process: 493315 ExecStartPre=/bin/rm -f /run/container-httpd.pid /run/container-httpd.ctr-
id (code=exited, status=0/SUCCESS)
 Main PID: 493435 (conmon)
 ...

Additional resources

Improved Systemd Integration with Podman 2.0

Enabling a system service to start at boot

14.7. AUTOMATICALLY STARTING PODS USING SYSTEMD

You can start multiple containers as systemd services. Note that the systemctl command should only
be used on the pod and you should not start or stop containers individually via systemctl, as they are
managed by the pod service along with the internal infra-container.

NOTE

Starting with Podman v4.6, you can use the Quadlets that describe how to run a
container in a format similar to regular systemd unit files and hides the complexity of
running containers under systemd.

Red Hat Enterprise Linux 9 Building, running, and managing containers

122

https://www.redhat.com/sysadmin/improved-systemd-podman
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#enabling-a-system-service_managing-system-services-with-systemctl

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create an empty pod, for example named systemd-pod:

$ podman pod create --name systemd-pod
11d4646ba41b1fffa51c108cbdf97cfab3213f7bd9b3e1ca52fe81b90fed5577

2. Optional: List all pods:

$ podman pod ps
POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID
11d4646ba41b systemd-pod Created 40 seconds ago 1 8a428b257111
11d4646ba41b1fffa51c108cbdf97cfab3213f7bd9b3e1ca52fe81b90fed5577

3. Create two containers in the empty pod. For example, to create container0 and container1 in
systemd-pod:

$ podman create --pod systemd-pod --name container0
registry.access.redhat.com/ubi9 top
$ podman create --pod systemd-pod --name container1
registry.access.redhat.com/ubi9 top

4. Optional: List all pods and containers associated with them:

$ podman ps -a --pod
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES POD ID PODNAME
24666f47d9b2 registry.access.redhat.com/ubi9:latest top 3 minutes ago Created
container0 3130f724e229 systemd-pod
56eb1bf0cdfe k8s.gcr.io/pause:3.2 4 minutes ago Created
3130f724e229-infra 3130f724e229 systemd-pod
62118d170e43 registry.access.redhat.com/ubi9:latest top 3 seconds ago Created
container1 3130f724e229 systemd-pod

5. Generate the systemd unit file for the new pod:

$ podman generate systemd --files --name systemd-pod
/home/user1/pod-systemd-pod.service
/home/user1/container-container0.service
/home/user1/container-container1.service

Note that three systemd unit files are generated, one for the systemd-pod pod and two for
the containers container0 and container1.

6. Display pod-systemd-pod.service unit file:

$ cat pod-systemd-pod.service
pod-systemd-pod.service
autogenerated by Podman 3.3.1
Wed Sep 8 20:49:17 CEST 2021

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

123

[Unit]
Description=Podman pod-systemd-pod.service
Documentation=man:podman-generate-systemd(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=
Requires=container-container0.service container-container1.service
Before=container-container0.service container-container1.service

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman start bcb128965b8e-infra
ExecStop=/usr/bin/podman stop -t 10 bcb128965b8e-infra
ExecStopPost=/usr/bin/podman stop -t 10 bcb128965b8e-infra
PIDFile=/run/user/1000/containers/overlay-
containers/1dfdcf20e35043939ea3f80f002c65c00d560e47223685dbc3230e26fe001b29/userda
ta/conmon.pid
Type=forking

[Install]
WantedBy=multi-user.target default.target

The Requires line in the [Unit] section defines dependencies on container-
container0.service and container-container1.service unit files. Both unit files will be
activated.

The ExecStart and ExecStop lines in the [Service] section start and stop the infra-
container, respectively.

7. Display container-container0.service unit file:

$ cat container-container0.service
container-container0.service
autogenerated by Podman 3.3.1
Wed Sep 8 20:49:17 CEST 2021

[Unit]
Description=Podman container-container0.service
Documentation=man:podman-generate-systemd(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=/run/user/1000/containers
BindsTo=pod-systemd-pod.service
After=pod-systemd-pod.service

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman start container0
ExecStop=/usr/bin/podman stop -t 10 container0
ExecStopPost=/usr/bin/podman stop -t 10 container0
PIDFile=/run/user/1000/containers/overlay-

Red Hat Enterprise Linux 9 Building, running, and managing containers

124

containers/4bccd7c8616ae5909b05317df4066fa90a64a067375af5996fdef9152f6d51f5/userdat
a/conmon.pid
Type=forking

[Install]
WantedBy=multi-user.target default.target

The BindsTo line line in the [Unit] section defines the dependency on the pod-systemd-
pod.service unit file

The ExecStart and ExecStop lines in the [Service] section start and stop the container0
respectively.

8. Display container-container1.service unit file:

$ cat container-container1.service

9. Copy all the generated files to $HOME/.config/systemd/user for installing as a non-root user:

$ cp pod-systemd-pod.service container-container0.service container-
container1.service $HOME/.config/systemd/user

10. Enable the service and start at user login:

$ systemctl enable --user pod-systemd-pod.service
Created symlink /home/user1/.config/systemd/user/multi-user.target.wants/pod-systemd-
pod.service → /home/user1/.config/systemd/user/pod-systemd-pod.service.
Created symlink /home/user1/.config/systemd/user/default.target.wants/pod-systemd-
pod.service → /home/user1/.config/systemd/user/pod-systemd-pod.service.

Note that the service stops at user logout.

Verification steps

Check if the service is enabled:

$ systemctl is-enabled pod-systemd-pod.service
enabled

Additional resources

podman-create man page

podman-generate-systemd man page

systemctl man page

Running containers with Podman and shareable systemd services

Enabling a system service to start at boot

14.8. AUTOMATICALLY UPDATING CONTAINERS USING PODMAN

The podman auto-update command allows you to automatically update containers according to their

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

125

https://www.redhat.com/sysadmin/podman-shareable-systemd-services
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#enabling-a-system-service_managing-system-services-with-systemctl

auto-update policy. The podman auto-update command updates services when the container image is
updated on the registry. To use auto-updates, containers must be created with the --label
"io.containers.autoupdate=image" label and run in a systemd unit generated by podman generate
systemd --new command.

Podman searches for running containers with the "io.containers.autoupdate" label set to "image" and
communicates to the container registry. If the image has changed, Podman restarts the corresponding
systemd unit to stop the old container and create a new one with the new image. As a result, the
container, its environment, and all dependencies, are restarted.

NOTE

Starting with Podman v4.6, you can use the Quadlets that describe how to run a
container in a format similar to regular systemd unit files and hides the complexity of
running containers under systemd.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Start a myubi container based on the registry.access.redhat.com/ubi9/ubi-init image:

podman run --label "io.containers.autoupdate=image" \
--name myubi -dt registry.access.redhat.com/ubi9/ubi-init top
bc219740a210455fa27deacc96d50a9e20516492f1417507c13ce1533dbdcd9d

2. Optional: List containers that are running or have exited:

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
76465a5e2933 registry.access.redhat.com/9/ubi-init:latest top 24 seconds ago Up 23
seconds ago myubi

3. Generate a systemd unit file for the myubi container:

podman generate systemd --new --files --name myubi /root/container-myubi.service

4. Copy unit files to /usr/lib/systemd/system for installing it as a root user:

cp -Z ~/container-myubi.service /usr/lib/systemd/system

5. Reload systemd manager configuration:

systemctl daemon-reload

6. Start and check the status of a container:

systemctl start container-myubi.service
systemctl status container-myubi.service

Red Hat Enterprise Linux 9 Building, running, and managing containers

126

7. Auto-update the container:

podman auto-update

Additional resources

Improved Systemd Integration with Podman 2.0

Running containers with Podman and shareable systemd services

Enabling a system service to start at boot

14.9. AUTOMATICALLY UPDATING CONTAINERS USING SYSTEMD

As mentioned in section Auto-updating containers using Podman ,

you can update the container using the podman auto-update command. It integrates into custom
scripts and can be invoked when needed. Another way to auto update the containers is to use the pre-
installed podman-auto-update.timer and podman-auto-update.service systemd service. The
podman-auto-update.timer can be configured to trigger auto updates at a specific date or time. The
podman-auto-update.service can further be started by the systemctl command or be used as a
dependency by other systemd services. As a result, auto updates based on time and events can be
triggered in various ways to meet individual needs and use cases.

NOTE

Starting with Podman v4.6, you can use the Quadlets that describe how to run a
container in a format similar to regular systemd unit files and hides the complexity of
running containers under systemd.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Display the podman-auto-update.service unit file:

cat /usr/lib/systemd/system/podman-auto-update.service

[Unit]
Description=Podman auto-update service
Documentation=man:podman-auto-update(1)
Wants=network.target
After=network-online.target

[Service]
Type=oneshot
ExecStart=/usr/bin/podman auto-update

[Install]
WantedBy=multi-user.target default.target

2. Display the podman-auto-update.timer unit file:

CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN

127

https://www.redhat.com/sysadmin/improved-systemd-podman
https://www.redhat.com/sysadmin/podman-shareable-systemd-services
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#enabling-a-system-service_managing-system-services-with-systemctl
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_auto-updating-containers-using-podman_assembly_porting-containers-to-systemd-using-podman

cat /usr/lib/systemd/system/podman-auto-update.timer

[Unit]
Description=Podman auto-update timer

[Timer]
OnCalendar=daily
Persistent=true

[Install]
WantedBy=timers.target

In this example, the podman auto-update command is launched daily at midnight.

3. Enable the podman-auto-update.timer service at system start:

systemctl enable podman-auto-update.timer

4. Start the systemd service:

systemctl start podman-auto-update.timer

5. Optional: List all timers:

systemctl list-timers --all
NEXT LEFT LAST PASSED UNIT
ACTIVATES
Wed 2020-12-09 00:00:00 CET 9h left n/a n/a podman-auto-
update.timer podman-auto-update.service

You can see that podman-auto-update.timer activates the podman-auto-update.service.

Additional resources

Improved Systemd Integration with Podman 2.0

Running containers with Podman and shareable systemd services

Enabling a system service to start at boot

Red Hat Enterprise Linux 9 Building, running, and managing containers

128

https://www.redhat.com/sysadmin/improved-systemd-podman
https://www.redhat.com/sysadmin/podman-shareable-systemd-services
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#enabling-a-system-service_managing-system-services-with-systemctl

CHAPTER 15. MANAGING CONTAINERS USING THE ANSIBLE
PLAYBOOK

With Podman 4.2, you can use the Podman RHEL System Role to manage Podman configuration,
containers, and systemd services which run Podman containers.

RHEL System Roles provide a configuration interface to remotely manage multiple RHEL systems. You
can use the interface to manage system configurations across multiple versions of RHEL, as well as
adopting new major releases. For more information, see the Automating system administration by using
RHEL System Roles.

15.1. CREATING A ROOTLESS CONTAINER WITH BIND MOUNT

You can use the Podman System Role to create rootless containers with bind mount by running an
Ansible playbook and with that, manage your application configuration.

Prerequisites

Access and permissions to a control node, which is a system from which Red Hat Ansible Engine
configures other systems.

On the control node:

The rhel-system-roles package is installed.

An Ansible inventory file listing the hosts to be managed and any other parameters you want
to apply.

NOTE

The ansible-playbook command is provided by the ansible-core package which should
be automatically installed as a dependency of the rhel-system-roles package.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 vars:
 podman_create_host_directories: true
 podman_firewall:
 - port: 8080-8081/tcp
 state: enabled
 - port: 12340/tcp
 state: enabled
 podman_selinux_ports:
 - ports: 8080-8081
 setype: http_port_t
 podman_kube_specs:
 - state: started
 run_as_user: dbuser
 run_as_group: dbgroup
 kube_file_content:
 apiVersion: v1

CHAPTER 15. MANAGING CONTAINERS USING THE ANSIBLE PLAYBOOK

129

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/index

 kind: Pod
 metadata:
 name: db
 spec:
 containers:
 - name: db
 image: quay.io/db/db:stable
 ports:
 - containerPort: 1234
 hostPort: 12340
 volumeMounts:
 - mountPath: /var/lib/db:Z
 name: db
 volumes:
 - name: db
 hostPath:
 path: /var/lib/db
 - state: started
 run_as_user: webapp
 run_as_group: webapp
 kube_file_src: /path/to/webapp.yml
 roles:
 - linux-system-roles.podman

This procedure creates a pod with two containers. The podman_kube_specs role variable
describes a pod.

The run_as_user and run_as_group fields specify that containers are rootless.

The kube_file_content field containing a Kubernetes YAML file defines the first container
named db. You can generate the Kubernetes YAML file using the podman generate
systemd command.

The db container is based on the quay.io/db/db:stable container image.

The db bind mount maps the /var/lib/db directory on the host to the /var/lib/db
directory in the container. The Z flag labels the content with a private unshared label,
therefore, only the db container can access the content.

The kube_file_src field defines the second container. The content of the
/path/to/webapp.yml file on the controller node will be copied to the kube_file field on the
managed node.

Set the podman_create_host_directories: true to create the directory on the host. This
instructs the role to check the kube specification for hostPath volumes and create those
directories on the host. If you need more control over the ownership and permissions, use
podman_host_directories.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml -i inventory_file

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file playbook.yml

Additional resources

Red Hat Enterprise Linux 9 Building, running, and managing containers

130

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.podman/README.md file

The Podman System Role documentation

15.2. CREATING A ROOTFUL CONTAINER WITH PODMAN VOLUME

You can use the Podman System Role to create a rootful container with a Podman volume by running an
Ansible playbook and with that, manage your application configuration.

Prerequisites

Access and permissions to a control node, which is a system from which Red Hat Ansible Engine
configures other systems.

On the control node:

The rhel-system-roles package is installed.

An Ansible inventory file listing the hosts to be managed and any other parameters you want
to apply.

The ubi8-html-volume volume has been created.

NOTE

The ansible-playbook command is provided by the ansible-core package which should
be automatically installed as a dependency of the rhel-system-roles package.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 vars:
 podman_firewall:
 - port: 8080/tcp
 state: enabled
 podman_kube_specs:
 - state: started
 kube_file_content:
 apiVersion: v1
 kind: Pod
 metadata:
 name: ubi8-httpd
 spec:
 containers:
 - name: ubi8-httpd
 image: registry.access.redhat.com/ubi8/httpd-24
 ports:
 - containerPort: 8080
 hostPort: 8080
 volumeMounts:
 - mountPath: /var/www/html:Z

CHAPTER 15. MANAGING CONTAINERS USING THE ANSIBLE PLAYBOOK

131

https://github.com/linux-system-roles/podman

 name: ubi8-html
 volumes:
 - name: ubi8-html
 persistentVolumeClaim:
 claimName: ubi8-html-volume
 roles:
 - linux-system-roles.podman

The procedure creates a pod with one container. The podman_kube_specs role variable
describes a pod.

By default, the Podman role creates rootful containers.

The kube_file_content field containing a Kubernetes YAML file defines the container
named ubi8-httpd.

The ubi8-httpd container is based on the registry.access.redhat.com/ubi8/httpd-24
container image.

The ubi8-html-volume maps the /var/www/html directory on the host to the
container. The Z flag labels the content with a private unshared label, therefore,
only the ubi8-httpd container can access the content.

The pod mounts the existing persistent volume named ubi8-html-volume with the
mount path /var/www/html.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml -i inventory_file

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file playbook.yml

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.podman/README.md file

The Podman System Role documentation

15.3. CREATING A QUADLET APPLICATION WITH SECRETS

You can use the Podman System Role to create a Quadlet application with secrets by running an Ansible
playbook.

NOTE

The podman_quadlet_specs variable is available beginning with Podman v4.6.

Prerequisites

Access and permissions to a control node, which is a system from which Red Hat Ansible Engine
configures other systems.

On the control node:

Red Hat Enterprise Linux 9 Building, running, and managing containers

132

https://github.com/linux-system-roles/podman

The rhel-system-roles package is installed.

An Ansible inventory file listing the hosts to be managed and any other parameters you want
to apply.

Secrets - you must define the following, preferably using Ansible Vault encrypted variables:

root password for MySQL ("root_password_from_vault")

TLS certificate and key ("cert_from_vault" and "key_from_vault")

NOTE

The ansible-playbook command is provided by the ansible-core package which
should be automatically installed as a dependency of the rhel-system-roles
package.

The files used by this example are provided by the rhel-system-roles package in
/usr/share/ansible/roles/rhel-system-roles.podman/tests/files and
/usr/share/ansible/roles/rhel-system-roles.podman/tests/templates
directories.

Procedure

1. Create a new playbook.yml file with the following content:

podman_create_host_directories: true
podman_activate_systemd_unit: false
podman_quadlet_specs:
 - name: quadlet-demo
 type: network
 file_content: |
 [Network]
 Subnet=192.168.30.0/24
 Gateway=192.168.30.1
 Label=app=wordpress
 - file_src: quadlet-demo-mysql.volume
 - template_src: quadlet-demo-mysql.container.j2
 - file_src: envoy-proxy-configmap.yml
 - file_src: quadlet-demo.yml
 - file_src: quadlet-demo.kube
 activate_systemd_unit: true
podman_firewall:
 - port: 8000/tcp
 state: enabled
 - port: 9000/tcp
 state: enabled
podman_secrets:
 - name: mysql-root-password-container
 state: present
 skip_existing: true
 data: "{{ root_password_from_vault }}"
 - name: mysql-root-password-kube
 state: present
 skip_existing: true
 data: |

CHAPTER 15. MANAGING CONTAINERS USING THE ANSIBLE PLAYBOOK

133

 apiVersion: v1
 data:
 password: "{{ root_password_from_vault | b64encode }}"
 kind: Secret
 metadata:
 name: mysql-root-password-kube
 - name: envoy-certificates
 state: present
 skip_existing: true
 data: |
 apiVersion: v1
 data:
 certificate.key: {{ key_from_vault | b64encode }}
 certificate.pem: {{ cert_from_vault | b64encode }}
 kind: Secret
 metadata:
 name: envoy-certificates

The procedure creates a WordPress content management system paired with a MySQL
database. The podman_quadlet_specs role variable defines a set of configurations for the
Quadlet, which refers to a group of containers or services that work together in a certain way. It
includes the following specifications:

The Wordpress network is defined by the quadlet-demo network unit.

The volume configuration for MySQL container is defined by the file_src: quadlet-demo-
mysql.volume field.

The template_src: quadlet-demo-mysql.container.j2 field is used to generate a
configuration for the MySQL container.

Two YAML files follow: file_src: envoy-proxy-configmap.yml and file_src: quadlet-
demo.yml. Note that .yml is not a valid Quadlet unit type, therefore these files will just be
copied and not processed as a Quadlet specification.

The Wordpress and envoy proxy containers and configuration are defined by the file_src:
quadlet-demo.kube field. The kube unit refers to the previous YAML files in the [Kube]
section as Yaml=quadlet-demo.yml and ConfigMap=envoy-proxy-configmap.yml.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml -i inventory_file

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file playbook.yml

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.podman/README.md file

The Podman System Role documentation

Red Hat Enterprise Linux 9 Building, running, and managing containers

134

https://github.com/linux-system-roles/podman

CHAPTER 16. MANAGING CONTAINER IMAGES BY USING THE
RHEL WEB CONSOLE

Additional resources

You can use the RHEL web console web-based interface to pull, prune, or delete your container images.

16.1. PULLING CONTAINER IMAGES IN THE WEB CONSOLE

You can download container images to your local system and use them to create your containers.

Prerequisites

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Images table, click the overflow menu in the upper-right corner and select Download new
image.

3. The Search for an image dialog box appears.

4. In the Search for field, enter the name of the image or specify its description.

5. In the in drop-down list, select the registry from which you want to pull the image.

6. Optional: In the Tag field, enter the tag of the image.

7. Click Download.

Verification

Click Podman containers in the main menu. You can see the newly downloaded image in the
Images table.

NOTE

You can create a container from the downloaded image by clicking the Create container
in the Images table. To create the container, follow steps 3-8 in Creating containers in
the web console.

16.2. PRUNING CONTAINER IMAGES IN THE WEB CONSOLE

You can remove all unused images that do not have any containers based on it.

Prerequisites

CHAPTER 16. MANAGING CONTAINER IMAGES BY USING THE RHEL WEB CONSOLE

135

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/building_running_and_managing_containers/managing-containers-by-using-the-rhel-web-console#creating-containers-in-the-web-console_managing-containers-by-using-the-rhel-web-console

At least one container image is pulled.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Images table, click the overflow menu in the upper-right corner and select Prune
unused images.

3. The pop-up window with the list of images appears. Click Prune to confirm your choice.

Verification

Click Podman containers in the main menu. The deleted images should not be listed in the
Images table.

16.3. DELETING CONTAINER IMAGES IN THE WEB CONSOLE

You can delete a previously pulled container image using the web console.

Prerequisites

At least one container image is pulled.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Images table, select the image you want to delete and click the overflow menu and
select Delete.

3. The window appears. Click Delete tagged images to confirm your choice.

Verification

Click the Podman containers in the main menu. The deleted container should not be listed in
the Images table.

Red Hat Enterprise Linux 9 Building, running, and managing containers

136

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL
WEB CONSOLE

You can use the Red Hat Enterprise Linux web console to manage your containers and pods. With the
web console, you can create containers as a non-root or root user.

As a root user, you can create system containers with extra privileges and options.

As a non-root user, you have two options:

To only create user containers, you can use the web console in its default mode - Limited
access.

To create both user and system containers, click Administrative access in the top panel of
the web console page.

For details about differences between root and rootless containers, see Special considerations for
rootless containers.

17.1. CREATING CONTAINERS IN THE WEB CONSOLE

You can create a container and add port mappings, volumes, environment variables, health checks, and
so on.

Prerequisites

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. Click Create container.

3. In the Name field, enter the name of your container.

4. Provide desired info in the Details tab.

Available only with the administrative access : Select the Owner of the container: System or
User.

In the Image drop down list select or search the container image in selected registries.

Optional: Check the Pull latest image checkbox to pull the latest container image.

The Command field specifies the command. You can change the default command if you
need.

Optional: Check the With terminal checkbox to run your container with a terminal.

The Memory limit field specifies the memory limit for the container. To change the default

CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE

137

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#con_special-considerations-for-rootless-containers_assembly_starting-with-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

The Memory limit field specifies the memory limit for the container. To change the default
memory limit, check the checkbox and specify the limit.

Available only for system containers : In the CPU shares field, specify the relative amount of
CPU time. Default value is 1024. Check the checkbox to modify the default value.

Available only for system containers : In the Restart policy drop down menu, select one of
the following options:

No (default value): No action.

On Failure: Restarts a container on failure.

Always: Restarts a container when exits or after rebooting the system.

5. Provide the required information in the Integration tab.

Click Add port mapping to add port mapping between the container and host system.

Enter the IP address , Host port, Container port and Protocol.

Click Add volume to add volume.

Enter the host path, Container path. You can check the Writable option checkbox to
create a writable volume. In the SELinux drop down list, select one of the following
options: No Label, Shared or Private.

Click Add variable to add environment variable.

Enter the Key and Value.

6. Provide the required information in the Health check tab.

In the Command fields, enter the 'healthcheck' command.

Specify the healthcheck options:

Interval (default is 30 seconds)

Timeout (default is 30 seconds)

Start period

Retries (default is 3)

When unhealthy: Select one of the following options:

No action (default): Take no action.

Restart: Restart the container.

Stop: Stop the container.

Force stop: Force stops the container, it does not wait for the container to exit.

7. Click Create and run to create and run the container.

NOTE

Red Hat Enterprise Linux 9 Building, running, and managing containers

138

NOTE

You can click Create to only create the container.

Verification

Click Podman containers in the main menu. You can see the newly created container in the
Containers table.

17.2. INSPECTING CONTAINERS IN THE WEB CONSOLE

You can display detailed information about a container in the web console.

Prerequisites

The container was created.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. Click the > arrow icon to see details of the container.

In the Details tab, you can see container ID, Image, Command, Created (timestamp when
the container was created), and its State.

Available only for system containers : You can also see IP address, MAC address, and
Gateway address.

In the Integration tab, you can see environment variables, port mappings, and volumes.

In the Log tab, you can see container logs.

In the Console tab, you can interact with the container using the command line.

17.3. CHANGING THE STATE OF CONTAINERS IN THE WEB CONSOLE

In the Red Hat Enterprise Linux web console, you can start, stop, restart, pause, and rename containers
on the system.

Prerequisites

The container was created.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE

139

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow menu
and select the action you want to perform:

Start

Stop

Force stop

Restart

Force restart

Pause

Rename

17.4. COMMITTING CONTAINERS IN THE WEB CONSOLE

You can create a new image based on the current state of the container.

Prerequisites

The container was created.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow menu
and select Commit.

3. In the Commit container form, add the following details:

In the New image name field, enter the image name.

Optional: In the Tag field, enter the tag.

Optional: In the Author field, enter your name.

Optional: In the Command field, change command if you need.

Red Hat Enterprise Linux 9 Building, running, and managing containers

140

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

Optional: Check the Options you need:

Pause container when creating image: The container and its processes are paused while
the image is committed.

Use legacy Docker format: if you do not use the Docker image format, the OCI format is
used.

4. Click Commit.

Verification

Click the Podman containers in the main menu. You can see the newly created image in the
Images table.

17.5. CREATING A CONTAINER CHECKPOINT IN THE WEB CONSOLE

Using the web console, you can set a checkpoint on a running container or an individual application and
store its state to disk.

NOTE

Creating a checkpoint is available only for system containers.

Prerequisites

The container is running.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow icon
menu and select Checkpoint.

3. Optional: In the Checkpoint container form, check the options you need:

Keep all temporary checkpoint files: keep all temporary log and statistics files created by
CRIU during checkpointing. These files are not deleted if checkpointing fails for further
debugging.

Leave running after writing checkpoint to disk: leave the container running after
checkpointing instead of stopping it.

Support preserving established TCP connections

4. Click Checkpoint.

Verification

CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE

141

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

Verification

Click the Podman containers in the main menu. Select the container you checkpointed, click
the overflow menu icon and verify that there is a Restore option.

17.6. RESTORING A CONTAINER CHECKPOINT IN THE WEB CONSOLE

You can use data saved to restore the container after a reboot at the same point in time it was
checkpointed.

NOTE

Creating a checkpoint is available only for system containers.

Prerequisites

The container was checkpointed.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow menu
and select Restore.

3. Optional: In the Restore container form, check the options you need:

Keep all temporary checkpoint files: Keep all temporary log and statistics files created by
CRIU during checkpointing. These files are not deleted if checkpointing fails for further
debugging.

Restore with established TCP connections

Ignore IP address if set statically: If the container was started with IP address the restored
container also tries to use that IP address and restore fails if that IP address is already in
use. This option is applicable if you added port mapping in the Integration tab when you
create the container.

Ignore MAC address if set statically: If the container was started with MAC address the
restored container also tries to use that MAC address and restore fails if that MAC address
is already in use.

4. Click Restore.

Verification

Click the Podman containers in the main menu. You can see that the restored container in the
Containers table is running.

Red Hat Enterprise Linux 9 Building, running, and managing containers

142

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

17.7. DELETING CONTAINERS IN THE WEB CONSOLE

You can delete an existing container using the web console.

Prerequisites

The container exists on your system.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to delete and click the overflow menu
and select Delete.

3. The pop-up window appears. Click Delete to confirm your choice.

Verification

Click the Podman containers in the main menu. The deleted container should not be listed in
the Containers table.

17.8. CREATING PODS IN THE WEB CONSOLE

You can create pods in the RHEL web console interface.

Prerequisites

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. Click Create pod.

3. Provide desired information in the Create pod form:

Available only with the administrative access : Select the Owner of the container: System or
User.

In the Name field, enter the name of your container.

CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE

143

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

Click Add port mapping to add port mapping between container and host system.

Enter the IP address, Host port, Container port and Protocol.

Click Add volume to add volume.

Enter the host path, Container path. You can check the Writable checkbox to create a
writable volume. In the SELinux drop down list, select one of the following options: No
Label, Shared or Private.

4. Click Create.

Verification

Click Podman containers in the main menu. You can see the newly created pod in the
Containers table.

17.9. CREATING CONTAINERS IN THE POD IN THE WEB CONSOLE

You can create a container in a pod.

Prerequisites

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. Click Create container in pod.

3. In the Name field, enter the name of your container.

4. Provide the required information in the Details tab.

Available only with the administrative access : Select the Owner of the container: System or
User.

In the Image drop down list select or search the container image in selected registries.

Optional: Check the Pull latest image checkbox to pull the latest container image.

The Command field specifies the command. You can change the default command if you
need.

Optional: Check the With terminal checkbox to run your container with a terminal.

The Memory limit field specifies the memory limit for the container. To change the default
memory limit, check the checkbox and specify the limit.

Available only for system containers : In the CPU shares field, specify the relative amount of

Red Hat Enterprise Linux 9 Building, running, and managing containers

144

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

Available only for system containers : In the CPU shares field, specify the relative amount of
CPU time. Default value is 1024. Check the checkbox to modify the default value.

Available only for system containers : In the Restart policy drop down menu, select one of
the following options:

No (default value): No action.

On Failure: Restarts a container on failure.

Always: Restarts container when exits or after system boot.

5. Provide the required information in the Integration tab.

Click Add port mapping to add port mapping between the container and host system.

Enter the IP address , Host port, Container port and Protocol.

Click Add volume to add volume.

Enter the host path, Container path. You can check the Writable option checkbox to
create a writable volume. In the SELinux drop down list, select one of the following
options: No Label, Shared, or Private.

Click Add variable to add environment variable.

Enter the Key and Value.

6. Provide the required information in the Health check tab.

In the Command fields, enter the healthcheck command.

Specify the healthcheck options:

Interval (default is 30 seconds)

Timeout (default is 30 seconds)

Start period

Retries (default is 3)

When unhealthy: Select one of the following options:

No action (default): Take no action.

Restart: Restart the container.

Stop: Stop the container.

Force stop: Force stops the container, it does not wait for the container to exit.

NOTE

The owner of the container is the same as the owner of the pod.

NOTE

CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE

145

NOTE

In the pod, you can inspect containers, change the status of containers, commit
containers, or delete containers.

Verification

Click Podman containers in the main menu. You can see the newly created container in the pod
under the Containers table.

17.10. CHANGING THE STATE OF PODS IN THE WEB CONSOLE

You can change the status of the pod.

Prerequisites

The pod was created.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the pod you want to modify and click the overflow menu and
select the action you want to perform:

Start

Stop

Force stop

Restart

Force restart

Pause

17.11. DELETING PODS IN THE WEB CONSOLE

You can delete an existing pod using the web console.

Prerequisites

The pod exists on your system.

The web console is installed and accessible. For more information, see Installing the web
console and Logging in to the web console .

Red Hat Enterprise Linux 9 Building, running, and managing containers

146

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

The cockpit-podman add-on is installed:

dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the pod you want to delete and click the overflow menu and
select Delete.

3. In the following pop-up window, click Delete to confirm your choice.

WARNING

You remove all containers in the pod.

Verification

Click the Podman containers in the main menu. The deleted pod should not be listed in the
Containers table.



CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE

147

CHAPTER 18. RUNNING SKOPEO, BUILDAH, AND PODMAN IN
A CONTAINER

You can run Skopeo, Buildah, and Podman in a container.

With Skopeo, you can inspect images on a remote registry without having to download the entire image
with all its layers. You can also use Skopeo for copying images, signing images, syncing images, and
converting images across different formats and layer compressions.

Buildah facilitates building OCI container images. With Buildah, you can create a working container,
either from scratch or using an image as a starting point. You can create an image either from a working
container or using the instructions in a Containerfile. You can mount and unmount a working container’s
root filesystem.

With Podman, you can manage containers and images, volumes mounted into those containers, and
pods made from groups of containers. Podman is based on a libpod library for container lifecycle
management. The libpod library provides APIs for managing containers, pods, container images, and
volumes.

Reasons to run Buildah, Skopeo, and Podman in a container:

CI/CD system:

Podman and Skopeo: You can run a CI/CD system inside of Kubernetes or use OpenShift
to build your container images, and possibly distribute those images across different
container registries. To integrate Skopeo into a Kubernetes workflow, you need to run it in a
container.

Buildah: You want to build OCI/container images within a Kubernetes or OpenShift CI/CD
systems that are constantly building images. Previously, people used a Docker socket to
connect to the container engine and perform a docker build command. This was the
equivalent of giving root access to the system without requiring a password which is not
secure. For this reason, Red Hatrecommends using Buildah in a container.

Different versions:

All: You are running an older operating system on the host but you want to run the latest
version of Skopeo, Buildah, or Podman. The solution is to run the container tools in a
container. For example, this is useful for running the latest version of the container tools
provided in Red Hat Enterprise Linux 8 on a Red Hat Enterprise Linux 7 container host
which does not have access to the newest versions natively.

HPC environment:

All: A common restriction in HPC environments is that non-root users are not allowed to
install packages on the host. When you run Skopeo, Buildah, or Podman in a container, you
can perform these specific tasks as a non-root user.

18.1. RUNNING SKOPEO IN A CONTAINER

You can inspect a remote container image using Skopeo. Running Skopeo in a container means that the
container root filesystem is isolated from the host root filesystem. To share or copy files between the
host and container, you have to mount files and directories.

Prerequisites

Red Hat Enterprise Linux 9 Building, running, and managing containers

148

The container-tools meta-package is installed.

Procedure

1. Log in to the registry.redhat.io registry:

$ podman login registry.redhat.io
Username: myuser@mycompany.com
Password: <password>
Login Succeeded!

2. Get the registry.redhat.io/rhel9/skopeo container image:

$ podman pull registry.redhat.io/rhel9/skopeo

3. Inspect a remote container image registry.access.redhat.com/ubi9/ubi using Skopeo:

$ podman run --rm registry.redhat.io/rhel9/skopeo \
 skopeo inspect docker://registry.access.redhat.com/ubi9/ubi
{
 "Name": "registry.access.redhat.com/ubi9/ubi",
 ...
 "Labels": {
 "architecture": "x86_64",
 ...
 "name": "ubi9",
 ...
 "summary": "Provides the latest release of Red Hat Universal Base Image 9.",
 "url":
"https://access.redhat.com/containers/#/registry.access.redhat.com/ubi9/images/8.2-347",
 ...
 },
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 ...
],
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "container=oci"
]
}

The --rm option removes the registry.redhat.io/rhel9/skopeo image after the container exits.

Additional resources

How to run skopeo in a container

18.2. RUNNING SKOPEO IN A CONTAINER USING CREDENTIALS

Working with container registries requires an authentication to access and alter data. Skopeo supports
various ways to specify credentials.

With this approach you can specify credentials on the command line using the --cred

CHAPTER 18. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

149

https://www.redhat.com/sysadmin/how-run-skopeo-container

With this approach you can specify credentials on the command line using the --cred
USERNAME[:PASSWORD] option.

Prerequisites

The container-tools meta-package is installed.

Procedure

Inspect a remote container image using Skopeo against a locked registry:

$ podman run --rm registry.redhat.io/rhel9/skopeo inspect --creds
$USER:$PASSWORD docker://$IMAGE

Additional resources

How to run skopeo in a container

18.3. RUNNING SKOPEO IN A CONTAINER USING AUTHFILES

You can use an authentication file (authfile) to specify credentials. The skopeo login command logs
into the specific registry and stores the authentication token in the authfile. The advantage of using
authfiles is preventing the need to repeatedly enter credentials.

When running on the same host, all container tools such as Skopeo, Buildah, and Podman share the
same authfile. When running Skopeo in a container, you have to either share the authfile on the host by
volume-mounting the authfile in the container, or you have to reauthenticate within the container.

Prerequisites

The container-tools meta-package is installed.

Procedure

Inspect a remote container image using Skopeo against a locked registry:

$ podman run --rm -v $AUTHFILE:/auth.json registry.redhat.io/rhel9/skopeo inspect
docker://$IMAGE

The -v $AUTHFILE:/auth.json option volume-mounts an authfile at /auth.json within the
container. Skopeo can now access the authentication tokens in the authfile on the host and get
secure access to the registry.

Other Skopeo commands work similarly, for example:

Use the skopeo-copy command to specify credentials on the command line for the source and
destination image using the --source-creds and --dest-creds options. It also reads the
/auth.json authfile.

If you want to specify separate authfiles for the source and destination image, use the --
source-authfile and --dest-authfile options and volume-mount those authfiles from the host
into the container.

Additional resources

Red Hat Enterprise Linux 9 Building, running, and managing containers

150

https://www.redhat.com/sysadmin/how-run-skopeo-container

How to run skopeo in a container

18.4. COPYING CONTAINER IMAGES TO OR FROM THE HOST

Skopeo, Buildah, and Podman share the same local container-image storage. If you want to copy
containers to or from the host container storage, you need to mount it into the Skopeo container.

NOTE

The path to the host container storage differs between root
(/var/lib/containers/storage) and non-root users
($HOME/.local/share/containers/storage).

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Copy the registry.access.redhat.com/ubi9/ubi image into your local container storage:

$ podman run --privileged --rm -v
$HOME/.local/share/containers/storage:/var/lib/containers/storage \
registry.redhat.io/rhel9/skopeo skopeo copy \
docker://registry.access.redhat.com/ubi9/ubi containers-
storage:registry.access.redhat.com/ubi9/ubi

The --privileged option disables all security mechanisms. Red Hat recommends only using
this option in trusted environments.

To avoid disabling security mechanisms, export the images to a tarball or any other path-
based image transport and mount them in the Skopeo container:

$ podman save --format oci-archive -o oci.tar $IMAGE

$ podman run --rm -v oci.tar:/oci.tar registry.redhat.io/rhel9/skopeo copy oci-
archive:/oci.tar $DESTINATION

2. Optional: List images in local storage:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9/ubi latest ecbc6f53bba0 8 weeks ago 211 MB

Additional resources

How to run skopeo in a container

18.5. RUNNING BUILDAH IN A CONTAINER

The procedure demonstrates how to run Buildah in a container and create a working container based on
an image.

CHAPTER 18. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

151

https://www.redhat.com/sysadmin/how-run-skopeo-container
https://www.redhat.com/sysadmin/how-run-skopeo-container

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Log in to the registry.redhat.io registry:

$ podman login registry.redhat.io
Username: myuser@mycompany.com
Password: <password>
Login Succeeded!

2. Pull and run the registry.redhat.io/rhel9/buildah image:

podman run --rm --device /dev/fuse -it \
 registry.redhat.io/rhel9/buildah /bin/bash

The --rm option removes the registry.redhat.io/rhel9/buildah image after the container
exits.

The --device option adds a host device to the container.

The sys_chroot - capability to change to a different root directory. It is not included in the
default capabilities of a container.

3. Create a new container using a registry.access.redhat.com/ubi9 image:

buildah from registry.access.redhat.com/ubi9
...
ubi9-working-container

4. Run the ls / command inside the ubi9-working-container container:

buildah run --isolation=chroot ubi9-working-container ls /
bin boot dev etc home lib lib64 lost+found media mnt opt proc root run sbin srv

5. Optional: List all images in a local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9 latest ecbc6f53bba0 5 weeks ago 211 MB

6. Optional: List the working containers and their base images:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
0aaba7192762 * ecbc6f53bba0 registry.access.redhat.com/ub... ubi9-working-container

7. Optional: Push the registry.access.redhat.com/ubi9 image to the a local registry located on
registry.example.com:

buildah push ecbc6f53bba0 registry.example.com:5000/ubi9/ubi

Red Hat Enterprise Linux 9 Building, running, and managing containers

152

Additional resources

Best practices for running Buildah in a container

18.6. PRIVILEGED AND UNPRIVILEGED PODMAN CONTAINERS

By default, Podman containers are unprivileged and cannot, for example, modify parts of the operating
system on the host. This is because by default a container is only allowed limited access to devices.

The following list emphasizes important properties of privileged containers. You can run the privileged
container using the podman run --privileged <image_name> command.

A privileged container is given the same access to devices as the user launching the container.

A privileged container disables the security features that isolate the container from the host.
Dropped Capabilities, limited devices, read-only mount points, Apparmor/SELinux separation,
and Seccomp filters are all disabled.

A privileged container cannot have more privileges than the account that launched them.

Additional resources

How to use the --privileged flag with container engines

podman-run man page

18.7. RUNNING PODMAN WITH EXTENDED PRIVILEGES

If you cannot run your workloads in a rootless environment, you need to run these workloads as a root
user. Running a container with extended privileges should be done judiciously, because it disables all
security features.

Prerequisites

The container-tools meta-package is installed.

Procedure

Run the Podman container in the Podman container:

$ podman run --privileged --name=privileged_podman \
 registry.access.redhat.com//podman podman run ubi9 echo hello
Resolved "ubi9" as an alias (/etc/containers/registries.conf.d/001-rhel-shortnames.conf)
Trying to pull registry.access.redhat.com/ubi9:latest...
...
Storing signatures
hello

Run the outer container named privileged_podman based on the
registry.access.redhat.com/ubi9/podman image.

The --privileged option disables the security features that isolate the container from the host.

Run podman run ubi9 echo hello command to create the inner container based on the ubi9
image.

CHAPTER 18. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

153

https://developers.redhat.com/blog/2019/08/14/best-practices-for-running-buildah-in-a-container
https://www.redhat.com/sysadmin/privileged-flag-container-engines

Notice that the ubi9 short image name was resolved as an alias. As a result, the
registry.access.redhat.com/ubi9:latest image is pulled.

Verification

List all containers:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
52537876caf4 registry.access.redhat.com/ubi9/podman podman run ubi9 e... 30
seconds ago Exited (0) 13 seconds ago privileged_podman

Additional resources

How to use Podman inside of a container

podman-run man page

18.8. RUNNING PODMAN WITH LESS PRIVILEGES

You can run two nested Podman containers without the --privileged option. Running the container
without the --privileged option is a more secure option.

This can be useful when you want to try out different versions of Podman in the most secure way
possible.

Prerequisites

The container-tools meta-package is installed.

Procedure

Run two nested containers:

$ podman run --name=unprivileged_podman --security-opt label=disable \
 --user podman --device /dev/fuse \
 registry.access.redhat.com/ubi9/podman \
 podman run ubi9 echo hello

Run the outer container named unprivileged_podman based on the
registry.access.redhat.com/ubi9/podman image.

The --security-opt label=disable option disables SELinux separation on the host Podman.
SELinux does not allow containerized processes to mount all of the file systems required to run
inside a container.

The --user podman option automatically causes the Podman inside the outer container to run
within the user namespace.

The --device /dev/fuse option uses the fuse-overlayfs package inside the container. This
option adds /dev/fuse to the outer container, so that Podman inside the container can use it.

Run podman run ubi9 echo hello command to create the inner container based on the ubi9

Red Hat Enterprise Linux 9 Building, running, and managing containers

154

https://www.redhat.com/sysadmin/podman-inside-container

Run podman run ubi9 echo hello command to create the inner container based on the ubi9
image.

Notice that the ubi9 short image name was resolved as an alias. As a result, the
registry.access.redhat.com/ubi9:latest image is pulled.

Verification

List all containers:

$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
a47b26290f43 podman run ubi9 e... 30 seconds ago Exited (0) 13 seconds ago
unprivileged_podman

18.9. BUILDING A CONTAINER INSIDE A PODMAN CONTAINER

You can run a container in a container using Podman. This example shows how to use Podman to build
and run another container from within this container. The container will run "Moon-buggy", a simple text-
based game.

Prerequisites

The container-tools meta-package is installed.

You are logged in to the registry.redhat.io registry:

podman login registry.redhat.io

Procedure

1. Run the container based on registry.redhat.io/rhel9/podman image:

podman run --privileged --name podman_container -it \
 registry.redhat.io/rhel9/podman /bin/bash

Run the outer container named podman_container based on the
registry.redhat.io/rhel9/podman image.

The --it option specifies that you want to run an interactive bash shell within a container.

The --privileged option disables the security features that isolate the container from the
host.

2. Create a Containerfile inside the podman_container container:

vi Containerfile
FROM registry.access.redhat.com/ubi9/ubi
RUN dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
RUN dnf -y install moon-buggy && dnf clean all
CMD ["/usr/bin/moon-buggy"]

The commands in the Containerfile cause the following build command to:

CHAPTER 18. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER

155

Build a container from the registry.access.redhat.com/ubi9/ubi image.

Install the epel-release-latest-8.noarch.rpm package.

Install the moon-buggy package.

Set the container command.

3. Build a new container image named moon-buggy using the Containerfile:

podman build -t moon-buggy .

4. Optional: List all images:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/moon-buggy latest c97c58abb564 13 seconds ago 1.67 GB
registry.access.redhat.com/ubi9/ubi latest 4199acc83c6a 132seconds ago 213 MB

5. Run a new container based on a moon-buggy container:

podman run -it --name moon moon-buggy

6. Optional: Tag the moon-buggy image:

podman tag moon-buggy registry.example.com/moon-buggy

7. Optional: Push the moon-buggy image to the registry:

podman push registry.example.com/moon-buggy

Additional resources

Technology preview: Running a container inside a container

Red Hat Enterprise Linux 9 Building, running, and managing containers

156

https://www.redhat.com/sysadmin/container-inside-container

CHAPTER 19. BUILDING CONTAINER IMAGES WITH BUILDAH
Buildah facilitates building OCI container images that meet the OCI Runtime Specification. With
Buildah, you can create a working container, either from scratch or using an image as a starting point.
You can create an image either from a working container, using the instructions in a Containerfile, or by
using a series of Buildah commands that emulate the commands found in a Containerfile.

19.1. THE BUILDAH TOOL

Using Buildah is different from building images with the docker command in the following ways:

No Daemon

Buildah requires no container runtime.

Base image or scratch

You can build an image based on another container or start with an empty image (scratch).

Build tools are external

Buildah does not include build tools within the image itself. As a result, Buildah:

Reduces the size of built images.

Increases security of images by excluding software (for example gcc, make, and dnf) from
the resulting image.

Allows to transport the images using fewer resources because of the reduced image size.

Compatibility

Buildah supports building container images with Dockerfiles allowing for an easy migration from
Docker to Buildah.

NOTE

The default location Buildah uses for container storage is the same as the location the
CRI-O container engine uses for storing local copies of images. As a result, the images
pulled from a registry by either CRI-O or Buildah, or committed by the buildah command,
are stored in the same directory structure. However, even though CRI-O and Buildah are
currently able to share images, they cannot share containers.

Additional resources

Buildah - a tool that facilitates building Open Container Initiative (OCI) container images

Buildah Tutorial 1: Building OCI container images

Buildah Tutorial 2: Using Buildah with container registries

Building with Buildah: Dockerfiles, command line, or scripts

How rootless Buildah works: Building containers in unprivileged environments

19.2. INSTALLING BUILDAH

Install the Buildah tool using the dnf command.

CHAPTER 19. BUILDING CONTAINER IMAGES WITH BUILDAH

157

https://github.com/opencontainers/runtime-spec
https://github.com/projectatomic/buildah
https://github.com/containers/buildah/blob/main/docs/tutorials/01-intro.md
https://github.com/containers/buildah/blob/main/docs/tutorials/02-registries-repositories.md
https://www.redhat.com/sysadmin/building-buildah
https://opensource.com/article/19/3/tips-tricks-rootless-buildah

Prerequisites

The container-tools meta-package is installed.

Procedure

Install the Buildah tool:

dnf -y install buildah

Verification

Display the help message:

buildah -h

19.3. GETTING IMAGES WITH BUILDAH

Use the buildah from command to create a new working container from scratch or based on a specified
image as a starting point.

Prerequisites

The container-tools meta-package is installed.

Procedure

Create a new working container based on the registry.redhat.io/ubi9/ubi image:

buildah from registry.access.redhat.com/ubi9/ubi
Getting image source signatures
Copying blob…
Writing manifest to image destination
Storing signatures
ubi-working-container

Verification

1. List all images in local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9/ubi latest 272209ff0ae5 2 weeks ago 234 MB

2. List the working containers and their base images:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
01eab9588ae1 * 272209ff0ae5 registry.access.redhat.com/ub... ubi-working-container

Additional resources

Red Hat Enterprise Linux 9 Building, running, and managing containers

158

buildah-from man page

buildah-images man page

buildah-containers man page

19.4. BUILDING AN IMAGE FROM A CONTAINERFILE WITH BUILDAH

Use the buildah bud command to build an image using instructions from a Containerfile.

NOTE

The buildah bud command uses a Containerfile if found in the context directory, if it is
not found the buildah bud command uses a Dockerfile; otherwise any file can be
specified with the --file option. The available commands that are usable inside a
Containerfile and a Dockerfile are equivalent.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a Containerfile:

cat Containerfile
FROM registry.access.redhat.com/ubi9/ubi
ADD myecho /usr/local/bin
ENTRYPOINT "/usr/local/bin/myecho"

2. Create a myecho script:

cat myecho
echo "This container works!"

3. Change the access permissions of myecho script:

chmod 755 myecho

4. Build the myecho image using Containerfile in the current directory:

buildah bud -t myecho .
STEP 1: FROM registry.access.redhat.com/ubi9/ubi
STEP 2: ADD myecho /usr/local/bin
STEP 3: ENTRYPOINT "/usr/local/bin/myecho"
STEP 4: COMMIT myecho
...
Storing signatures

Verification

1. List all images:

CHAPTER 19. BUILDING CONTAINER IMAGES WITH BUILDAH

159

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myecho latest b28cd00741b3 About a minute ago 234 MB

2. Run the myecho container based on the localhost/myecho image:

podman run --name=myecho localhost/myecho
This container works!

3. List all containers:

podman ps -a
0d97517428d localhost/myecho 12 seconds ago Exited (0) 13
seconds ago myecho

NOTE

You can use the podman history command to display the information about each layer
used in the image.

Additional resources

buildah-bud man page

19.5. CREATING IMAGES FROM SCRATCH WITH BUILDAH

Instead of starting with a base image, you can create a new container that holds only a minimal amount
of container metadata.

When creating an image from scratch container, consider:

You can copy the executable with no dependencies into the scratch image and make a few
configuration settings to get a minimal container to work.

You must initialize an RPM database and add a release package in the container to use tools like
dnf or rpm.

If you add a lot of packages, consider using the standard UBI or minimal UBI images instead of
scratch images.

Prerequisites

The container-tools meta-package is installed.

Procedure

You can adds a web service httpd to a container and configures it to run.

1. Create an empty container:

buildah from scratch
working-container

2. Mount the working-container container and save the mount point path to the scratchmnt

Red Hat Enterprise Linux 9 Building, running, and managing containers

160

2. Mount the working-container container and save the mount point path to the scratchmnt
variable:

scratchmnt=$(buildah mount working-container)

echo $scratchmnt
/var/lib/containers/storage/overlay/be2eaecf9f74b6acfe4d0017dd5534fde06b2fa8de9ed875691
f6ccc791c1836/merged

3. Initialize an RPM database within the scratch image and add the redhat-release package:

dnf install -y --releasever=8 --installroot=$scratchmnt redhat-release

4. Install the httpd service to the scratch directory:

dnf install -y --setopt=reposdir=/etc/yum.repos.d \
 --installroot=$scratchmnt \
 --setopt=cachedir=/var/cache/dnf httpd

5. Create the $scratchmnt/var/www/html/index.html file:

mkdir -p $scratchmnt/var/www/html
echo "Your httpd container from scratch works!" >
$scratchmnt/var/www/html/index.html

6. Configure working-container to run the httpd daemon directly from the container:

buildah config --cmd "/usr/sbin/httpd -DFOREGROUND" working-container
buildah config --port 80/tcp working-container
buildah commit working-container localhost/myhttpd:latest

Verification

1. List all images in local storage:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myhttpd latest 08da72792f60 2 minutes ago 121 MB

2. Run the localhost/myhttpd image and configure port mappings between the container and the
host system:

podman run -p 8080:80 -d --name myhttpd 08da72792f60

3. Test the web server:

curl localhost:8080
Your httpd container from scratch works!

Additional resources

CHAPTER 19. BUILDING CONTAINER IMAGES WITH BUILDAH

161

buildah-config man page

buildah-commit man page

19.6. REMOVING IMAGES WITH BUILDAH

Use the buildah rmi command to remove locally stored container images. You can remove an image by
its ID or name.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. List all images on your local system:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/johndoe/webserver latest dc5fcc610313 46 minutes ago 263 MB
docker.io/library/mynewecho latest fa2091a7d8b6 17 hours ago 234 MB
docker.io/library/myecho2 latest 4547d2c3e436 6 days ago 234 MB
localhost/myecho latest b28cd00741b3 6 days ago 234 MB
localhost/ubi-micro-httpd latest c6a7678c4139 12 days ago 152 MB
registry.access.redhat.com/ubi9/ubi latest 272209ff0ae5 3 weeks ago 234 MB

2. Remove the localhost/myecho image:

buildah rmi localhost/myecho

To remove multiple images:

buildah rmi docker.io/library/mynewecho docker.io/library/myecho2

To remove all images from your system:

buildah rmi -a

To remove images that have multiple names (tags) associated with them, add the -f option
to remove them:

buildah rmi -f localhost/ubi-micro-httpd

Verification

Ensure that images were removed:

buildah images

Additional resources

buildah-rmi man page

Red Hat Enterprise Linux 9 Building, running, and managing containers

162

CHAPTER 20. WORKING WITH CONTAINERS USING BUILDAH
With Buildah, you can do several operations on a container image or container from the command line.
Examples of operations are: create a working container from scratch or from a container image as a
starting point, create an image from a working container or using a Containerfile, configure a container’s
entrypoint, labels, port, shell, and working directory. You can mount working containers directories for
filesystem manipulation, delete a working container or container image, and more.

You can then create an image from a working container and push the image to the registry.

20.1. RUNNING COMMANDS INSIDE OF THE CONTAINER

Use the buildah run command to execute a command from the container.

Prerequisites

The container-tools meta-package is installed.

A pulled image is available on the local system.

Procedure

Display the operating system version:

buildah run ubi-working-container cat /etc/redhat-release
Red Hat Enterprise Linux release 8.4 (Ootpa)

Additional resources

buildah-run man page

20.2. INSPECTING CONTAINERS AND IMAGES WITH BUILDAH

Use the buildah inspect command to display information about a container or image.

Prerequisites

The container-tools meta-package is installed.

An image was built using instructions from Containerfile. For details, see section Building an
image from a Containerfile with Buildah.

Procedure

Inspect the image:

To inspect the myecho image, enter:

buildah inspect localhost/myecho
 {
 "Type": "buildah 0.0.1",
 "FromImage": "localhost/myecho:latest",
 "FromImageID":

CHAPTER 20. WORKING WITH CONTAINERS USING BUILDAH

163

"b28cd00741b38c92382ee806e1653eae0a56402bcd2c8d31bdcd36521bc267a4",
 "FromImageDigest":
"sha256:0f5b06cbd51b464fabe93ce4fe852a9038cdd7c7b7661cd7efef8f9ae8a59585",
 "Config":
 ...
 "Entrypoint": [
 "/bin/sh",
 "-c",
 "\"/usr/local/bin/myecho\""
],
 ...
}

To inspect the working container from the myecho image:

i. Create a working container based on the localhost/myecho image:

buildah from localhost/myecho

ii. Inspect the myecho-working-container container:

buildah inspect ubi-working-container
{
 "Type": "buildah 0.0.1",
 "FromImage": "registry.access.redhat.com/ubi8/ubi:latest",
 "FromImageID":
"272209ff0ae5fe54c119b9c32a25887e13625c9035a1599feba654aa7638262d",
 "FromImageDigest":
"sha256:77623387101abefbf83161c7d5a0378379d0424b2244009282acb39d42f1fe13
",
 "Config":
 ...
"Container": "ubi-working-container",
"ContainerID":
"01eab9588ae1523746bb706479063ba103f6281ebaeeccb5dc42b70e450d5ad0",
"ProcessLabel": "system_u:system_r:container_t:s0:c162,c1000",
"MountLabel": "system_u:object_r:container_file_t:s0:c162,c1000",
...
}

Additional resources

buildah-inspect man page

20.3. MODIFYING A CONTAINER USING BUILDAH MOUNT

Use the buildah mount command to display information about a container or image.

Prerequisites

The container-tools meta-package is installed.

An image built using instructions from Containerfile. For details, see section Building an image
from a Containerfile with Buildah.

Red Hat Enterprise Linux 9 Building, running, and managing containers

164

Procedure

1. Create a working container based on the registry.access.redhat.com/ubi8/ubi image and save
the name of the container to the mycontainer variable:

mycontainer=$(buildah from localhost/myecho)

echo $mycontainer
myecho-working-container

2. Mount the myecho-working-container container and save the mount point path to the
mymount variable:

mymount=$(buildah mount $mycontainer)

echo $mymount
/var/lib/containers/storage/overlay/c1709df40031dda7c49e93575d9c8eebcaa5d8129033a58e5
b6a95019684cc25/merged

3. Modify the myecho script and make it executable:

echo 'echo "We modified this container."' >> $mymount/usr/local/bin/myecho
chmod +x $mymount/usr/local/bin/myecho

4. Create the myecho2 image from the myecho-working-container container:

buildah commit $mycontainer containers-storage:myecho2

Verification

1. List all images in local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/myecho2 latest 4547d2c3e436 4 minutes ago 234 MB
localhost/myecho latest b28cd00741b3 56 minutes ago 234 MB

2. Run the myecho2 container based on the docker.io/library/myecho2 image:

podman run --name=myecho2 docker.io/library/myecho2
This container works!
We even modified it.

Additional resources

buildah-mount man page

buildah-commit man page

20.4. MODIFYING A CONTAINER USING BUILDAH COPY AND
BUILDAH CONFIG

Use buildah copy command to copy files to a container without mounting it. You can then configure

CHAPTER 20. WORKING WITH CONTAINERS USING BUILDAH

165

Use buildah copy command to copy files to a container without mounting it. You can then configure
the container using the buildah config command to run the script you created by default.

Prerequisites

The container-tools meta-package is installed.

An image built using instructions from Containerfile. For details, see section Building an image
from a Containerfile with Buildah.

Procedure

1. Create a script named newecho and make it executable:

cat newecho
echo "I changed this container"
chmod 755 newecho

2. Create a new working container:

buildah from myecho:latest
myecho-working-container-2

3. Copy the newecho script to /usr/local/bin directory inside the container:

buildah copy myecho-working-container-2 newecho /usr/local/bin

4. Change the configuration to use the newecho script as the new entrypoint:

buildah config --entrypoint "/bin/sh -c /usr/local/bin/newecho" myecho-working-
container-2

5. Optional: Run the myecho-working-container-2 container whixh triggers the newecho script
to be executed:

buildah run myecho-working-container-2 -- sh -c '/usr/local/bin/newecho'
I changed this container

6. Commit the myecho-working-container-2 container to a new image called mynewecho:

buildah commit myecho-working-container-2 containers-storage:mynewecho

Verification

List all images in local storage:

buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/mynewecho latest fa2091a7d8b6 8 seconds ago 234 MB

Additional resources

Red Hat Enterprise Linux 9 Building, running, and managing containers

166

buildah-copy man page

buildah-config man page

buildah-commit man page

buildah-run man page

20.5. PUSHING CONTAINERS TO A PRIVATE REGISTRY

Use buildah push command to push an image from local storage to a public or private repository.

Prerequisites

The container-tools meta-package is installed.

An image was built using instructions from Containerfile. For details, see section Building an
image from a Containerfile with Buildah.

Procedure

1. Create the local registry on your machine:

podman run -d -p 5000:5000 registry:2

2. Push the myecho:latest image to the localhost registry:

buildah push --tls-verify=false myecho:latest localhost:5000/myecho:latest
Getting image source signatures
Copying blob sha256:e4efd0...
...
Writing manifest to image destination
Storing signatures

Verification

1. List all images in the localhost repository:

curl http://localhost:5000/v2/_catalog
{"repositories":["myecho2]}

curl http://localhost:5000/v2/myecho2/tags/list
{"name":"myecho","tags":["latest"]}

2. Inspect the docker://localhost:5000/myecho:latest image:

skopeo inspect --tls-verify=false docker://localhost:5000/myecho:latest | less
{
 "Name": "localhost:5000/myecho",
 "Digest": "sha256:8999ff6050...",
 "RepoTags": [
 "latest"
],

CHAPTER 20. WORKING WITH CONTAINERS USING BUILDAH

167

 "Created": "2021-06-28T14:44:05.919583964Z",
 "DockerVersion": "",
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.redhat.io",
 ...
}

3. Pull the localhost:5000/myecho image:

podman pull --tls-verify=false localhost:5000/myecho2
podman run localhost:5000/myecho2
This container works!

Additional resources

buildah-push man page

20.6. PUSHING CONTAINERS TO THE DOCKER HUB

Use your Docker Hub credentials to push and pull images from the Docker Hub with the buildah
command.

Prerequisites

The container-tools meta-package is installed.

An image built using instructions from Containerfile. For details, see section Building an image
from a Containerfile with Buildah.

Procedure

1. Push the docker.io/library/myecho:latest to your Docker Hub. Replace username and
password with your Docker Hub credentials:

buildah push --creds username:password \
 docker.io/library/myecho:latest docker://testaccountXX/myecho:latest

Verification

Get and run the docker.io/testaccountXX/myecho:latest image:

Using Podman tool:

podman run docker.io/testaccountXX/myecho:latest
This container works!

Using Buildah and Podman tools:

buildah from docker.io/testaccountXX/myecho:latest
myecho2-working-container-2
podman run myecho-working-container-2

Red Hat Enterprise Linux 9 Building, running, and managing containers

168

Additional resources

buildah-push man page

20.7. REMOVING CONTAINERS WITH BUILDAH

Use the buildah rm command to remove containers. You can specify containers for removal with the
container ID or name.

Prerequisites

The container-tools meta-package is installed.

At least one container has been stopped.

Procedure

1. List all containers:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
05387e29ab93 * c37e14066ac7 docker.io/library/myecho:latest myecho-working-
container

2. Remove the myecho-working-container container:

buildah rm myecho-working-container
05387e29ab93151cf52e9c85c573f3e8ab64af1592b1ff9315db8a10a77d7c22

Verification

Ensure that containers were removed:

buildah containers

Additional resources

buildah-rm man page

CHAPTER 20. WORKING WITH CONTAINERS USING BUILDAH

169

CHAPTER 21. MONITORING CONTAINERS
Use Podman commands to manage a Podman environment. With that, you can determine the health of
the container, by displaying system and pod information, and monitoring Podman events.

21.1. USING A HEALTH CHECK ON A CONTAINER

You can use the health check to determine the health or readiness of the process running inside the
container.

If the health check succeeds, the container is marked as "healthy"; otherwise, it is "unhealthy". You can
compare a health check with running the podman exec command and examining the exit code. The zero
exit value means that the container is "healthy".

Health checks can be set when building an image using the HEALTHCHECK instruction in the
Containerfile or when creating the container on the command line. You can display the health-check
status of a container using the podman inspect or podman ps commands.

A health check consists of six basic components:

Command

Retries

Interval

Start-period

Timeout

Container recovery

The description of health check components follows:

Command (--health-cmd option)

Podman executes the command inside the target container and waits for the exit code.

The other five components are related to the scheduling of the health check and they are optional.

Retries (--health-retries option)

Defines the number of consecutive failed health checks that need to occur before the container is
marked as "unhealthy". A successful health check resets the retry counter.

Interval (--health-interval option)

Describes the time between running the health check command. Note that small intervals cause your
system to spend a lot of time running health checks. The large intervals cause struggles with
catching time outs.

Start-period (--health-start-period option)

Describes the time between when the container starts and when you want to ignore health check
failures.

Timeout (--health-timeout option)

Describes the period of time the health check must complete before being considered unsuccessful.

NOTE

Red Hat Enterprise Linux 9 Building, running, and managing containers

170

NOTE

The values of the Retries, Interval, and Start-period components are time durations, for
example “30s” or “1h15m”. Valid time units are "ns," "us," or "µs", "ms," "s," "m," and "h".

Container recovery (--health-on-failure option)

Determines which actions to perform when the status of a container is unhealthy. When the
application fails, Podman restarts it automatically to provide robustness. The --health-on-failure
option supports four actions:

none: Take no action, this is the default action.

kill: Kill the container.

restart: Restart the container.

stop: Stop the container.

NOTE

The --health-on-failure option is available in Podman version 4.2 and later.

WARNING

Do not combine the restart action with the --restart option. When running inside of
a systemd unit, consider using the kill or stop action instead, to make use of
systemd restart policy.

Health checks run inside the container. Health checks only make sense if you know what the health state
of the service is and can differentiate between a successful and unsuccessful health check.

Additional resources

podman-healthcheck man page

podman-run man page

Podman at the edge: Keeping services alive with custom healthcheck actions

Monitoring container vitality and availability with Podman

21.2. PERFORMING A HEALTH CHECK USING THE COMMAND LINE

You can set a health check when creating the container on the command line.

Prerequisites

The container-tools meta-package is installed.



CHAPTER 21. MONITORING CONTAINERS

171

https://www.redhat.com/sysadmin/podman-edge-healthcheck
https://developers.redhat.com/blog/2019/04/18/monitoring-container-vitality-and-availability-with-podman

Procedure

1. Define a health check:

$ podman run -dt --name=hc-container -p 8080:8080 --health-cmd='curl
http://localhost:8080 || exit 1' --health-interval=0
registry.access.redhat.com/ubi8/httpd-24

The --health-cmd option sets a health check command for the container.

The --health-interval=0 option with 0 value indicates that you want to run the health check
manually.

2. Check the health status of the hc-container container:

Using the podman inspect command:

$ podman inspect --format='{{json .State.Health.Status}}' hc-container
healthy

Using the podman ps command:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
a680c6919fe localhost/hc-container:latest /usr/bin/run-http... 2 minutes ago Up 2
minutes (healthy) hc-container

Using the podman healthcheck run command:

$ podman healthcheck run hc-container
healthy

Additional resources

podman-healthcheck man page

podman-run man page

Podman at the edge: Keeping services alive with custom healthcheck actions

Monitoring container vitality and availability with Podman

21.3. PERFORMING A HEALTH CHECK USING A CONTAINERFILE

You can set a health check by using the HEALTHCHECK instruction in the Containerfile.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a Containerfile:

Red Hat Enterprise Linux 9 Building, running, and managing containers

172

https://www.redhat.com/sysadmin/podman-edge-healthcheck
https://developers.redhat.com/blog/2019/04/18/monitoring-container-vitality-and-availability-with-podman

$ cat Containerfile
FROM registry.access.redhat.com/ubi8/httpd-24
EXPOSE 8080
HEALTHCHECK CMD curl http://localhost:8080 || exit 1

NOTE

The HEALTHCHECK instruction is supported only for the docker image format.
For the oci image format, the instruction is ignored.

2. Build the container and add an image name:

$ podman build --format=docker -t hc-container .
STEP 1/3: FROM registry.access.redhat.com/ubi8/httpd-24
STEP 2/3: EXPOSE 8080
--> 5aea97430fd
STEP 3/3: HEALTHCHECK CMD curl http://localhost:8080 || exit 1
COMMIT health-check
Successfully tagged localhost/health-check:latest
a680c6919fe6bf1a79219a1b3d6216550d5a8f83570c36d0dadfee1bb74b924e

3. Run the container:

$ podman run -dt --name=hc-container localhost/hc-container

4. Check the health status of the hc-container container:

Using the podman inspect command:

$ podman inspect --format='{{json .State.Health.Status}}' hc-container
healthy

Using the podman ps command:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
a680c6919fe localhost/hc-container:latest /usr/bin/run-http... 2 minutes ago Up 2
minutes (healthy) hc-container

Using the podman healthcheck run command:

$ podman healthcheck run hc-container
healthy

Additional resources

podman-healthcheck man page

podman-run man page

Podman at the edge: Keeping services alive with custom healthcheck actions

CHAPTER 21. MONITORING CONTAINERS

173

https://www.redhat.com/sysadmin/podman-edge-healthcheck

Monitoring container vitality and availability with Podman

21.4. DISPLAYING PODMAN SYSTEM INFORMATION

The podman system command enables you to manage the Podman systems by displaying system
information.

Prerequisites

The container-tools meta-package is installed.

Procedure

Display Podman system information:

To show Podman disk usage, enter:

$ podman system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 3 2 1.085GB 233.4MB (0%)
Containers 2 0 28.17kB 28.17kB (100%)
Local Volumes 3 0 0B 0B (0%)

To show detailed information about space usage, enter:

$ podman system df -v
Images space usage:

REPOSITORY TAG IMAGE ID CREATED SIZE
SHARED SIZE UNIQUE SIZE CONTAINERS
registry.access.redhat.com/ubi9 latest b1e63aaae5cf 13 days 233.4MB
233.4MB 0B 0
registry.access.redhat.com/ubi9/httpd-24 latest 0d04740850e8 13 days 461.5MB
0B 461.5MB 1
registry.redhat.io/rhel8/podman latest dce10f591a2d 13 days 390.6MB
233.4MB 157.2MB 1

Containers space usage:

CONTAINER ID IMAGE COMMAND LOCAL VOLUMES SIZE
CREATED STATUS NAMES
311180ab99fb 0d04740850e8 /usr/bin/run-httpd 0 28.17kB 16 hours
exited hc1
bedb6c287ed6 dce10f591a2d podman run ubi9 echo hello 0 0B 11 hours
configured dazzling_tu

Local Volumes space usage:

VOLUME NAME LINKS SIZE
76de0efa83a3dae1a388b9e9e67161d28187e093955df185ea228ad0b3e435d0 0
0B
8a1b4658aecc9ff38711a2c7f2da6de192c5b1e753bb7e3b25e9bf3bb7da8b13 0
0B
d9cab4f6ccbcf2ac3cd750d2efff9d2b0f29411d430a119210dd242e8be20e26 0 0B

Red Hat Enterprise Linux 9 Building, running, and managing containers

174

https://developers.redhat.com/blog/2019/04/18/monitoring-container-vitality-and-availability-with-podman

To display information about the host, current storage stats, and build of Podman, enter:

$ podman system info
host:
 arch: amd64
 buildahVersion: 1.22.3
 cgroupControllers: []
 cgroupManager: cgroupfs
 cgroupVersion: v1
 conmon:
 package: conmon-2.0.29-1.module+el8.5.0+12381+e822eb26.x86_64
 path: /usr/bin/conmon
 version: 'conmon version 2.0.29, commit:
7d0fa63455025991c2fc641da85922fde889c91b'
 cpus: 2
 distribution:
 distribution: '"rhel"'
 version: "8.5"
 eventLogger: file
 hostname: localhost.localdomain
 idMappings:
 gidmap:
 - container_id: 0
 host_id: 1000
 size: 1
 - container_id: 1
 host_id: 100000
 size: 65536
 uidmap:
 - container_id: 0
 host_id: 1000
 size: 1
 - container_id: 1
 host_id: 100000
 size: 65536
 kernel: 4.18.0-323.el8.x86_64
 linkmode: dynamic
 memFree: 352288768
 memTotal: 2819129344
 ociRuntime:
 name: runc
 package: runc-1.0.2-1.module+el8.5.0+12381+e822eb26.x86_64
 path: /usr/bin/runc
 version: |-
 runc version 1.0.2
 spec: 1.0.2-dev
 go: go1.16.7
 libseccomp: 2.5.1
 os: linux
 remoteSocket:
 path: /run/user/1000/podman/podman.sock
 security:
 apparmorEnabled: false
 capabilities:
CAP_NET_RAW,CAP_CHOWN,CAP_DAC_OVERRIDE,CAP_FOWNER,CAP_FSETID,C
AP_KILL,CAP_NET_BIND_SERVICE,CAP_SETFCAP,CAP_SETGID,CAP_SETPCAP,CA

CHAPTER 21. MONITORING CONTAINERS

175

P_SETUID,CAP_SYS_CHROOT
 rootless: true
 seccompEnabled: true
 seccompProfilePath: /usr/share/containers/seccomp.json
 selinuxEnabled: true
 serviceIsRemote: false
 slirp4netns:
 executable: /usr/bin/slirp4netns
 package: slirp4netns-1.1.8-1.module+el8.5.0+12381+e822eb26.x86_64
 version: |-
 slirp4netns version 1.1.8
 commit: d361001f495417b880f20329121e3aa431a8f90f
 libslirp: 4.4.0
 SLIRP_CONFIG_VERSION_MAX: 3
 libseccomp: 2.5.1
 swapFree: 3113668608
 swapTotal: 3124752384
 uptime: 11h 24m 12.52s (Approximately 0.46 days)
registries:
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - registry.centos.org
 - docker.io
store:
 configFile: /home/user/.config/containers/storage.conf
 containerStore:
 number: 2
 paused: 0
 running: 0
 stopped: 2
 graphDriverName: overlay
 graphOptions:
 overlay.mount_program:
 Executable: /usr/bin/fuse-overlayfs
 Package: fuse-overlayfs-1.7.1-1.module+el8.5.0+12381+e822eb26.x86_64
 Version: |-
 fusermount3 version: 3.2.1
 fuse-overlayfs: version 1.7.1
 FUSE library version 3.2.1
 using FUSE kernel interface version 7.26
 graphRoot: /home/user/.local/share/containers/storage
 graphStatus:
 Backing Filesystem: xfs
 Native Overlay Diff: "false"
 Supports d_type: "true"
 Using metacopy: "false"
 imageStore:
 number: 3
 runRoot: /run/user/1000/containers
 volumePath: /home/user/.local/share/containers/storage/volumes
version:
 APIVersion: 3.3.1
 Built: 1630360721
 BuiltTime: Mon Aug 30 23:58:41 2021
 GitCommit: ""

Red Hat Enterprise Linux 9 Building, running, and managing containers

176

 GoVersion: go1.16.7
 OsArch: linux/amd64
 Version: 3.3.1

To remove all unused containers, images and volume data, enter:

$ podman system prune
WARNING! This will remove:
 - all stopped containers
 - all stopped pods
 - all dangling images
 - all build cache
Are you sure you want to continue? [y/N] y

The podman system prune command removes all unused containers (both dangling
and unreferenced), pods and optionally, volumes from local storage.

Use the --all option to delete all unused images. Unused images are dangling images
and any image that does not have any containers based on it.

Use the --volume option to prune volumes. By default, volumes are not removed to
prevent important data from being deleted if there is currently no container using the
volume.

Additional resources

podman-system-df man page

podman-system-info man page

podman-system-prune man page

21.5. PODMAN EVENT TYPES

You can monitor events that occur in Podman. Several event types exist and each event type reports
different statuses.

The container event type reports the following statuses:

attach

checkpoint

cleanup

commit

create

exec

export

import

init

CHAPTER 21. MONITORING CONTAINERS

177

kill

mount

pause

prune

remove

restart

restore

start

stop

sync

unmount

unpause

The pod event type reports the following statuses:

create

kill

pause

remove

start

stop

unpause

The image event type reports the following statuses:

prune

push

pull

save

remove

tag

untag

The system type reports the following statuses:

Red Hat Enterprise Linux 9 Building, running, and managing containers

178

refresh

renumber

The volume type reports the following statuses:

create

prune

remove

Additional resources

podman-events man page

21.6. MONITORING PODMAN EVENTS

You can monitor and print events that occur in Podman using the podman events command. Each
event will include a timestamp, a type, a status, name, if applicable, and image, if applicable.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Run the myubi container:

$ podman run -q --rm --name=myubi registry.access.redhat.com/ubi8/ubi:latest

2. Display the Podman events:

To display all Podman events, enter:

$ now=$(date --iso-8601=seconds)
$ podman events --since=now --stream=false
2023-03-08 14:27:20.696167362 +0100 CET container create
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72fe09
(image=registry.access.redhat.com/ubi8/ubi:latest, name=myubi,...)
2023-03-08 14:27:20.652325082 +0100 CET image pull
registry.access.redhat.com/ubi8/ubi:latest
2023-03-08 14:27:20.795695396 +0100 CET container init
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72fe09
(image=registry.access.redhat.com/ubi8/ubi:latest, name=myubi...)
2023-03-08 14:27:20.809205161 +0100 CET container start
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72fe09
(image=registry.access.redhat.com/ubi8/ubi:latest, name=myubi...)
2023-03-08 14:27:20.809903022 +0100 CET container attach
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72fe09
(image=registry.access.redhat.com/ubi8/ubi:latest, name=myubi...)
2023-03-08 14:27:20.831710446 +0100 CET container died
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72fe09
(image=registry.access.redhat.com/ubi8/ubi:latest, name=myubi...)

CHAPTER 21. MONITORING CONTAINERS

179

2023-03-08 14:27:20.913786892 +0100 CET container remove
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72fe09
(image=registry.access.redhat.com/ubi8/ubi:latest, name=myubi...)

The --stream=false option ensures that the podman events command exits when reading
the last known event.

You can see several events that happened when you enter the podman run command:

container create when creating a new container.

image pull when pulling an image if the container image is not present in the local
storage.

container init when initializing the container in the runtime and setting a network.

container start when starting the container.

container attach when attaching to the terminal of a container. That is because the
container runs in the foreground.

container died is emitted when the container exits.

container remove because the --rm flag was used to remove the container after it
exits.

You can also use the journalctl command to display Podman events:

$ journalctl --user -r SYSLOG_IDENTIFIER=podman
Mar 08 14:27:20 fedora podman[129324]: 2023-03-08 14:27:20.913786892 +0100 CET
m=+0.066920979 container remove
...
Mar 08 14:27:20 fedora podman[129289]: 2023-03-08 14:27:20.696167362 +0100 CET
m=+0.079089208 container create
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72f>

To show only Podman create events, enter:

$ podman events --filter event=create
2023-03-08 14:27:20.696167362 +0100 CET container create
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72fe09
(image=registry.access.redhat.com/ubi8/ubi:latest, name=myubi,...)

You can also use the journalctl command to display Podman create events:

$ journalctl --user -r PODMAN_EVENT=create
Mar 08 14:27:20 fedora podman[129289]: 2023-03-08 14:27:20.696167362 +0100 CET
m=+0.079089208 container create
d4748226a2bcd271b1bc4b9f88b54e8271c13ffea9b30529968291c62d72f>

Additional resources

podman-events man page

Container Events and Auditing

Red Hat Enterprise Linux 9 Building, running, and managing containers

180

https://www.redhat.com/sysadmin/podman-container-events-auditing

21.7. USING PODMAN EVENTS FOR AUDITING

Previously, the events had to be connected to an event to interpret them correctly. For example, the
container-create event had to be linked with an image-pull event to know which image had been used.
The container-create event also did not include all data, for example, the security settings, volumes,
mounts, and so on.

Beginning with Podman v4.4, you can gather all relevant information about a container directly from a
single event and journald entry. The data is in JSON format, the same as from the podman container
inspect command and includes all configuration and security settings of a container. You can configure
Podman to attach the container-inspect data for auditing purposes.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Modify the ~/.config/containers/containers.conf file and add the
events_container_create_inspect_data=true option to the [engine] section:

$ cat ~/.config/containers/containers.conf
[engine]
events_container_create_inspect_data=true

For the system-wide configuration, modify the /etc/containers/containers.conf or
/usr/share/container/containers.conf file.

2. Create the container:

$ podman create registry.access.redhat.com/ubi8/ubi:latest
19524fe3c145df32d4f0c9af83e7964e4fb79fc4c397c514192d9d7620a36cd3

3. Display the Podman events:

Using the podman events command:

$ now=$(date --iso-8601=seconds)
$ podman events --since $now --stream=false --format "{{.ContainerInspectData}}"
| jq “.Config.CreateCommand"
[
 "/usr/bin/podman",
 "create",
 "registry.access.redhat.com/ubi8"
]

The --format "{{.ContainerInspectData}}" option displays the inspect data.

The jq ".Config.CreateCommand" transforms the JSON data into a more readable
format and displays the parameters for the podman create command.

Using the journalctl command:

$ journalctl --user -r PODMAN_EVENT=create --all -o json | jq
".PODMAN_CONTAINER_INSPECT_DATA | fromjson" | jq

CHAPTER 21. MONITORING CONTAINERS

181

".Config.CreateCommand"
[
 "/usr/bin/podman",
 "create",
 "registry.access.redhat.com/ubi8"
]

The output data for the podman events and journalctl commands are the same.

Additional resources

podman-events man page

containers.conf man page

Container Events and Auditing

Red Hat Enterprise Linux 9 Building, running, and managing containers

182

https://www.redhat.com/sysadmin/podman-container-events-auditing

CHAPTER 22. CREATING AND RESTORING CONTAINER
CHECKPOINTS

Checkpoint/Restore In Userspace (CRIU) is a software that enables you to set a checkpoint on a running
container or an individual application and store its state to disk. You can use data saved to restore the
container after a reboot at the same point in time it was checkpointed.

WARNING

The kernel does not support pre-copy checkpointing on AArch64.

22.1. CREATING AND RESTORING A CONTAINER CHECKPOINT
LOCALLY

This example is based on a Python based web server which returns a single integer which is incremented
after each request.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a Python based server:

cat counter.py
#!/usr/bin/python3

import http.server

counter = 0

class handler(http.server.BaseHTTPRequestHandler):
 def do_GET(s):
 global counter
 s.send_response(200)
 s.send_header('Content-type', 'text/html')
 s.end_headers()
 s.wfile.write(b'%d\n' % counter)
 counter += 1

server = http.server.HTTPServer(('', 8088), handler)
server.serve_forever()

2. Create a container with the following definition:

cat Containerfile



CHAPTER 22. CREATING AND RESTORING CONTAINER CHECKPOINTS

183

FROM registry.access.redhat.com/ubi9/ubi

COPY counter.py /home/counter.py

RUN useradd -ms /bin/bash counter

RUN dnf -y install python3 && chmod 755 /home/counter.py

USER counter
ENTRYPOINT /home/counter.py

The container is based on the Universal Base Image (UBI 8) and uses a Python based server.

3. Build the container:

podman build . --tag counter

Files counter.py and Containerfile are the input for the container build process (podman
build). The built image is stored locally and tagged with the tag counter.

4. Start the container as root:

podman run --name criu-test --detach counter

5. To list all running containers, enter:

podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
e4f82fd84d48 localhost/counter:latest 5 seconds ago Up 4 seconds ago criu-test

6. Display IP address of the container:

podman inspect criu-test --format "{{.NetworkSettings.IPAddress}}"
10.88.0.247

7. Send requests to the container:

curl 10.88.0.247:8088
0
curl 10.88.0.247:8088
1

8. Create a checkpoint for the container:

podman container checkpoint criu-test

9. Reboot the system.

10. Restore the container:

podman container restore --keep criu-test

11. Send requests to the container:

Red Hat Enterprise Linux 9 Building, running, and managing containers

184

curl 10.88.0.247:8080
2
curl 10.88.0.247:8080
3
curl 10.88.0.247:8080
4

The result now does not start at 0 again, but continues at the previous value.

This way you can easily save the complete container state through a reboot.

Additional resources

Podman checkpoint

22.2. REDUCING STARTUP TIME USING CONTAINER RESTORE

You can use container migration to reduce startup time of containers which require a certain time to
initialize. Using a checkpoint, you can restore the container multiple times on the same host or on
different hosts. This example is based on the container from the Creating and restoring a container
checkpoint locally.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Create a checkpoint of the container, and export the checkpoint image to a tar.gz file:

podman container checkpoint criu-test --export /tmp/chkpt.tar.gz

2. Restore the container from the tar.gz file:

podman container restore --import /tmp/chkpt.tar.gz --name counter1
podman container restore --import /tmp/chkpt.tar.gz --name counter2
podman container restore --import /tmp/chkpt.tar.gz --name counter3

The --name (-n) option specifies a new name for containers restored from the exported
checkpoint.

3. Display ID and name of each container:

podman ps -a --format "{{.ID}} {{.Names}}"
a8b2e50d463c counter3
faabc5c27362 counter2
2ce648af11e5 counter1

4. Display IP address of each container:

#� podman inspect counter1 --format "{{.NetworkSettings.IPAddress}}"
10.88.0.248

CHAPTER 22. CREATING AND RESTORING CONTAINER CHECKPOINTS

185

https://podman.io/docs/checkpoint
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-and-restoring-a-container-checkpoint-locally_assembly_creating-and-restoring-container-checkpoints

#� podman inspect counter2 --format "{{.NetworkSettings.IPAddress}}"
10.88.0.249

#� podman inspect counter3 --format "{{.NetworkSettings.IPAddress}}"
10.88.0.250

5. Send requests to each container:

#� curl 10.88.0.248:8080
4
#� curl 10.88.0.249:8080
4
#� curl 10.88.0.250:8080
4

Note, that the result is 4 in all cases, because you are working with different containers restored
from the same checkpoint.

Using this approach, you can quickly start up stateful replicas of the initially checkpointed container.

Additional resources

Container migration with Podman on RHEL

22.3. MIGRATING CONTAINERS AMONG SYSTEMS

You can migrate the running containers from one system to another, without losing the state of the
applications running in the container. This example is based on the container from the Creating and
restoring a container checkpoint locally section tagged with counter.

IMPORTANT

Migrating containers among systems with the podman container checkpoint and
podman container restore commands is supported only when the configurations of the
systems match completely, as shown below:

Podman version

OCI runtime (runc/crun)

Network stack (CNI/Netavark)

Cgroups version

kernel version

CPU features

You can migrate to a CPU with more features, but not to a CPU which does not have a
certain feature that you are using. The low-level tool doing the checkpointing (CRIU) has
the possibility to check for CPU feature compatibility: https://criu.org/Cpuinfo.

Prerequisites

The container-tools meta-package is installed.

Red Hat Enterprise Linux 9 Building, running, and managing containers

186

https://www.redhat.com/en/blog/container-migration-podman-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-and-restoring-a-container-checkpoint-locally_assembly_creating-and-restoring-container-checkpoints
https://criu.org/Cpuinfo

The following steps are not necessary if the container is pushed to a registry as Podman will
automatically download the container from a registry if it is not available locally. This example
does not use a registry, you have to export previously built and tagged container (see Creating
and restoring a container checkpoint locally).

Export previously built container:

podman save --output counter.tar counter

Copy exported container image to the destination system (other_host):

scp counter.tar other_host:

Import exported container on the destination system:

ssh other_host podman load --input counter.tar

Now the destination system of this container migration has the same container image
stored in its local container storage.

Procedure

1. Start the container as root:

podman run --name criu-test --detach counter

2. Display IP address of the container:

podman inspect criu-test --format "{{.NetworkSettings.IPAddress}}"
10.88.0.247

3. Send requests to the container:

curl 10.88.0.247:8080
0
curl 10.88.0.247:8080
1

4. Create a checkpoint of the container, and export the checkpoint image to a tar.gz file:

podman container checkpoint criu-test --export /tmp/chkpt.tar.gz

5. Copy the checkpoint archive to the destination host:

scp /tmp/chkpt.tar.gz other_host:/tmp/

6. Restore the checkpoint on the destination host (other_host):

podman container restore --import /tmp/chkpt.tar.gz

7. Send a request to the container on the destination host (other_host):

CHAPTER 22. CREATING AND RESTORING CONTAINER CHECKPOINTS

187

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_creating-and-restoring-a-container-checkpoint-locally_assembly_creating-and-restoring-container-checkpoints

curl 10.88.0.247:8080
2

As a result, the stateful container has been migrated from one system to another without losing its state.

Additional resources

Container migration with Podman on RHEL

Red Hat Enterprise Linux 9 Building, running, and managing containers

188

https://www.redhat.com/en/blog/container-migration-podman-rhel

CHAPTER 23. USING PODMAN IN HPC ENVIRONMENT
You can use Podman with Open MPI (Message Passing Interface) to run containers in a High
Performance Computing (HPC) environment.

23.1. USING PODMAN WITH MPI

The example is based on the ring.c program taken from Open MPI. In this example, a value is passed
around by all processes in a ring-like fashion. Each time the message passes rank 0, the value is
decremented. When each process receives the 0 message, it passes it on to the next process and then
quits. By passing the 0 first, every process gets the 0 message and can quit normally.

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Install Open MPI:

dnf install openmpi

2. To activate the environment modules, type:

$. /etc/profile.d/modules.sh

3. Load the mpi/openmpi-x86_64 module:

$ module load mpi/openmpi-x86_64

Optionally, to automatically load mpi/openmpi-x86_64 module, add this line to the .bashrc file:

$ echo "module load mpi/openmpi-x86_64" >> .bashrc

4. To combine mpirun and podman, create a container with the following definition:

$ cat Containerfile
FROM registry.access.redhat.com/ubi9/ubi

RUN dnf -y install openmpi-devel wget && \
 dnf clean all

RUN wget https://raw.githubusercontent.com/open-mpi/ompi/master/test/simple/ring.c && \
 /usr/lib64/openmpi/bin/mpicc ring.c -o /home/ring && \
 rm -f ring.c

5. Build the container:

$ podman build --tag=mpi-ring .

6. Start the container. On a system with 4 CPUs this command starts 4 containers:

CHAPTER 23. USING PODMAN IN HPC ENVIRONMENT

189

https://github.com/open-mpi/ompi/blob/main/test/simple/ring.c

$ mpirun \
 --mca orte_tmpdir_base /tmp/podman-mpirun \
 podman run --env-host \
 -v /tmp/podman-mpirun:/tmp/podman-mpirun \
 --userns=keep-id \
 --net=host --pid=host --ipc=host \
 mpi-ring /home/ring
Rank 2 has cleared MPI_Init
Rank 2 has completed ring
Rank 2 has completed MPI_Barrier
Rank 3 has cleared MPI_Init
Rank 3 has completed ring
Rank 3 has completed MPI_Barrier
Rank 1 has cleared MPI_Init
Rank 1 has completed ring
Rank 1 has completed MPI_Barrier
Rank 0 has cleared MPI_Init
Rank 0 has completed ring
Rank 0 has completed MPI_Barrier

As a result, mpirun starts up 4 Podman containers and each container is running one instance of
the ring binary. All 4 processes are communicating over MPI with each other.

Additional resources

Podman in HPC environments

23.2. THE MPIRUN OPTIONS

The following mpirun options are used to start the container:

--mca orte_tmpdir_base /tmp/podman-mpirun line tells Open MPI to create all its temporary
files in /tmp/podman-mpirun and not in /tmp. If using more than one node this directory will be
named differently on other nodes. This requires mounting the complete /tmp directory into the
container which is more complicated.

The mpirun command specifies the command to start, the podman command. The following podman
options are used to start the container:

run command runs a container.

--env-host option copies all environment variables from the host into the container.

-v /tmp/podman-mpirun:/tmp/podman-mpirun line tells Podman to mount the directory
where Open MPI creates its temporary directories and files to be available in the container.

--userns=keep-id line ensures the user ID mapping inside and outside the container.

--net=host --pid=host --ipc=host line sets the same network, PID and IPC namespaces.

mpi-ring is the name of the container.

/home/ring is the MPI program in the container.

Additional resources

Red Hat Enterprise Linux 9 Building, running, and managing containers

190

https://podman.io/blogs/2019/09/26/podman-in-hpc.html

Podman in HPC environments

CHAPTER 23. USING PODMAN IN HPC ENVIRONMENT

191

https://podman.io/blogs/2019/09/26/podman-in-hpc.html

CHAPTER 24. RUNNING SPECIAL CONTAINER IMAGES
You can run some special types of container images. Some container images have built-in labels called
runlabels that enable you to run those containers with preset options and arguments. The podman
container runlabel <label> command, you can execute the command defined in the <label> for the
container image. Supported labels are install, run and uninstall.

24.1. OPENING PRIVILEGES TO THE HOST

There are several differences between privileged and non-privileged containers. For example, the
toolbox container is a privileged container. Here are examples of privileges that may or may not be open
to the host from a container:

Privileges: A privileged container disables the security features that isolate the container from
the host. You can run a privileged container using the podman run --privileged
<image_name> command. You can, for example, delete files and directories mounted from the
host that are owned by the root user.

Process tables: You can use the podman run --privileged --pid=host <image_name>
command to use the host PID namespace for the container. Then you can use the ps -e
command within a privileged container to list all processes running on the host. You can pass a
process ID from the host to commands that run in the privileged container (for example, kill
<PID>).

Network interfaces: By default, a container has only one external network interface and one
loopback network interface. You can use the podman run --net=host <image_name>
command to access host network interfaces directly from within the container.

Inter-process communications: The IPC facility on the host is accessible from within the
privileged container. You can run commands such as ipcs to see information about active
message queues, shared memory segments, and semaphore sets on the host.

24.2. CONTAINER IMAGES WITH RUNLABELS

Some Red Hat images include labels that provide pre-set command lines for working with those images.
Using the podman container runlabel <label> command, you can use the podman command to
execute the command defined in the <label> for the image.

Existing runlabels include:

install: Sets up the host system before executing the image. Typically, this results in creating
files and directories on the host that the container can access when it is run later.

run: Identifies podman command line options to use when running the container. Typically, the
options will open privileges on the host and mount the host content the container needs to
remain permanently on the host.

uninstall: Cleans up the host system after you finish running the container.

24.3. RUNNING RSYSLOG WITH RUNLABELS

The rhel9/rsyslog container image is made to run a containerized version of the rsyslogd daemon. The
rsyslog image contains the following runlabels: install, run and uninstall. The following procedure
steps you through installing, running, and uninstalling the rsyslog image:

Red Hat Enterprise Linux 9 Building, running, and managing containers

192

Prerequisites

The container-tools meta-package is installed.

Procedure

1. Pull the rsyslog image:

podman pull registry.redhat.io/rhel9/rsyslog

2. Display the install runlabel for rsyslog:

podman container runlabel install --display rhel9/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel9/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel9/rsyslog:latest /bin/install.sh

This shows that the command will open privileges to the host, mount the host root filesystem on
/host in the container, and run an install.sh script.

3. Run the install runlabel for rsyslog:

podman container runlabel install rhel9/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel9/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel9/rsyslog:latest /bin/install.sh
Creating directory at /host//etc/pki/rsyslog
Creating directory at /host//etc/rsyslog.d
Installing file at /host//etc/rsyslog.conf
Installing file at /host//etc/sysconfig/rsyslog
Installing file at /host//etc/logrotate.d/syslog

This creates files on the host system that the rsyslog image will use later.

4. Display the run runlabel for rsyslog:

podman container runlabel run --display rhel9/rsyslog
command: podman run -d --privileged --name rsyslog --net=host --pid=host -v
/etc/pki/rsyslog:/etc/pki/rsyslog -v /etc/rsyslog.conf:/etc/rsyslog.conf -v
/etc/sysconfig/rsyslog:/etc/sysconfig/rsyslog -v /etc/rsyslog.d:/etc/rsyslog.d -v /var/log:/var/log
-v /var/lib/rsyslog:/var/lib/rsyslog -v /run:/run -v /etc/machine-id:/etc/machine-id -v
/etc/localtime:/etc/localtime -e IMAGE=registry.redhat.io/rhel9/rsyslog:latest -e
NAME=rsyslog --restart=always registry.redhat.io/rhel9/rsyslog:latest /bin/rsyslog.sh

This shows that the command opens privileges to the host and mount specific files and
directories from the host inside the container, when it launches the rsyslog container to run the
rsyslogd daemon.

5. Execute the run runlabel for rsyslog:

podman container runlabel run rhel9/rsyslog
command: podman run -d --privileged --name rsyslog --net=host --pid=host -v
/etc/pki/rsyslog:/etc/pki/rsyslog -v /etc/rsyslog.conf:/etc/rsyslog.conf -v
/etc/sysconfig/rsyslog:/etc/sysconfig/rsyslog -v /etc/rsyslog.d:/etc/rsyslog.d -v /var/log:/var/log
-v /var/lib/rsyslog:/var/lib/rsyslog -v /run:/run -v /etc/machine-id:/etc/machine-id -v

CHAPTER 24. RUNNING SPECIAL CONTAINER IMAGES

193

/etc/localtime:/etc/localtime -e IMAGE=registry.redhat.io/rhel9/rsyslog:latest -e
NAME=rsyslog --restart=always registry.redhat.io/rhel9/rsyslog:latest /bin/rsyslog.sh
28a0d719ff179adcea81eb63cc90fcd09f1755d5edb121399068a4ea59bd0f53

The rsyslog container opens privileges, mounts what it needs from the host, and runs the
rsyslogd daemon in the background (-d). The rsyslogd daemon begins gathering log
messages and directing messages to files in the /var/log directory.

6. Display the uninstall runlabel for rsyslog:

podman container runlabel uninstall --display rhel9/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel9/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel9/rsyslog:latest /bin/uninstall.sh

7. Run the uninstall runlabel for rsyslog:

podman container runlabel uninstall rhel9/rsyslog
command: podman run --rm --privileged -v /:/host -e HOST=/host -e
IMAGE=registry.redhat.io/rhel9/rsyslog:latest -e NAME=rsyslog
registry.redhat.io/rhel9/rsyslog:latest /bin/uninstall.sh

NOTE

In this case, the uninstall.sh script just removes the /etc/logrotate.d/syslog file. It does
not clean up the configuration files.

Red Hat Enterprise Linux 9 Building, running, and managing containers

194

CHAPTER 25. USING THE CONTAINER-TOOLS API
The new REST based Podman 2.0 API replaces the old remote API for Podman that used the varlink
library. The new API works in both a rootful and a rootless environment.

The Podman v2.0 RESTful API consists of the Libpod API providing support for Podman, and Docker-
compatible API. With this new REST API, you can call Podman from platforms such as cURL, Postman,
Google’s Advanced REST client, and many others.

NOTE

As the podman service supports socket activation, unless connections on the socket are
active, podman service will not run. Hence, to enable socket activation functionality, you
need to manually start the podman.socket service. When a connection becomes active
on the socket, it starts the podman service and runs the requested API action. Once the
action is completed, the podman process ends, and the podman service returns to an
inactive state.

25.1. ENABLING THE PODMAN API USING SYSTEMD IN ROOT MODE

You can do the following:

1. Use systemd to activate the Podman API socket.

2. Use a Podman client to perform basic commands.

Prerequisities

The podman-remote package is installed.

dnf install podman-remote

Procedure

1. Start the service immediately:

systemctl enable --now podman.socket

2. To enable the link to var/lib/docker.sock using the docker-podman package:

dnf install podman-docker

Verification steps

1. Display system information of Podman:

podman-remote info

2. Verify the link:

ls -al /var/run/docker.sock
lrwxrwxrwx. 1 root root 23 Nov 4 10:19 /var/run/docker.sock -> /run/podman/podman.sock

CHAPTER 25. USING THE CONTAINER-TOOLS API

195

Additional resources

Podman v2.0 RESTful API

A First Look At Podman 2.0 API

Sneak peek: Podman’s new REST API

25.2. ENABLING THE PODMAN API USING SYSTEMD IN ROOTLESS
MODE

You can use systemd to activate the Podman API socket and podman API service.

Prerequisites

The podman-remote package is installed.

dnf install podman-remote

Procedure

1. Enable and start the service immediately:

$ systemctl --user enable --now podman.socket

2. Optional: To enable programs using Docker to interact with the rootless Podman socket:

$ export DOCKER_HOST=unix:///run/user/<uid>/podman//podman.sock

Verification steps

1. Check the status of the socket:

$ systemctl --user status podman.socket
● podman.socket - Podman API Socket
 Loaded: loaded (/usr/lib/systemd/user/podman.socket; enabled; vendor preset: enabled)
Active: active (listening) since Mon 2021-08-23 10:37:25 CEST; 9min ago
Docs: man:podman-system-service(1)
Listen: /run/user/1000/podman/podman.sock (Stream)
CGroup: /user.slice/user-1000.slice/user@1000.service/podman.socket

The podman.socket is active and is listening at /run/user/<uid>/podman.podman.sock, where
<uid> is the user’s ID.

2. Display system information of Podman:

$ podman-remote info

Additional resources

Podman v2.0 RESTful API

A First Look At Podman 2.0 API

Red Hat Enterprise Linux 9 Building, running, and managing containers

196

http://docs.podman.io/en/latest/Reference.html
http://crunchtools.com/a-first-look-at-the-podman-2-0-api/
https://www.redhat.com/sysadmin/podmans-new-rest-api
http://docs.podman.io/en/latest/Reference.html
http://crunchtools.com/a-first-look-at-the-podman-2-0-api/

Sneak peek: Podman’s new REST API

Exploring Podman RESTful API using Python and Bash

25.3. RUNNING THE PODMAN API MANUALLY

You can run the Podman API. This is useful for debugging API calls, especially when using the Docker
compatibility layer.

Prerequisities

The podman-remote package is installed.

dnf install podman-remote

Procedure

1. Run the service for the REST API:

podman system service -t 0 --log-level=debug

The value of 0 means no timeout. The default endpoint for a rootful service is
unix:/run/podman/podman.sock.

The --log-level <level> option sets the logging level. The standard logging levels are
debug, info, warn, error, fatal, and panic.

2. In another terminal, display system information of Podman. The podman-remote command,
unlike the regular podman command, communicates through the Podman socket:

podman-remote info

3. To troubleshoot the Podman API and display request and responses, use the curl comman. To
get the information about the Podman installation on the Linux server in JSON format:

curl -s --unix-socket /run/podman/podman.sock http://d/v1.0.0/libpod/info | jq
 {
 "host": {
 "arch": "amd64",
 "buildahVersion": "1.15.0",
 "cgroupVersion": "v1",
 "conmon": {
 "package": "conmon-2.0.18-1.module+el8.3.0+7084+c16098dd.x86_64",
 "path": "/usr/bin/conmon",
 "version": "conmon version 2.0.18, commit:
7fd3f71a218f8d3a7202e464252aeb1e942d17eb"
 },
 …
 "version": {
 "APIVersion": 1,
 "Version": "2.0.0",
 "GoVersion": "go1.14.2",
 "GitCommit": "",
 "BuiltTime": "Thu Jan 1 01:00:00 1970",

CHAPTER 25. USING THE CONTAINER-TOOLS API

197

https://www.redhat.com/sysadmin/podmans-new-rest-api
https://www.redhat.com/sysadmin/podman-python-bash

 "Built": 0,
 "OsArch": "linux/amd64"
 }
}

A jq utility is a command-line JSON processor.

4. Pull the registry.access.redhat.com/ubi8/ubi container image:

curl -XPOST --unix-socket /run/podman/podman.sock -v
'http://d/v1.0.0/images/create?fromImage=registry.access.redhat.com%2Fubi8%2Fubi'
* Trying /run/podman/podman.sock...
* Connected to d (/run/podman/podman.sock) port 80 (#0)
> POST /v1.0.0/images/create?fromImage=registry.access.redhat.com%2Fubi8%2Fubi
HTTP/1.1
> Host: d
> User-Agent: curl/7.61.1
> Accept: /
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Date: Tue, 20 Oct 2020 13:58:37 GMT
< Content-Length: 231
<
{"status":"pulling image () from registry.access.redhat.com/ubi8/ubi:latest,
registry.redhat.io/ubi8/ubi:latest","error":"","progress":"","progressDetail":
{},"id":"ecbc6f53bba0d1923ca9e92b3f747da8353a070fccbae93625bd8b47dbee772e"}
* Connection #0 to host d left intact

5. Display the pulled image:

curl --unix-socket /run/podman/podman.sock -v 'http://d/v1.0.0/libpod/images/json' |
jq
* Trying /run/podman/podman.sock...
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Connected to d
(/run/podman/podman.sock) port 80 (0) > GET /v1.0.0/libpod/images/json HTTP/1.1 > Host: d
> User-Agent: curl/7.61.1 > Accept: / > < HTTP/1.1 200 OK < Content-Type: application/json
< Date: Tue, 20 Oct 2020 13:59:55 GMT < Transfer-Encoding: chunked < { [12498 bytes
data] 100 12485 0 12485 0 0 2032k 0 --:--:-- --:--:-- --:--:-- 2438k * Connection #0 to host d
left intact [{ "Id":
"ecbc6f53bba0d1923ca9e92b3f747da8353a070fccbae93625bd8b47dbee772e",
"RepoTags": ["registry.access.redhat.com/ubi8/ubi:latest", "registry.redhat.io/ubi8/ubi:latest"
], "Created": "2020-09-01T19:44:12.470032Z", "Size": 210838671, "Labels": { "architecture":
"x86_64", "build-date": "2020-09-01T19:43:46.041620", "com.redhat.build-host": "cpt-
1008.osbs.prod.upshift.rdu2.redhat.com", ... "maintainer": "Red Hat, Inc.", "name": "ubi8", ...
"summary": "Provides the latest release of Red Hat Universal Base Image 8.", "url":
"https://access.redhat.com/containers//registry.access.redhat.com/ubi8/images/8.2-347",
 ...
 },
 "Names": [
 "registry.access.redhat.com/ubi8/ubi:latest",
 "registry.redhat.io/ubi8/ubi:latest"
],
 ...

Red Hat Enterprise Linux 9 Building, running, and managing containers

198

]
 }
]

Additional resources

Podman v2.0 RESTful API

Sneak peek: Podman’s new REST API

Exploring Podman RESTful API using Python and Bash

podman-system-service man page

CHAPTER 25. USING THE CONTAINER-TOOLS API

199

http://docs.podman.io/en/latest/Reference.html
https://www.redhat.com/sysadmin/podmans-new-rest-api
https://www.redhat.com/sysadmin/podman-python-bash

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. STARTING WITH CONTAINERS
	1.1. CHARACTERISTICS OF PODMAN, BUILDAH, AND SKOPEO
	1.2. COMMON PODMAN COMMANDS
	1.3. RUNNING CONTAINERS WITHOUT DOCKER
	1.4. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS
	1.5. GETTING CONTAINER TOOLS
	1.6. SETTING UP ROOTLESS CONTAINERS
	1.7. UPGRADING TO ROOTLESS CONTAINERS
	1.8. SPECIAL CONSIDERATIONS FOR ROOTLESS CONTAINERS
	1.9. ADDITIONAL RESOURCES

	CHAPTER 2. TYPES OF CONTAINER IMAGES
	2.1. GENERAL CHARACTERISTICS OF RHEL CONTAINER IMAGES
	2.2. CHARACTERISTICS OF UBI IMAGES
	2.3. UNDERSTANDING THE UBI STANDARD IMAGES
	2.4. UNDERSTANDING THE UBI INIT IMAGES
	2.5. UNDERSTANDING THE UBI MINIMAL IMAGES
	2.6. UNDERSTANDING THE UBI MICRO IMAGES

	CHAPTER 3. WORKING WITH CONTAINER REGISTRIES
	3.1. CONTAINER REGISTRIES
	3.2. CONFIGURING CONTAINER REGISTRIES
	3.3. SEARCHING FOR CONTAINER IMAGES
	3.4. PULLING IMAGES FROM REGISTRIES
	3.5. CONFIGURING SHORT-NAME ALIASES

	CHAPTER 4. WORKING WITH CONTAINER IMAGES
	4.1. PULLING CONTAINER IMAGES USING SHORT-NAME ALIASES
	4.2. LISTING IMAGES
	4.3. INSPECTING LOCAL IMAGES
	4.4. INSPECTING REMOTE IMAGES
	4.5. COPYING CONTAINER IMAGES
	4.6. COPYING IMAGE LAYERS TO A LOCAL DIRECTORY
	4.7. TAGGING IMAGES
	4.8. SAVING AND LOADING IMAGES
	4.9. REDISTRIBUTING UBI IMAGES
	4.10. REMOVING IMAGES

	CHAPTER 5. WORKING WITH CONTAINERS
	5.1. PODMAN RUN COMMAND
	5.2. RUNNING COMMANDS IN A CONTAINER FROM THE HOST
	5.3. RUNNING COMMANDS INSIDE THE CONTAINER
	5.4. LISTING CONTAINERS
	5.5. STARTING CONTAINERS
	5.6. INSPECTING CONTAINERS FROM THE HOST
	5.7. MOUNTING DIRECTORY ON LOCALHOST TO THE CONTAINER
	5.8. MOUNTING A CONTAINER FILESYSTEM
	5.9. RUNNING A SERVICE AS A DAEMON WITH A STATIC IP
	5.10. EXECUTING COMMANDS INSIDE A RUNNING CONTAINER
	5.11. SHARING FILES BETWEEN TWO CONTAINERS
	5.12. EXPORTING AND IMPORTING CONTAINERS
	5.13. STOPPING CONTAINERS
	5.14. REMOVING CONTAINERS
	5.15. CREATING SELINUX POLICIES FOR CONTAINERS
	5.16. CONFIGURING PRE-EXECUTION HOOKS IN PODMAN

	CHAPTER 6. SELECTING A CONTAINER RUNTIME
	6.1. THE RUNC CONTAINER RUNTIME
	6.2. THE CRUN CONTAINER RUNTIME
	6.3. RUNNING CONTAINERS WITH RUNC AND CRUN
	6.4. TEMPORARILY CHANGING THE CONTAINER RUNTIME
	6.5. PERMANENTLY CHANGING THE CONTAINER RUNTIME

	CHAPTER 7. ADDING SOFTWARE TO A UBI CONTAINER
	7.1. USING THE UBI INIT IMAGES
	7.2. USING THE UBI MICRO IMAGES
	7.3. ADDING SOFTWARE TO A UBI CONTAINER ON A SUBSCRIBED HOST
	7.4. ADDING SOFTWARE IN A STANDARD UBI CONTAINER
	7.5. ADDING SOFTWARE IN A MINIMAL UBI CONTAINER
	7.6. ADDING SOFTWARE TO A UBI CONTAINER ON A UNSUBSCRIBED HOST
	7.7. BUILDING UBI-BASED IMAGES
	7.8. USING APPLICATION STREAM RUNTIME IMAGES
	7.9. GETTING UBI CONTAINER IMAGE SOURCE CODE

	CHAPTER 8. SIGNING CONTAINER IMAGES
	8.1. SIGNING CONTAINER IMAGES WITH GPG SIGNATURES
	8.2. VERIFYING GPG IMAGE SIGNATURES
	8.3. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES USING A PRIVATE KEY
	8.4. VERIFYING SIGSTORE IMAGE SIGNATURES USING A PUBLIC KEY
	8.5. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES USING FULCIO AND REKOR
	8.6. VERIFYING CONTAINER IMAGES WITH SIGSTORE SIGNATURES USING FULCIO AND REKOR
	8.7. SIGNING CONTAINER IMAGES WITH SIGSTORE SIGNATURES WITH A PRIVATE KEY AND REKOR

	CHAPTER 9. MANAGING A CONTAINER NETWORK
	9.1. LISTING CONTAINER NETWORKS
	9.2. INSPECTING A NETWORK
	9.3. CREATING A NETWORK
	9.4. CONNECTING A CONTAINER TO A NETWORK
	9.5. DISCONNECTING A CONTAINER FROM A NETWORK
	9.6. REMOVING A NETWORK
	9.7. REMOVING ALL UNUSED NETWORKS

	CHAPTER 10. WORKING WITH PODS
	10.1. CREATING PODS
	10.2. DISPLAYING POD INFORMATION
	10.3. STOPPING PODS
	10.4. REMOVING PODS

	CHAPTER 11. COMMUNICATING AMONG CONTAINERS
	11.1. THE NETWORK MODES AND LAYERS
	11.2. INSPECTING A NETWORK SETTINGS OF A CONTAINER
	11.3. COMMUNICATING BETWEEN A CONTAINER AND AN APPLICATION
	11.4. COMMUNICATING BETWEEN A CONTAINER AND A HOST
	11.5. COMMUNICATING BETWEEN CONTAINERS USING PORT MAPPING
	11.6. COMMUNICATING BETWEEN CONTAINERS USING DNS
	11.7. COMMUNICATING BETWEEN TWO CONTAINERS IN A POD
	11.8. COMMUNICATING IN A POD
	11.9. ATTACHING A POD TO THE CONTAINER NETWORK

	CHAPTER 12. SETTING CONTAINER NETWORK MODES
	12.1. RUNNING CONTAINERS WITH A STATIC IP
	12.2. RUNNING THE DHCP PLUGIN WITHOUT SYSTEMD
	12.3. RUNNING THE DHCP PLUGIN USING SYSTEMD
	12.4. THE MACVLAN PLUGIN
	12.5. SWITCHING THE NETWORK STACK FROM CNI TO NETAVARK
	12.6. SWITCHING THE NETWORK STACK FROM NETAVARK TO CNI

	CHAPTER 13. PORTING CONTAINERS TO OPENSHIFT USING PODMAN
	13.1. GENERATING A KUBERNETES YAML FILE USING PODMAN
	13.2. GENERATING A KUBERNETES YAML FILE IN OPENSHIFT ENVIRONMENT
	13.3. STARTING CONTAINERS AND PODS WITH PODMAN
	13.4. STARTING CONTAINERS AND PODS IN OPENSHIFT ENVIRONMENT
	13.5. MANUALLY RUNNING CONTAINERS AND PODS USING PODMAN
	13.6. GENERATING A YAML FILE USING PODMAN
	13.7. AUTOMATICALLY RUNNING CONTAINERS AND PODS USING PODMAN
	13.8. AUTOMATICALLY STOPPING AND REMOVING PODS USING PODMAN

	CHAPTER 14. PORTING CONTAINERS TO SYSTEMD USING PODMAN
	14.1. AUTO-GENERATING A SYSTEMD UNIT FILE USING QUADLETS
	14.2. ENABLING SYSTEMD SERVICES
	14.3. AUTO-STARTING CONTAINERS USING SYSTEMD
	14.4. ADVANTAGES OF USING QUADLETS OVER THE PODMAN GENERATE SYSTEMD COMMAND
	14.5. GENERATING A SYSTEMD UNIT FILE USING PODMAN
	14.6. AUTOMATICALLY GENERATING A SYSTEMD UNIT FILE USING PODMAN
	14.7. AUTOMATICALLY STARTING PODS USING SYSTEMD
	14.8. AUTOMATICALLY UPDATING CONTAINERS USING PODMAN
	14.9. AUTOMATICALLY UPDATING CONTAINERS USING SYSTEMD

	CHAPTER 15. MANAGING CONTAINERS USING THE ANSIBLE PLAYBOOK
	15.1. CREATING A ROOTLESS CONTAINER WITH BIND MOUNT
	15.2. CREATING A ROOTFUL CONTAINER WITH PODMAN VOLUME
	15.3. CREATING A QUADLET APPLICATION WITH SECRETS

	CHAPTER 16. MANAGING CONTAINER IMAGES BY USING THE RHEL WEB CONSOLE
	16.1. PULLING CONTAINER IMAGES IN THE WEB CONSOLE
	16.2. PRUNING CONTAINER IMAGES IN THE WEB CONSOLE
	16.3. DELETING CONTAINER IMAGES IN THE WEB CONSOLE

	CHAPTER 17. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE
	17.1. CREATING CONTAINERS IN THE WEB CONSOLE
	17.2. INSPECTING CONTAINERS IN THE WEB CONSOLE
	17.3. CHANGING THE STATE OF CONTAINERS IN THE WEB CONSOLE
	17.4. COMMITTING CONTAINERS IN THE WEB CONSOLE
	17.5. CREATING A CONTAINER CHECKPOINT IN THE WEB CONSOLE
	17.6. RESTORING A CONTAINER CHECKPOINT IN THE WEB CONSOLE
	17.7. DELETING CONTAINERS IN THE WEB CONSOLE
	17.8. CREATING PODS IN THE WEB CONSOLE
	17.9. CREATING CONTAINERS IN THE POD IN THE WEB CONSOLE
	17.10. CHANGING THE STATE OF PODS IN THE WEB CONSOLE
	17.11. DELETING PODS IN THE WEB CONSOLE

	CHAPTER 18. RUNNING SKOPEO, BUILDAH, AND PODMAN IN A CONTAINER
	18.1. RUNNING SKOPEO IN A CONTAINER
	18.2. RUNNING SKOPEO IN A CONTAINER USING CREDENTIALS
	18.3. RUNNING SKOPEO IN A CONTAINER USING AUTHFILES
	18.4. COPYING CONTAINER IMAGES TO OR FROM THE HOST
	18.5. RUNNING BUILDAH IN A CONTAINER
	18.6. PRIVILEGED AND UNPRIVILEGED PODMAN CONTAINERS
	18.7. RUNNING PODMAN WITH EXTENDED PRIVILEGES
	18.8. RUNNING PODMAN WITH LESS PRIVILEGES
	18.9. BUILDING A CONTAINER INSIDE A PODMAN CONTAINER

	CHAPTER 19. BUILDING CONTAINER IMAGES WITH BUILDAH
	19.1. THE BUILDAH TOOL
	19.2. INSTALLING BUILDAH
	19.3. GETTING IMAGES WITH BUILDAH
	19.4. BUILDING AN IMAGE FROM A CONTAINERFILE WITH BUILDAH
	19.5. CREATING IMAGES FROM SCRATCH WITH BUILDAH
	19.6. REMOVING IMAGES WITH BUILDAH

	CHAPTER 20. WORKING WITH CONTAINERS USING BUILDAH
	20.1. RUNNING COMMANDS INSIDE OF THE CONTAINER
	20.2. INSPECTING CONTAINERS AND IMAGES WITH BUILDAH
	20.3. MODIFYING A CONTAINER USING BUILDAH MOUNT
	20.4. MODIFYING A CONTAINER USING BUILDAH COPY AND BUILDAH CONFIG
	20.5. PUSHING CONTAINERS TO A PRIVATE REGISTRY
	20.6. PUSHING CONTAINERS TO THE DOCKER HUB
	20.7. REMOVING CONTAINERS WITH BUILDAH

	CHAPTER 21. MONITORING CONTAINERS
	21.1. USING A HEALTH CHECK ON A CONTAINER
	21.2. PERFORMING A HEALTH CHECK USING THE COMMAND LINE
	21.3. PERFORMING A HEALTH CHECK USING A CONTAINERFILE
	21.4. DISPLAYING PODMAN SYSTEM INFORMATION
	21.5. PODMAN EVENT TYPES
	21.6. MONITORING PODMAN EVENTS
	21.7. USING PODMAN EVENTS FOR AUDITING

	CHAPTER 22. CREATING AND RESTORING CONTAINER CHECKPOINTS
	22.1. CREATING AND RESTORING A CONTAINER CHECKPOINT LOCALLY
	22.2. REDUCING STARTUP TIME USING CONTAINER RESTORE
	22.3. MIGRATING CONTAINERS AMONG SYSTEMS

	CHAPTER 23. USING PODMAN IN HPC ENVIRONMENT
	23.1. USING PODMAN WITH MPI
	23.2. THE MPIRUN OPTIONS

	CHAPTER 24. RUNNING SPECIAL CONTAINER IMAGES
	24.1. OPENING PRIVILEGES TO THE HOST
	24.2. CONTAINER IMAGES WITH RUNLABELS
	24.3. RUNNING RSYSLOG WITH RUNLABELS

	CHAPTER 25. USING THE CONTAINER-TOOLS API
	25.1. ENABLING THE PODMAN API USING SYSTEMD IN ROOT MODE
	25.2. ENABLING THE PODMAN API USING SYSTEMD IN ROOTLESS MODE
	25.3. RUNNING THE PODMAN API MANUALLY

