& RedHat

Red Hat OpenShift Service on AWS 4

Architecture

Architecture overview.

Last Updated: 2024-04-22

Red Hat OpenShift Service on AWS 4 Architecture

Architecture overview.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat OpenShift Service on AWS is a cloud-based Kubernetes container platform. The
foundation of Red Hat OpenShift Service on AWS is based on Kubernetes and therefore shares the
same technology. To learn more about Red Hat OpenShift Service on AWS and Kubernetes, see
product architecture.

Table of Contents

Table of Contents

CHAPTER 1. ARCHITECTURE OVERVIEW ..ttt ittt it ei ettt eatenneeeaneenaneennneennn, 4
1.1. GLOSSARY OF COMMON TERMS FOR RED HAT OPENSHIFT SERVICE ON AWS ARCHITECTURE 4
1.2. UNDERSTANDING HOW RED HAT OPENSHIFT SERVICE ON AWS DIFFERS FROM OPENSHIFT
CONTAINER PLATFORM 8
1.3. ABOUT THE CONTROL PLANE 9
1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS 9
1.5. ABOUT ADMISSION PLUGINS 9

CHAPTER 2. RED HAT OPENSHIFT SERVICEON AWS ARCHITECTURE ciiiiiiiiiiiiiiiiiiennennn 10
2.1. INTRODUCTION TO RED HAT OPENSHIFT SERVICE ON AWS 10

2.1.1. About Kubernetes 1
2.1.2. The benefits of containerized applications 12
2.1.2.1. Operating system benefits 12
2.1.2.2. Deployment and scaling benefits 12
2.1.3. Red Hat OpenShift Service on AWS overview 12
2.1.3.1. Custom operating system 13
2.1.3.2. Simplified update process 13
2.1.3.3. Other key features 13

CHAPTER 3. ARCHITECTURE MODELS ...ttt et e ettt e eeieeeeneenaneennneenneenns 15
3.1. COMPARING ROSA WITH HCP AND ROSA CLASSIC 15
3.2. ROSA WITH HCP ARCHITECTURE 15

3.2.1. ROSA with HCP architecture on public and private networks 16
3.3. ROSA CLASSIC ARCHITECTURE 17
3.3.1. ROSA Classic architecture on public and private networks 17
3.3.2. AWS PrivateLink architecture 18
3.3.2.1. AWS reference architectures 19
3.3.3. ROSA architecture with Local Zones 20

CHAPTER 4. CONTROL PLANE ARCHITECTURE ..ottt et ei e enaneeannenaneenns 22
4.1.NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG POOLS 22
4.2. MACHINE ROLES IN RED HAT OPENSHIFT SERVICE ON AWS 23

4.2.1. Cluster workers 23
4.2.2. Cluster control planes 24
4.3. OPERATORS IN RED HAT OPENSHIFT SERVICE ON AWS 26
4.3.1. Add-on Operators 26
4.4. ABOUT THE MACHINE CONFIG OPERATOR 27
4.5. OVERVIEW OF ETCD 28
4.5.1. Benefits of using etcd 28
4.5.2. How etcd works 29

CHAPTER 5. NVIDIA GPU ARCHITECTURE OVERVIEW .. ittt et ieiieieieeaneennnenns 30
5.1. NVIDIA GPU PREREQUISITES 30
5.2. GPUS AND ROSA 30
5.3. GPU SHARING METHODS 30

5.3.1. CUDA streams 31
5.3.2. Time-slicing 31
5.3.3. CUDA Multi-Process Service 32
5.3.4. Multi-instance GPU 32
5.3.5. Virtualization with vGPU 32

5.4. NVIDIA GPU FEATURES FOR RED HAT OPENSHIFT SERVICE ON AWS 32
CHAPTER 6. UNDERSTANDING RED HAT OPENSHIFT SERVICE ON AWS DEVELOPMENT 34

Red Hat OpenShift Service on AWS 4 Architecture

6.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
6.2. BUILDING A SIMPLE CONTAINER
6.2.1. Container build tool options
6.2.2. Base image options
6.2.3. Registry options
6.3. CREATING A KUBERNETES MANIFEST FOR RED HAT OPENSHIFT SERVICE ON AWS
6.3.1. About Kubernetes pods and services
6.3.2. Application types
6.3.3. Available supporting components
6.3.4. Applying the manifest
6.3.5. Next steps
6.4. DEVELOP FOR OPERATORS

CHAPTER 7. ADMISSION PLUGINS ..o e ettt it i i eneens
7.1. ABOUT ADMISSION PLUGINS
7.2. DEFAULT ADMISSION PLUGINS
7.3. WEBHOOK ADMISSION PLUGINS
7.4. TYPES OF WEBHOOK ADMISSION PLUGINS
7.4.1. Mutating admission plugin
7.4.2. Validating admission plugin
7.5. ADDITIONAL RESOURCES

34
34
35
36
37
37
38
38
39
39
40
40

41
41
41

44

45

45

47

48

Table of Contents

Red Hat OpenShift Service on AWS 4 Architecture

CHAPTER 1. ARCHITECTURE OVERVIEW

Red Hat OpenShift Service on AWS is a cloud-based Kubernetes container platform. The foundation of
Red Hat OpenShift Service on AWS is based on Kubernetes and therefore shares the same technology.
To learn more about Red Hat OpenShift Service on AWS and Kubernetes, see product architecture.

1.1. GLOSSARY OF COMMON TERMS FOR RED HAT OPENSHIFT
SERVICE ON AWS ARCHITECTURE

This glossary defines common terms that are used in the architecture content.

access policies

A set of roles that dictate how users, applications, and entities within a cluster interact with one
another. An access policy increases cluster security.

admission plugins
Admission plugins enforce security policies, resource limitations, or configuration requirements.
authentication

To control access to a Red Hat OpenShift Service on AWS cluster, an administrator with the
dedicated-admin role can configure user authentication to ensure only approved users access the
cluster. To interact with a Red Hat OpenShift Service on AWS cluster, you must authenticate with
the Red Hat OpenShift Service on AWS API. You can authenticate by providing an OAuth access
token or an X.509 client certificate in your requests to the Red Hat OpenShift Service on AWS API.

bootstrap

A temporary machine that runs minimal Kubernetes and deploys the Red Hat OpenShift Service on
AWS control plane.

certificate signing requests (CSRs)

A resource requests a denoted signer to sign a certificate. This request might get approved or
denied.

Cluster Version Operator (CVO)

An Operator that checks with the Red Hat OpenShift Service on AWS Update Service to see the
valid updates and update paths based on current component versions and information in the graph.

compute nodes

Nodes that are responsible for executing workloads for cluster users. Compute nodes are also known
as worker nodes.

configuration drift
A situation where the configuration on a node does not match what the machine config specifies.
containers

Lightweight and executable images that consist of software and all of its dependencies. Because
containers virtualize the operating system, you can run containers anywhere, such as data centers,
public or private clouds, and local hosts.

container orchestration engine

Software that automates the deployment, management, scaling, and networking of containers.
container workloads

Applications that are packaged and deployed in containers.
control groups (cgroups)

Partitions sets of processes into groups to manage and limit the resources processes consume.

CHAPTER 1. ARCHITECTURE OVERVIEW

control plane

A container orchestration layer that exposes the API and interfaces to define, deploy, and manage
the life cycle of containers. Control planes are also known as control plane machines.

CRI-O

A Kubernetes native container runtime implementation that integrates with the operating system to
deliver an efficient Kubernetes experience.

deployment

A Kubernetes resource object that maintains the life cycle of an application.
Dockerfile

A text file that contains the user commands to perform on a terminal to assemble the image.
hosted control planes

A Red Hat OpenShift Service on AWS feature that enables hosting a control plane on the Red Hat
OpenShift Service on AWS cluster from its data plane and workers. This model performs the
following actions:

e Optimize infrastructure costs required for the control planes.
® |mprove the cluster creation time.

® Enable hosting the control plane using the Kubernetes native high level primitives. For
example, deployments and stateful sets.

® Allow a strong network segmentation between the control plane and workloads.

hybrid cloud deployments

Deployments that deliver a consistent platform across bare metal, virtual, private, and public cloud
environments. This offers speed, agility, and portability.

Ignition

A utility that RHCOS uses to manipulate disks during initial configuration. It completes common disk
tasks, including partitioning disks, formatting partitions, writing files, and configuring users.

installer-provisioned infrastructure
The installation program deploys and configures the infrastructure that the cluster runs on.
kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are runningin a
pod.

kubernetes manifest

Specifications of a Kubernetes APl object in a JSON or YAML format. A configuration file can
include deployments, config maps, secrets, daemon sets.

Machine Config Daemon (MCD)

A daemon that regularly checks the nodes for configuration drift.
Machine Config Operator (MCO)

An Operator that applies the new configuration to your cluster machines.
machine config pools (MCP)

A group of machines, such as control plane components or user workloads, that are based on the
resources that they handle.

metadata

Additional information about cluster deployment artifacts.

Red Hat OpenShift Service on AWS 4 Architecture

microservices

An approach to writing software. Applications can be separated into the smallest components,
independent from each other by using microservices.

mirror registry

A registry that holds the mirror of Red Hat OpenShift Service on AWS images.
monolithic applications

Applications that are self-contained, built, and packaged as a single piece.
namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking
Network information of Red Hat OpenShift Service on AWS cluster.
node

A worker machine in the Red Hat OpenShift Service on AWS cluster. A node is either a virtual
machine (VM) or a physical machine.

OpenShift CLI (oc)
A command line tool to run Red Hat OpenShift Service on AWS commands on the terminal.
OpenShift Update Service (OSUS)

For clusters with internet access, Red Hat Enterprise Linux (RHEL) provides over-the-air updates by
using an OpenShift update service as a hosted service located behind public APIs.

OpenShift image registry
A registry provided by Red Hat OpenShift Service on AWS to manage images.
Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in a Red Hat
OpenShift Service on AWS cluster. An Operator takes human operational knowledge and encodes it
into software that is packaged and shared with customers.

OperatorHub
A platform that contains various Red Hat OpenShift Service on AWS Operators to install.
Operator Lifecycle Manager (OLM)

OLM helps you to install, update, and manage the lifecycle of Kubernetes native applications. OLM is
an open source toolkit designed to manage Operators in an effective, automated, and scalable way.

OSTree

An upgrade system for Linux-based operating systems that performs atomic upgrades of complete
file system trees. OSTree tracks meaningful changes to the file system tree using an addressable
object store, and is designed to complement existing package management systems.

over-the-air (OTA) updates

The Red Hat OpenShift Service on AWS Update Service (OSUS) provides over-the-air updates to
Red Hat OpenShift Service on AWS, including Red Hat Enterprise Linux CoreOS (RHCOS).

pod

One or more containers with shared resources, such as volume and IP addresses, running in your Red
Hat OpenShift Service on AWS cluster. A pod is the smallest compute unit defined, deployed, and
managed.

private registry

CHAPTER 1. ARCHITECTURE OVERVIEW

Red Hat OpenShift Service on AWS can use any server implementing the container image registry
API as a source of the image which allows the developers to push and pull their private container
images.

public registry

Red Hat OpenShift Service on AWS can use any server implementing the container image registry
API as a source of the image which allows the developers to push and pull their public container
images.

RHEL Red Hat OpenShift Service on AWS Cluster Manager

A managed service where you can install, modify, operate, and upgrade your Red Hat OpenShift
Service on AWS clusters.

RHEL Quay Container Registry

A Quay.io container registry that serves most of the container images and Operators to Red Hat
OpenShift Service on AWS clusters.

replication controllers
An asset that indicates how many pod replicas are required to run at a time.
role-based access control (RBAC)

A key security control to ensure that cluster users and workloads have only access to resources
required to execute their roles.

route

Routes expose a service to allow for network access to pods from users and applications outside the
Red Hat OpenShift Service on AWS instance.

scaling

The increasing or decreasing of resource capacity.
service

A service exposes a running application on a set of pods.
Source-to-Image (S2l) image

An image created based on the programming language of the application source code in Red Hat
OpenShift Service on AWS to deploy applications.

storage

Red Hat OpenShift Service on AWS supports many types of storage for cloud providers. You can
manage container storage for persistent and non-persistent data in a Red Hat OpenShift Service on
AWS cluster.

Telemetry

A component to collect information such as size, health, and status of Red Hat OpenShift Service on
AWS.

template

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by Red Hat OpenShift Service on AWS.

web console
A user interface (Ul) to manage Red Hat OpenShift Service on AWS.
worker node

Nodes that are responsible for executing workloads for cluster users. Worker nodes are also known
as compute nodes.

Additional resources

Red Hat OpenShift Service on AWS 4 Architecture

® For more information on storage, see Red Hat OpenShift Service on AWS storage .

® For more information on authentication, see Red Hat OpenShift Service on AWS

authentication.

® For more information on Operator Lifecycle Manager (OLM), see OLM.

® For more information on logging, see About Logging.

1.2. UNDERSTANDING HOW RED HAT OPENSHIFT SERVICE ON AWS
DIFFERS FROM OPENSHIFT CONTAINER PLATFORM

Red Hat OpenShift Service on AWS uses the same code base as OpenShift Container Platform but is
installed in an opinionated way to be optimized for performance, scalability, and security. Red Hat
OpenShift Service on AWS is a fully managed service; therefore, many of the Red Hat OpenShift
Service on AWS components and settings that you manually set up in OpenShift Container Platform are

set up for you by default.

Review the following differences between Red Hat OpenShift Service on AWS and a standard
installation of OpenShift Container Platform on your own infrastructure:

OpenShift Container Platform Red Hat OpenShift Service on AWS

The customer installs and configures OpenShift
Container Platform.

Customers can choose their computing resources.

Customers have top-level administrative access to
the infrastructure.

Customers can use all supported features and
configuration settings available in OpenShift
Container Platform.

You set up control plane components such as the API
server and etcd on machines that get the control
role. You can modify the control plane components,
but are responsible for backing up, restoring, and
making control plane data highly available.

You are responsible for updating the underlying
infrastructure for the control plane and worker
nodes. You can use the OpenShift web console to
update OpenShift Container Platform versions.

Red Hat OpenShift Service on AWS is installed
through Red Hat OpenShift Cluster Manager or the
ROSA CLI (rosa) and in a standardized way that is
optimized for performance, scalability, and security.

Red Hat OpenShift Service on AWS is hosted and
managed in a public cloud (Amazon Web Services)
provided by the customer.

Customers have a built-in administrator group
(dedicated-admin), though the top-level
administration access is available.

Some OpenShift Container Platform features and
configuration settings might not be available or
changeable in Red Hat OpenShift Service on AWS.

Red Hat sets up the control plane and manages the
control plane components for you. The control plane
is highly available.

Red Hat automatically notifies the customer when
updates are available. You can manually or
automatically schedule updates in OpenShift Cluster
Manager.

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/storage/#index
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/authentication_and_authorization/#index
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/logging/#cluster-logging

CHAPTER 1. ARCHITECTURE OVERVIEW

OpenShift Container Platform Red Hat OpenShift Service on AWS

Support is provided based on the terms of your Red Engineered, operated, and supported by Red Hat

Hat subscription or cloud provider. with a 99.95% uptime SLA and 24x7 coverage. For
details, see Red Hat Enterprise Agreement Appendix
4 (Online Subscription Services).

1.3. ABOUT THE CONTROL PLANE

The control plane manages the worker nodes and the pods in your cluster. You can configure nodes with
the use of machine config pools (MCPs). MCPs are groups of machines, such as control plane
components or user workloads, that are based on the resources that they handle. Red Hat OpenShift
Service on AWS assigns different roles to hosts. These roles define the function of a machine in a
cluster. The cluster contains definitions for the standard control plane and worker role types.

You can use Operators to package, deploy, and manage services on the control plane. Operators are
important components in Red Hat OpenShift Service on AWS because they provide the following
services:

® Perform health checks

® Provide ways to watch applications

® Manage over-the-air updates

® Ensure applications stay in the specified state

1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS

As a developer, you can use different tools, methods, and formats to develop your containerized
application based on your unique requirements, for example:

® Use various build-tool, base-image, and registry options to build a simple container application.
® Use supporting components such as OperatorHub and templates to develop your application.
® Package and deploy your application as an Operator.

You can also create a Kubernetes manifest and store it in a Git repository. Kubernetes works on basic
units called pods. A pod is a single instance of a running process in your cluster. Pods can contain one or
more containers. You can create a service by grouping a set of pods and their access policies. Services
provide permanent internal IP addresses and host names for other applications to use as pods are
created and destroyed. Kubernetes defines workloads based on the type of your application.

1.5. ABOUT ADMISSION PLUGINS

You can use admission plugins to regulate how Red Hat OpenShift Service on AWS functions. After a
resource request is authenticated and authorized, admission plugins intercept the resource request to
the master API to validate resource requests and to ensure that scaling policies are adhered to.
Admission plugins are used to enforce security policies, resource limitations, configuration requirements,
and other settings.

https://www.redhat.com/licenses/Appendix-4-Red-Hat-Online-Services-20230523.pdf

Red Hat OpenShift Service on AWS 4 Architecture

CHAPTER 2. RED HAT OPENSHIFT SERVICE ON AWS
ARCHITECTURE

2.1.INTRODUCTION TO RED HAT OPENSHIFT SERVICE ON AWS

Red Hat OpenShift Service on AWS is a platform for developing and running containerized applications.
It is designed to allow applications and the data centers that support them to expand from just a few
machines and applications to thousands of machines that serve millions of clients.

With its foundation in Kubernetes, Red Hat OpenShift Service on AWS incorporates the same
technology that serves as the engine for massive telecommunications, streaming video, gaming,
banking, and other applications. Its implementation in open Red Hat technologies lets you extend your
containerized applications beyond a single cloud to on-premise and multi-cloud environments.

10

CHAPTER 2. RED HAT OPENSHIFT SERVICE ON AWS ARCHITECTURE

Red Hat OpenShift
Control plane nodes (xN) Compute nodes (xN)
SCM OpenShift Services Observability
(Git) I jTTTTTTTTTTTTTTTTT Tt
Q l Networking components i Logging :
&& i Kibana ‘
Devel Kubernetes Services ' E
evelopers ciyco) | Elastisearch i
Schedul i i
cheduier ' Grafana Loki '
Controller manager i i
Q L. APl server T
Exlstlng ! Monitoring]
8—&— Automation —Pp l i
Toolsets i P h i
Admins Cluster Version Operator i rometheus E
‘ Grafana i
eted : Alertmanager :
Networking
SDN
NTO
DNS
Router
OpenShift Lifecycle Manager
Integrated Image Registry
Machine management
Kubelet
Compute Network Storage

2.1.1. About Kubernetes

Although container images and the containers that run from them are the primary building blocks for
modern application development, to run them at scale requires a reliable and flexible distribution system.
Kubernetes is the defacto standard for orchestrating containers.

Kubernetes is an open source container orchestration engine for automating deployment, scaling, and
management of containerized applications. The general concept of Kubernetes is fairly simple:

® Start with one or more worker nodes to run the container workloads.

1

Red Hat OpenShift Service on AWS 4 Architecture

® Manage the deployment of those workloads from one or more control plane nodes.

® Wrap containers in a deployment unit called a pod. Using pods provides extra metadata with the
container and offers the ability to group several containers in a single deployment entity.

® Create special kinds of assets. For example, services are represented by a set of pods and a
policy that defines how they are accessed. This policy allows containers to connect to the
services that they need even if they do not have the specific IP addresses for the services.
Replication controllers are another special asset that indicates how many pod replicas are
required to run at a time. You can use this capability to automatically scale your application to
adapt to its current demand.

In only a few years, Kubernetes has seen massive cloud and on-premise adoption. The open source
development model allows many people to extend Kubernetes by implementing different technologies
for components such as networking, storage, and authentication.

2.1.2. The benefits of containerized applications

Using containerized applications offers many advantages over using traditional deployment methods.
Where applications were once expected to be installed on operating systems that included all their
dependencies, containers let an application carry their dependencies with them. Creating containerized
applications offers many benefits.

2.1.2.1. Operating system benefits

Containers use small, dedicated Linux operating systems without a kernel. Their file system, networking,
cgroups, process tables, and namespaces are separate from the host Linux system, but the containers
can integrate with the hosts seamlessly when necessary. Being based on Linux allows containers to use
all the advantages that come with the open source development model of rapid innovation.

Because each container uses a dedicated operating system, you can deploy applications that require
conflicting software dependencies on the same host. Each container carries its own dependent software
and manages its own interfaces, such as networking and file systems, so applications never need to
compete for those assets.

2.1.2.2. Deployment and scaling benefits

If you employ rolling upgrades between major releases of your application, you can continuously
improve your applications without downtime and still maintain compatibility with the current release.

You can also deploy and test a new version of an application alongside the existing version. If the
container passes your tests, simply deploy more new containers and remove the old ones.

Since all the software dependencies for an application are resolved within the container itself, you can
use a standardized operating system on each host in your data center. You do not need to configure a
specific operating system for each application host. When your data center needs more capacity, you
can deploy another generic host system.

Similarly, scaling containerized applications is simple. Red Hat OpenShift Service on AWS offers a
simple, standard way of scaling any containerized service. For example, if you build applications as a set
of microservices rather than large, monolithic applications, you can scale the individual microservices
individually to meet demand. This capability allows you to scale only the required services instead of the
entire application, which can allow you to meet application demands while using minimal resources.

2.1.3. Red Hat OpenShift Service on AWS overview

12

CHAPTER 2. RED HAT OPENSHIFT SERVICE ON AWS ARCHITECTURE

Red Hat OpenShift Service on AWS provides enterprise-ready enhancements to Kubernetes, including
the following enhancements:

® |ntegrated Red Hat technology. Major components in Red Hat OpenShift Service on AWS come
from Red Hat Enterprise Linux (RHEL) and related Red Hat technologies. Red Hat OpenShift
Service on AWS benefits from the intense testing and certification initiatives for Red Hat's
enterprise quality software.

® Open source development model. Development is completed in the open, and the source code
is available from public software repositories. This open collaboration fosters rapid innovation
and development.

Although Kubernetes excels at managing your applications, it does not specify or manage platform-level
requirements or deployment processes. Powerful and flexible platform management tools and
processes are important benefits that Red Hat OpenShift Service on AWS 4 offers. The following
sections describe some unique features and benefits of Red Hat OpenShift Service on AWS.

2.1.3.1. Custom operating system

Red Hat OpenShift Service on AWS uses Red Hat Enterprise Linux CoreOS (RHCOS) as the operating
system for all control plane and worker nodes.

RHCOS includes:

® [gnition, which Red Hat OpenShift Service on AWS uses as a firstboot system configuration for
initially bringing up and configuring machines.

® CRI-O, a Kubernetes native container runtime implementation that integrates closely with the
operating system to deliver an efficient and optimized Kubernetes experience. CRI-O provides
facilities for running, stopping, and restarting containers. It fully replaces the Docker Container
Engine, which was used in Red Hat OpenShift Service on AWS 3.

e Kubelet, the primary node agent for Kubernetes that is responsible for launching and monitoring
containers.

2.1.3.2. Simplified update process

Updating, or upgrading, Red Hat OpenShift Service on AWS is a simple, highly-automated process.
Because Red Hat OpenShift Service on AWS completely controls the systems and services that run on
each machine, including the operating system itself, from a central control plane, upgrades are designed
to become automatic events.

2.1.3.3. Other key features

Operators are both the fundamental unit of the Red Hat OpenShift Service on AWS 4 code base and a
convenient way to deploy applications and software components for your applications to use. In Red Hat
OpenShift Service on AWS, Operators serve as the platform foundation and remove the need for
manual upgrades of operating systems and control plane applications. Red Hat OpenShift Service on
AWS Operators such as the Cluster Version Operator and Machine Config Operator allow simplified,
cluster-wide management of those critical components.

Operator Lifecycle Manager (OLM) and the OperatorHub provide facilities for storing and distributing
Operators to people developing and deploying applications.

13

Red Hat OpenShift Service on AWS 4 Architecture

The Red Hat Quay Container Registry is a Quay.io container registry that serves most of the container
images and Operators to Red Hat OpenShift Service on AWS clusters. Quay.io is a public registry
version of Red Hat Quay that stores millions of images and tags.

Other enhancements to Kubernetes in Red Hat OpenShift Service on AWS include improvements in
software defined networking (SDN), authentication, log aggregation, monitoring, and routing. Red Hat
OpenShift Service on AWS also offers a comprehensive web console and the custom OpenShift CLI
(oc) interface.

14

CHAPTER 3. ARCHITECTURE MODELS

CHAPTER 3. ARCHITECTURE MODELS

Red Hat OpenShift Service on AWS (ROSA) has the following cluster topologies:

® Hosted control plane (HCP) - The control plane is hosted in a Red Hat account and the worker

nodes are deployed in the customer’s AWS account.

® (lassic - The control plane and the worker nodes are deployed in the customer’s AWS account.

3.1. COMPARING ROSA WITH HCP AND ROSA CLASSIC

Table 3.1. ROSA architectures comparison table

Hosted Control Plane (HCP) Classic

Control plane
hosting

Virtual
Private Cloud
(VPC)

Multi-zone
deployment

Machine
pools

Infrastructur
e Nodes

OpenShift
Capabilities

Cluster

upgrades

Minimum EC2
footprint

Control plane components, such as the API
server etcd database, are hosted in a Red
Hat-owned AWS account.

Worker nodes communicate with the
control plane over AWS PrivateLink.

The control plane is always deployed across
multiple availability zones (AZs).

Each machine poolis deployed in a single
AZ (private subnet).

Does not use any dedicated nodes to host
platform components, such as ingress and
image registry.

Platform monitoring, image registry, and the
ingress controller are deployed in the
worker nodes.

The control plane and each machine pool
can be upgraded separately.

2 EC2 instances are needed to create a
cluster.

Additional resources

® Regions and availability zones

® Security and regulation compliance

3.2. ROSA WITH HCP ARCHITECTURE

Control plane components, such as the API
server etcd database, are hosted in a
customer-owned AWS account.

Worker nodes and control plane nodes are
deployed in the customer’s VPC.

The control plane can be deployed within a
single AZ or across multiple AZs.

Machine pools can be deployed in single AZ
or across multiple AZs.

Uses 2 (single-AZ) or 3 (multi-AZ)
dedicated nodes to host platform
components.

Platform monitoring, image registry, and the
ingress controller are deployed in the
dedicated infrastructure nodes.

The entire cluster must be upgraded at the
same time.

7 (single-AZ) or 9 (multi-AZ) EC2 instances
are needed to create a cluster.

15

https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-regions-az_rosa-hcp-service-definition
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-policy-security-regulation-compliance_rosa-policy-process-security

Red Hat OpenShift Service on AWS 4 Architecture

In Red Hat OpenShift Service on AWS (ROSA) with hosted control planes (HCP), the ROSA service
hosts a highly-available, single-tenant OpenShift control plane. The hosted control plane is deployed
across 3 availability zones with 2 APl server instances and 3 etcd instances.

You can create a ROSA with HCP cluster with or without an internet-facing APl server. Private API
servers are only accessible from your VPC subnets. You access the hosted control plane through an
AWS PrivateLink endpoint.

The worker nodes are deployed in your AWS account and run on your VPC private subnets. You can add
additional private subnets from one or more availability zones to ensure high availability. Worker nodes
are shared by OpenShift components and applications. OpenShift components such as the ingress
controller, image registry, and monitoring are deployed on the worker nodes hosted on your VPC.

3.2.1. ROSA with HCP architecture on public and private networks

With ROSA with HCP, you can create your clusters on public or private networks. The following images
depict the architecture of both public and private networks.

Figure 3.1. ROSA with HCP deployed on a public network

& Customer ROSA

AWS account Service account
/ AWS VPC

Public network f/-\
)

v

; !
|

External APINLB

Internet

External App NLB

t)

Availability zone (xN)

i

1

1

1

1

1

1

1

i

1

1

i

1

Internal API NLB Optional E
I i
i

1

1

1

1

1

1

1
Availability zone (x3) i
i

1

1

1
! 1
1
Private network ; P ~—@ ; * :
' i PrivateLink '
H ! H 1
| = |
H Worker nodes (xN) | i Control plane
! : !
H Compute (xN) | i apiserver
! i !
1 1 1
1 Persistent storage) i eted
i i :
| ! H controller
H i H
| 1 |
1 | 1
H i 1
1 1 1
1 1 1

16

CHAPTER 3. ARCHITECTURE MODELS

Figure 3.2. ROSA with HCP deployed on a private network

& Customer ROSA

AWS account Service account
Developer
/ AWS VPC

l

~—9
PrivateLink

Private network

v

Internal App NLB

v

Internal API NLB

Worker nodes (xN) Control plane

Compute (xN) apiserver
Persistent storage eted
controller

Availability zone (xN) Availability zone (x3)

3.3. ROSA CLASSIC ARCHITECTURE

In Red Hat OpenShift Service on AWS (ROSA) Classic, both the control plane and the worker nodes are
deployed in your VPC subnets.

3.3.1. ROSA Classic architecture on public and private networks

With ROSA Classic, you can create clusters that are accessible over public or private networks.

You can customize access patterns for your APl server endpoint and Red Hat SRE management in the
following ways:

® Public - APl server endpoint and application routes are internet-facing.

® Private - APl server endpoint and application routes are private. Private ROSA Classic clusters
use some public subnets, but no control plane or worker nodes are deployed in public subnets.

® Private with AWS PrivateLink - APl server endpoint and application routes are private. Public
subnets or NAT gateways are not required in your VPC for egress. ROSA SRE management
uses AWS PrivateLink.

The following image depicts the architecture of a ROSA Classic cluster deployed on both public and
private networks.

17

Red Hat OpenShift Service on AWS 4 Architecture

Figure 3.3. ROSA Classic deployed on public and private networks

2 A

Red Hat
Management

'

Developer

C.* []

PrivateLink Route53
DNS

v h

External/internal Red Hat
(API)NLB (AP ELB

t ¢

/ AWS VPC

(= -l
External/internal Red Hat
App ELB (Console) ELB

1 t

Private network

r
Internal
(API) NLB i

Control plane nodes Worker nodes
(x3) (xN)
apiserver Compute (xN)
eted Persistent storage
controller

Availability zone
(x1,x3)

Availability zone
(x1,x3)

Infra nodes
(x2, x3)

registry

router

monitoring

Availability zone
(x1,x3)

ROSA Classic clusters include infrastructure nodes where OpenShift components such as the ingress
controller, image registry, and monitoring are deployed. The infrastructure nodes and the OpenShift
components deployed on them are managed by ROSA Service SREs.

The following types of clusters are available with ROSA Classic:

® Single zone cluster - The control plane and worker nodes are hosted on a single availability

zone.

® Multi-zone cluster - The control plane is hosted on three availability zones with an option to run
worker nodes on one or three availability zones.

3.3.2. AWS PrivateLink architecture

The Red Hat managed infrastructure that creates AWS PrivateLink clusters is hosted on private
subnets. The connection between Red Hat and the customer-provided infrastructure is created through
AWS PrivateLink VPC endpoints.

NOTE

AWS PrivateLink is supported on existing VPCs only.

The following diagram shows network connectivity of a PrivateLink cluster.

18

Figure 3.4. Multi-AZ AWS PrivateLink cluster deployed on private subnets

2 A

Developer Red Hat
Management
5
PrivateLink Route53
l DNS
v ¥

CHAPTER 3. ARCHITECTURE MODELS

AWS VPC
s

Private network + ‘
[] —
APINLB i ‘ App ELB
Control plane nodes Worker nodes Infra nodes
(x3) (xN) (x2, x3)
apiserver Compute (xN) registry
eted Persistent storage router
controller monitoring

Availability zone Availability zone
(x1, x3) (x1,x3)

3.3.2.1. AWS reference architectures

Availability zone
(x1, x3)

AWS provides multiple reference architectures that can be useful to customers when planning how to

set up a configuration that uses AWS PrivateLink. Here are three examples:

NOTE

A public subnet connects directly to the internet through an internet gateway. A private
subnet connects to the internet through a network address translation (NAT) gateway.

® VPC with a private subnet and AWS Site-to-Site VPN access.
This configuration enables you to extend your network into the cloud without exposing your

network to the internet.

To enable communication with your network over an Internet Protocol Security (IPsec) VPN
tunnel, this configuration contains a virtual private cloud (VPC) with a single private subnet and
a virtual private gateway. Communication over the internet does not use an internet gateway.

For more information, see VPC with a private subnet only and AWS Site-to-Site VPN access in

the AWS documentation.

® VPC with public and private subnets (NAT)
This configuration enables you to isolate your network so that the public subnet is reachable
from the internet but the private subnet is not.

Only the public subnet can send outbound traffic directly to the internet. The private subnet can
access the internet by using a network address translation (NAT) gateway that resides in the
public subnet. This allows database servers to connect to the internet for software updates

19

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario4.html

Red Hat OpenShift Service on AWS 4 Architecture

using the NAT gateway, but does not allow connections to be made directly from the internet to
the database servers.

For more information, see VPC with public and private subnets (NAT) in the AWS
documentation.

® \VPC with public and private subnets and AWS Site-to-Site VPN access
This configuration enables you to extend your network into the cloud and to directly access the
internet from your VPC.

You can run a multi-tiered application with a scalable web front end in a public subnet, and
house your data in a private subnet that is connected to your network by an IPsec AWS Site-to-
Site VPN connection.

For more information, see VPC with public and private subnets and AWS Site-to-Site VPN
access in the AWS documentation.

3.3.3. ROSA architecture with Local Zones

ROSA supports the use of AWS Local Zones, which are metropolis-centralized availability zones where
customers can place latency-sensitive application workloads within a VPC. Local Zones are extensions of
AWS Regions and are not enabled by default. When Local Zones are enabled and configured, the traffic
is extended into the Local Zones for greater flexibility and lower latency. For more information, see
"Configuring machine pools in Local Zones".

The following diagram displays a ROSA cluster without traffic routed into a Local Zone.

Figure 3.5. ROSA cluster without traffic routed into Local Zones

Client

Route53 DNS

AWS VPC ¢

Red Hat OpensShift

E Control plane Infra Worker i i Worker E
! nodes (x3) nodes (x3) nodes (x3) ! ! nodes (xN) !
1] 1 1
1 | | 1
i i i App A i
1 I] 1
1 I] :
e Parent AWS Region ~==----========mmmmmmcommooo o e AWS Local Zone -----

The following diagram displays a ROSA cluster with traffic routed into a Local Zone.

20

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario3.html

CHAPTER 3. ARCHITECTURE MODELS

Figure 3.6. ROSA cluster with traffic routed into Local Zones

Client

Route53 DNS

l

AWS VPC = =
App ELB Ingress ALB

Red Hat OpensShift
i i i i
! Control plane Infra Worker ! ' Worker !
! nodes (x3) nodes (x3) nodes (x3) ! ! nodes (xN) !
! i i App A !
:]] :
1 1 1 1
------------------------------ Parent AWS Region ----------------------------- t----- AWS Local Zone -----*

Additional resources

® Configuring machine pools in Local Zones

21

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cluster_administration/#configuring-machine-pools-in-local-zones

Red Hat OpenShift Service on AWS 4 Architecture

CHAPTER 4. CONTROL PLANE ARCHITECTURE

The control plane, which is composed of control plane machines, manages the Red Hat OpenShift
Service on AWS cluster. The control plane machines manage workloads on the compute machines, which
are also known as worker machines. The cluster itself manages all upgrades to the machines by the
actions of the Cluster Version Operator (CVO), the Machine Config Operator, and a set of individual
Operators.

4.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG
POOLS

Machines that run control plane components or user workloads are divided into groups based on the
types of resources they handle. These groups of machines are called machine config pools (MCP). Each
MCP manages a set of nodes and its corresponding machine configs. The role of the node determines
which MCP it belongs to; the MCP governs nodes based on its assigned node role label. Nodes in an
MCP have the same configuration; this means nodes can be scaled up and torn down in response to
increased or decreased workloads.

By default, there are two MCPs created by the cluster when it is installed: master and worker. Each
default MCP has a defined configuration applied by the Machine Config Operator (MCO), which is
responsible for managing MCPs and facilitating MCP upgrades. You can create additional MCPs, or
custom pools, to manage nodes that have custom use cases that extend outside of the default node
types.

Custom pools are pools that inherit their configurations from the worker pool. They use any machine
config targeted for the worker pool, but add the ability to deploy changes only targeted at the custom
pool. Since a custom pool inherits its configuration from the worker pool, any change to the worker pool
is applied to the custom pool as well. Custom pools that do not inherit their configurations from the
worker pool are not supported by the MCO.

NOTE

A node can only be included in one MCP. If a node has multiple labels that correspond to
several MCPs, like worker,infra, it is managed by the infra custom pool, not the worker
pool. Custom pools take priority on selecting nodes to manage based on node labels;
nodes that do not belong to a custom pool are managed by the worker pool.

It is recommended to have a custom pool for every node role you want to manage in your cluster. For
example, if you create infra nodes to handle infra workloads, it is recommended to create a custom infra
MCP to group those nodes together. If you apply an infra role label to a worker node so it has the
worker,infra dual label, but do not have a custom infra MCP, the MCO considers it a worker node. If you
remove the worker label from a node and apply the infra label without grouping it in a custom pool, the
node is not recognized by the MCO and is unmanaged by the cluster.

IMPORTANT

Any node labeled with the infra role that is only running infra workloads is not counted
toward the total number of subscriptions. The MCP managing an infra node is mutually
exclusive from how the cluster determines subscription charges; tagging a node with the
appropriate infra role and using taints to prevent user workloads from being scheduled
on that node are the only requirements for avoiding subscription charges for infra
workloads.

22

CHAPTER 4. CONTROL PLANE ARCHITECTURE

The MCO applies updates for pools independently; for example, if there is an update that affects all
pools, nodes from each pool update in parallel with each other. If you add a custom pool, nodes from
that pool also attempt to update concurrently with the master and worker nodes.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated.

Additional resources

® Machine pools

4.2. MACHINE ROLES IN RED HAT OPENSHIFT SERVICE ON AWS

Red Hat OpenShift Service on AWS assigns hosts different roles. These roles define the function of the
machine within the cluster. The cluster contains definitions for the standard master and worker role
types.

4.2.1. Cluster workers

In a Kubernetes cluster, worker nodes run and manage the actual workloads requested by Kubernetes
users. The worker nodes advertise their capacity and the scheduler, which is a control plane service,
determines on which nodes to start pods and containers. The following important services run on each
worker node:

® CRI-O, which is the container engine.

® kubelet, which is the service that accepts and fulfills requests for running and stopping container
workloads.

® A service proxy, which manages communication for pods across workers.

® The runC or crun low-level container runtime, which creates and runs containers.

/, NOTE

For information about how to enable crun instead of the default runC, see the
documentation for creating a ContainerRuntimeConfig CR.

In Red Hat OpenShift Service on AWS, compute machine sets control the compute machines, which are
assigned the worker machine role. Machines with the worker role drive compute workloads that are
governed by a specific machine pool that autoscales them. Because Red Hat OpenShift Service on AWS
has the capacity to support multiple machine types, the machines with the worker role are classed as
compute machines. In this release, the terms worker machine and compute machine are used
interchangeably because the only default type of compute machine is the worker machine. In future
versions of Red Hat OpenShift Service on AWS, different types of compute machines, such as
infrastructure machines, might be used by default.

23

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cluster_administration/#machine-pools

Red Hat OpenShift Service on AWS 4 Architecture

NOTE

Compute machine sets are groupings of compute machine resources under the
machine-api namespace. Compute machine sets are configurations that are designed to
start new compute machines on a specific cloud provider. Conversely, machine config
pools (MCPs) are part of the Machine Config Operator (MCO) namespace. An MCP is
used to group machines together so the MCO can manage their configurations and
facilitate their upgrades.

4.2.2. Cluster control planes

In a Kubernetes cluster, the master nodes run services that are required to control the Kubernetes
cluster. In Red Hat OpenShift Service on AWS, the control plane is comprised of control plane machines
that have a master machine role. They contain more than just the Kubernetes services for managing the
Red Hat OpenShift Service on AWS cluster.

For most Red Hat OpenShift Service on AWS clusters, control plane machines are defined by a series of
standalone machine API resources. Control planes are managed with control plane machine sets. Extra
controls apply to control plane machines to prevent you from deleting all of the control plane machines
and breaking your cluster.

NOTE

Single availability zone clusters and multiple availability zone clusters require a minimum
of three control plane nodes.

Services that fall under the Kubernetes category on the control plane include the Kubernetes APl server,
etcd, the Kubernetes controller manager, and the Kubernetes scheduler.

Table 4.1. Kubernetes services that run on the control plane

Component Description

Kubernetes APl server The Kubernetes API server validates and configures the data for pods,
services, and replication controllers. It also provides a focal point for the
shared state of the cluster.

etcd etcd stores the persistent control plane state while other components
watch etcd for changes to bring themselves into the specified state.

Kubernetes controller manager The Kubernetes controller manager watches etcd for changes to objects
such as replication, namespace, and service account controller objects,
and then uses the API to enforce the specified state. Several such
processes create a cluster with one active leader at a time.

Kubernetes scheduler The Kubernetes scheduler watches for newly created pods without an
assigned node and selects the best node to host the pod.

There are also OpenShift services that run on the control plane, which include the OpenShift APl server,
OpenShift controller manager, OpenShift OAuth API server, and OpenShift OAuth server.

Table 4.2. OpenShift services that run on the control plane

24

CHAPTER 4. CONTROL PLANE ARCHITECTURE

Component Description

OpenShift APl server The OpenShift API server validates and configures the data for
OpenShift resources, such as projects, routes, and templates.

The OpenShift APl server is managed by the OpenShift API Server
Operator.

OpenShift controller manager The OpenShift controller manager watches etcd for changes to
OpenShift objects, such as project, route, and template controller
objects, and then uses the API to enforce the specified state.

The OpenShift controller manager is managed by the OpenShift
Controller Manager Operator.

OpenShift OAuth APl server The OpenShift OAuth APl server validates and configures the data to
authenticate to Red Hat OpenShift Service on AWS, such as users,
groups, and OAuth tokens.

The OpenShift OAuth APl server is managed by the Cluster
Authentication Operator.

OpenShift OAuth server Users request tokens from the OpenShift OAuth server to authenticate
themselves to the API.

The OpenShift OAuth server is managed by the Cluster Authentication
Operator.
Some of these services on the control plane machines run as systemd services, while others run as static
pods.
Systemd services are appropriate for services that you need to always come up on that particular
system shortly after it starts. For control plane machines, those include sshd, which allows remote login.

It also includes services such as:

® The CRI-O container engine (crio), which runs and manages the containers. Red Hat OpenShift
Service on AWS 4 uses CRI-O instead of the Docker Container Engine.

e Kubelet (kubelet), which accepts requests for managing containers on the machine from control
plane services.

CRI-O and Kubelet must run directly on the host as systemd services because they need to be running
before you can run other containers.

The installer-* and revision-pruner-* control plane pods must run with root permissions because they
write to the /etc/kubernetes directory, which is owned by the root user. These pods are in the following
namespaces:

e openshift-etcd

e openshift-kube-apiserver

e openshift-kube-controller-manager

25

Red Hat OpenShift Service on AWS 4 Architecture

e openshift-kube-scheduler

4.3. OPERATORS IN RED HAT OPENSHIFT SERVICE ON AWS

Operators are among the most important components of Red Hat OpenShift Service on AWS.
Operators are the preferred method of packaging, deploying, and managing services on the control
plane. They can also provide advantages to applications that users run.

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and oc commands. They
provide the means of monitoring applications, performing health checks, managing over-the-air (OTA)
updates, and ensuring that applications remain in your specified state.

Operators also offer a more granular configuration experience. You configure each component by
modifying the API that the Operator exposes instead of modifying a global configuration file.

Because CRI-O and the Kubelet run on every node, almost every other cluster function can be managed
on the control plane by using Operators. Components that are added to the control plane by using
Operators include critical networking and credential services.

While both follow similar Operator concepts and goals, Operators in Red Hat OpenShift Service on AWS
are managed by two different systems, depending on their purpose:

® Cluster Operators, which are managed by the Cluster Version Operator (CVO), are installed by
default to perform cluster functions.

® Optional add-on Operators, which are managed by Operator Lifecycle Manager (OLM), can be
made accessible for users to run in their applications.

4.3.1. Add-on Operators

Operator Lifecycle Manager (OLM) and OperatorHub are default components in Red Hat OpenShift
Service on AWS that help manage Kubernetes-native applications as Operators. Together they provide
the system for discovering, installing, and managing the optional add-on Operators available on the
cluster.

Using OperatorHub in the Red Hat OpenShift Service on AWS web console, administrators with the
dedicated-admin role and authorized users can select Operators to install from catalogs of Operators.
After installing an Operator from OperatorHub, it can be made available globally or in specific
namespaces to run in user applications.

Default catalog sources are available that include Red Hat Operators, certified Operators, and
community Operators. Administrators with the dedicated-admin role can also add their own custom
catalog sources, which can contain a custom set of Operators.

NOTE

All Operators listed in the Operator Hub marketplace should be available for installation.
These Operators are considered customer workloads, and are not monitored by Red Hat
Site Reliability Engineering (SRE).

Developers can use the Operator SDK to help author custom Operators that take advantage of OLM
features, as well. Their Operator can then be bundled and added to a custom catalog source, which can
be added to a cluster and made available to users.

26

CHAPTER 4. CONTROL PLANE ARCHITECTURE

NOTE

OLM does not manage the cluster Operators that comprise the Red Hat OpenShift
Service on AWS architecture.

Additional resources

® For more details on running add-on Operators in Red Hat OpenShift Service on AWS, see the
Operators guide sections on Operator Lifecycle Manager (OLM) and OperatorHub.

® For more details on the Operator SDK, see Developing Operators.

4.4. ABOUT THE MACHINE CONFIG OPERATOR

Red Hat OpenShift Service on AWS 4 integrates both operating system and cluster management.
Because the cluster manages its own updates, including updates to Red Hat Enterprise Linux CoreOS
(RHCOS) on cluster nodes, Red Hat OpenShift Service on AWS provides an opinionated lifecycle
management experience that simplifies the orchestration of node upgrades.

Red Hat OpenShift Service on AWS employs three daemon sets and controllers to simplify node
management. These daemon sets orchestrate operating system updates and configuration changes to
the hosts by using standard Kubernetes-style constructs. They include:

e The machine-config-controller, which coordinates machine upgrades from the control plane. It
monitors all of the cluster nodes and orchestrates their configuration updates.

® The machine-config-daemon daemon set, which runs on each node in the cluster and updates
a machine to configuration as defined by machine config and as instructed by the
MachineConfigController. When the node detects a change, it drains off its pods, applies the
update, and reboots. These changes come in the form of Ignition configuration files that apply
the specified machine configuration and control kubelet configuration. The update itself is
delivered in a container. This process is key to the success of managing Red Hat OpenShift
Service on AWS and RHCOS updates together.

e The machine-config-server daemon set, which provides the Ignition config files to control
plane nodes as they join the cluster.

The machine configuration is a subset of the Ignition configuration. The machine-config-daemon reads
the machine configuration to see if it needs to do an OSTree update or if it must apply a series of
systemd kubelet file changes, configuration changes, or other changes to the operating system or Red
Hat OpenShift Service on AWS configuration.

When you perform node management operations, you create or modify a KubeletConfig custom
resource (CR).

27

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/operators/#olm-understanding-operatorhub
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/operators/#osdk-about

Red Hat OpenShift Service on AWS 4 Architecture

IMPORTANT

When changes are made to a machine configuration, the Machine Config Operator
(MCO) automatically reboots all corresponding nodes in order for the changes to take
effect.

To prevent the nodes from automatically rebooting after machine configuration changes,
before making the changes, you must pause the autoreboot process by setting the
spec.paused field to true in the corresponding machine config pool. When paused,
machine configuration changes are not applied until you set the spec.paused field to
false and the nodes have rebooted into the new configuration.

The following modifications do not trigger a node reboot:

® When the MCO detects any of the following changes, it applies the update
without draining or rebooting the node:

o Changes to the SSH key in the
spec.config.passwd.users.sshAuthorizedKeys parameter of a machine
config.

o Changes to the global pull secret or pull secret in the openshift-config
namespace.

o Automatic rotation of the /etc/kubernetes/kubelet-ca.crt certificate
authority (CA) by the Kubernetes API Server Operator.

e When the MCO detects changes to the /etc/containers/registries.conf file, such
as adding or editing an ImageDigestMirrorSet, ImageTagMirrorSet, or
ImageContentSourcePolicy object, it drains the corresponding nodes, applies
the changes, and uncordons the nodes. The node drain does not happen for the
following changes:

o The addition of a registry with the pull-from-mirror = "digest-only"
parameter set for each mirror.

o The addition of a mirror with the pull-from-mirror = "digest-only"
parameter set in a registry.

o The addition of items to the unqualified-search-registries list.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated.

4.5. OVERVIEW OF ETCD

etcd is a consistent, distributed key-value store that holds small amounts of data that can fit entirely in
memory. Although etcd is a core component of many projects, it is the primary data store for
Kubernetes, which is the standard system for container orchestration.

4.5.1. Benefits of using etcd

By using etcd, you can benefit in several ways:

28

CHAPTER 4. CONTROL PLANE ARCHITECTURE

® Maintain consistent uptime for your cloud-native applications, and keep them working even if
individual servers fail

® Store and replicate all cluster states for Kubernetes

e Distribute configuration data to provide redundancy and resiliency for the configuration of
nodes

4.5.2. How etcd works

To ensure a reliable approach to cluster configuration and management, etcd uses the etcd Operator.
The Operator simplifies the use of etcd on a Kubernetes container platform like Red Hat OpenShift
Service on AWS. With the etcd Operator, you can create or delete etcd members, resize clusters,
perform backups, and upgrade etcd.
The etcd Operator observes, analyzes, and acts:

1. It observes the cluster state by using the Kubernetes API.

2. It analyzes differences between the current state and the state that you want.

3. It fixes the differences through the etcd cluster management APls, the Kubernetes API, or both.
etcd holds the cluster state, which is constantly updated. This state is continuously persisted, which

leads to a high number of small changes at high frequency. As a result, Red Hat Site Reliability
Engineering (SRE) backs the etcd cluster member with fast, low-latency 1/0O.

29

Red Hat OpenShift Service on AWS 4 Architecture

CHAPTER 5. NVIDIA GPU ARCHITECTURE OVERVIEW

NVIDIA supports the use of graphics processing unit (GPU) resources on Red Hat OpenShift Service on
AWS. Red Hat OpenShift Service on AWS is a security-focused and hardened Kubernetes platform
developed and supported by Red Hat for deploying and managing Kubernetes clusters at scale. Red Hat
OpenShift Service on AWS includes enhancements to Kubernetes so that users can easily configure and
use NVIDIA GPU resources to accelerate workloads.

The NVIDIA GPU Operator leverages the Operator framework within Red Hat OpenShift Service on
AWS to manage the full lifecycle of NVIDIA software components required to run GPU-accelerated
workloads.

These components include the NVIDIA drivers (to enable CUDA), the Kubernetes device plugin for

GPUs, the NVIDIA Container Toolkit, automatic node tagging using GPU feature discovery (GFD),
DCGM-based monitoring, and others.

NOTE

The NVIDIA GPU Operator is only supported by NVIDIA. For more information about
obtaining support from NVIDIA, see Obtaining Support from NVIDIA.

5.1. NVIDIA GPU PREREQUISITES
® A working OpenShift cluster with at least one GPU worker node.
® Access to the OpenShift cluster as a cluster-admin to perform the required steps.
® OpenShift CLI (oc¢) is installed.

® The node feature discovery (NFD) Operator is installed and a nodefeaturediscovery instance
is created.

5.2. GPUS AND ROSA

You can deploy Red Hat OpenShift Service on AWS on NVIDIA GPU instance types.

It is important that this compute instance is a GPU-accelerated compute instance and that the GPU
type matches the list of supported GPUs from NVIDIA Al Enterprise. For example, T4, V100, and A100
are part of this list.

You can choose one of the following methods to access the containerized GPUs:

® GPU passthrough to access and use GPU hardware within a virtual machine (VM).

® GPU (vGPU) time slicing when the entire GPU is not required.

Additional resources

® Red Hat Openshift in the Cloud

5.3. GPU SHARING METHODS

Red Hat and NVIDIA have developed GPU concurrency and sharing mechanisms to simplify GPU-
accelerated computing on an enterprise-level Red Hat OpenShift Service on AWS cluster.

30

https://access.redhat.com/solutions/5174941
https://docs.nvidia.com/ai-enterprise/deployment-guide-cloud/0.1.0/aws-redhat-openshift.html

CHAPTER 5. NVIDIA GPU ARCHITECTURE OVERVIEW

Applications typically have different compute requirements that can leave GPUs underutilized.
Providing the right amount of compute resources for each workload is critical to reduce deployment
cost and maximize GPU utilization.

Concurrency mechanisms for improving GPU utilization exist that range from programming model APIs
to system software and hardware partitioning, including virtualization. The following list shows the GPU
concurrency mechanisms:

® Compute Unified Device Architecture (CUDA) streams
® Time-slicing

® CUDA Multi-Process Service (MPS)

® Multi-instance GPU (MIG)

® irtualization with vGPU

Additional resources

® |mproving GPU Utilization

5.3.1. CUDA streams

Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming model
developed by NVIDIA for general computing on GPUs.

A stream is a sequence of operations that executes in issue-order on the GPU. CUDA commands are
typically executed sequentially in a default stream and a task does not start until a preceding task has
completed.

Asynchronous processing of operations across different streams allows for parallel execution of tasks. A
task issued in one stream runs before, during, or after another task is issued into another stream. This
allows the GPU to run multiple tasks simultaneously in no prescribed order, leading to improved
performance.

Additional resources

® Asynchronous Concurrent Execution

5.3.2. Time-slicing

GPU time-slicing interleaves workloads scheduled on overloaded GPUs when you are running multiple
CUDA applications.

You can enable time-slicing of GPUs on Kubernetes by defining a set of replicas for a GPU, each of
which can be independently distributed to a pod to run workloads on. Unlike multi-instance GPU (MIG),
there is no memory or fault isolation between replicas, but for some workloads this is better than not
sharing at all. Internally, GPU time-slicing is used to multiplex workloads from replicas of the same
underlying GPU.

You can apply a cluster-wide default configuration for time-slicing. You can also apply node-specific

configurations. For example, you can apply a time-slicing configuration only to nodes with Tesla T4
GPUs and not modify nodes with other GPU models.

31

https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution

Red Hat OpenShift Service on AWS 4 Architecture

You can combine these two approaches by applying a cluster-wide default configuration and then
labeling nodes to give those nodes a node-specific configuration.

5.3.3. CUDA Multi-Process Service

CUDA Multi-Process Service (MPS) allows a single GPU to use multiple CUDA processes. The
processes run in parallel on the GPU, eliminating saturation of the GPU compute resources. MPS also
enables concurrent execution, or overlapping, of kernel operations and memory copying from different
processes to enhance utilization.

Additional resources

e CUDA MPS

5.3.4. Multi-instance GPU

Using Multi-instance GPU (MIG), you can split GPU compute units and memory into multiple MIG
instances. Each of these instances represents a standalone GPU device from a system perspective and
can be connected to any application, container, or virtual machine running on the node. The software
that uses the GPU treats each of these MIG instances as an individual GPU.

MIG is useful when you have an application that does not require the full power of an entire GPU. The
MIG feature of the new NVIDIA Ampere architecture enables you to split your hardware resources into
multiple GPU instances, each of which is available to the operating system as an independent CUDA-
enabled GPU.

NVIDIA GPU Operator version 1.7.0 and higher provides MIG support for the A100 and A30 Ampere
cards. These GPU instances are designed to support up to seven multiple independent CUDA
applications so that they operate completely isolated with dedicated hardware resources.

Additional resources

o NVIDIA Multi-Instance GPU User Guide

5.3.5. Virtualization with vGPU

Virtual machines (VMs) can directly access a single physical GPU using NVIDIA vGPU. You can create
virtual GPUs that can be shared by VMs across the enterprise and accessed by other devices.

This capability combines the power of GPU performance with the management and security benefits
provided by vGPU. Additional benefits provided by vGPU includes proactive management and

monitoring for your VM environment, workload balancing for mixed VDI and compute workloads, and
resource sharing across multiple VMs.

Additional resources

e Virtual GPUs

5.4. NVIDIA GPU FEATURES FOR RED HAT OPENSHIFT SERVICE ON
AWS

NVIDIA Container Toolkit

32

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.nvidia.com/en-us/data-center/virtual-solutions/

CHAPTER 5. NVIDIA GPU ARCHITECTURE OVERVIEW

NVIDIA Container Toolkit enables you to create and run GPU-accelerated containers. The toolkit
includes a container runtime library and utilities to automatically configure containers to use NVIDIA
GPUs.

NVIDIA Al Enterprise

NVIDIA Al Enterprise is an end-to-end, cloud-native suite of Al and data analytics software
optimized, certified, and supported with NVIDIA-Certified systems.

NVIDIA Al Enterprise includes support for Red Hat Red Hat OpenShift Service on AWS. The
following installation methods are supported:

® Red Hat OpenShift Service on AWS on bare metal or VMware vSphere with GPU
Passthrough.

® Red Hat OpenShift Service on AWS on VMware vSphere with NVIDIA vGPU.

GPU Feature Discovery

NVIDIA GPU Feature Discovery for Kubernetes is a software component that enables you to
automatically generate labels for the GPUs available on a node. GPU Feature Discovery uses node
feature discovery (NFD) to perform this labeling.

The Node Feature Discovery Operator (NFD) manages the discovery of hardware features and
configurations in an OpenShift Container Platform cluster by labeling nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCl cards, kernel, OS version,
and so on.

You can find the NFD Operator in the Operator Hub by searching for “Node Feature Discovery”.

NVIDIA GPU Operator with OpenShift Virtualization

Up until this point, the GPU Operator only provisioned worker nodes to run GPU-accelerated
containers. Now, the GPU Operator can also be used to provision worker nodes for running GPU-
accelerated virtual machines (VMs).

You can configure the GPU Operator to deploy different software components to worker nodes
depending on which GPU workload is configured to run on those nodes.

GPU Monitoring dashboard

You can install a monitoring dashboard to display GPU usage information on the cluster Observe
page in the Red Hat OpenShift Service on AWS web console. GPU utilization information includes
the number of available GPUs, power consumption (in watts), temperature (in degrees Celsius),
utilization (in percent), and other metrics for each GPU.

Additional resources

® NVIDIA-Certified Systems

® NVIDIA Al Enterprise

® NVIDIA Container Toolkit

® Enabling the GPU Monitoring Dashboard

® MIG Support in OpenShift Container Platform
® Time-slicing NVIDIA GPUs in OpenShift

® Deploy GPU Operators in a disconnected or airgapped environment

33

https://docs.nvidia.com/ngc/ngc-deploy-on-premises/nvidia-certified-systems/index.html
https://docs.nvidia.com/ai-enterprise/index.html#deployment-guides
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html#
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mig-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/time-slicing-gpus-in-openshift.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mirror-gpu-ocp-disconnected.html

Red Hat OpenShift Service on AWS 4 Architecture

CHAPTER 6. UNDERSTANDING RED HAT OPENSHIFT
SERVICE ON AWS DEVELOPMENT

To fully leverage the capability of containers when developing and running enterprise-quality
applications, ensure your environment is supported by tools that allow containers to be:

® Created as discrete microservices that can be connected to other containerized, and non-
containerized, services. For example, you might want to join your application with a database or

attach a monitoring application to it.

® Resilient, so if a server crashes or needs to go down for maintenance or to be decommissioned,
containers can start on another machine.

® Automated to pick up code changes automatically and then start and deploy new versions of
themselves.

® Scaled up, or replicated, to have more instances serving clients as demand increases and then
spun down to fewer instances as demand declines.

® Run in different ways, depending on the type of application. For example, one application might
run once a month to produce a report and then exit. Another application might need to run
constantly and be highly available to clients.

® Managed so you can watch the state of your application and react when something goes wrong.

Containers’ widespread acceptance, and the resulting requirements for tools and methods to make
them enterprise-ready, resulted in many options for them.

The rest of this section explains options for assets you can create when you build and deploy

containerized Kubernetes applications in Red Hat OpenShift Service on AWS. It also describes which
approaches you might use for different kinds of applications and development requirements.

6.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
You can approach application development with containers in many ways, and different approaches
might be more appropriate for different situations. To illustrate some of this variety, the series of
approaches that is presented starts with developing a single container and ultimately deploys that
container as a mission-critical application for a large enterprise. These approaches show different tools,
formats, and methods that you can employ with containerized application development. This topic
describes:

® Building a simple container and storing it in a registry

® Creating a Kubernetes manifest and saving it to a Git repository

® Making an Operator to share your application with others

6.2. BUILDING A SIMPLE CONTAINER
You have an idea for an application and you want to containerize it.

First you require a tool for building a container, like buildah or docker, and a file that describes what goes
in your container, which is typically a Dockerfile.

34

https://docs.docker.com/engine/reference/builder/

CHAPTER 6. UNDERSTANDING RED HAT OPENSHIFT SERVICE ON AWS DEVELOPMENT

Next, you require a location to push the resulting container image so you can pull it to run anywhere you
want it to run. This location is a container registry.

Some examples of each of these components are installed by default on most Linux operating systems,
except for the Dockerfile, which you provide yourself.

The following diagram displays the process of building and pushing an image:

Figure 6.1. Create a simple containerized application and push it to a registry

=P Red Hat Quay
1

Private !
it S Registry _E °

! “=% OpenShift Registry

Create Dockerfile Build Push

Application o | e | Container
Developer Software Image e @

1
! .
: oubli I,--} Quay.io
! ublic !
it Registry : o
- Docker Hub

If you use a computer that runs Red Hat Enterprise Linux (RHEL) as the operating system, the process
of creating a containerized application requires the following steps:

1.

Install container build tools: RHEL contains a set of tools that includes podman, buildah, and
skopeo that you use to build and manage containers.

Create a Dockerfile to combine base image and software: Information about building your
container goes into a file that is named Dockerfile. In that file, you identify the base image you
build from, the software packages you install, and the software you copy into the container. You
also identify parameter values like network ports that you expose outside the container and
volumes that you mount inside the container. Put your Dockerfile and the software you want to
containerize in a directory on your RHEL system.

Run buildah or docker build: Run the buildah build-using-dockerfile or the docker

build command to pull your chosen base image to the local system and create a container
image that is stored locally. You can also build container images without a Dockerfile by using
buildah.

Tag and push to a registry: Add a tag to your new container image that identifies the location of
the registry in which you want to store and share your container. Then push that image to the
registry by running the podman push or docker push command.

Pull and run the image: From any system that has a container client tool, such as podman or
docker, run a command that identifies your new image. For example, run the podman

run <image_name> or docker run <image_name> command. Here <image_name> is the
name of your new container image, which resembles quay.io/myrepo/myapp:latest. The
registry might require credentials to push and pull images.

6.2.1. Container build tool options

Building and managing containers with buildah, podman, and skopeo results in industry standard
container images that include features specifically tuned for deploying containers in Red Hat OpenShift
Service on AWS or other Kubernetes environments. These tools are daemonless and can run without

35

Red Hat OpenShift Service on AWS 4 Architecture

root privileges, requiring less overhead to run them.

IMPORTANT

Support for Docker Container Engine as a container runtime is deprecated in Kubernetes
1.20 and will be removed in a future release. However, Docker-produced images will
continue to work in your cluster with all runtimes, including CRI-O. For more information,
see the Kubernetes blog announcement.

When you ultimately run your containers in Red Hat OpenShift Service on AWS, you use the CRI-

O container engine. CRI-O runs on every worker and control plane machine in an Red Hat OpenShift
Service on AWS cluster, but CRI-O is not yet supported as a standalone runtime outside of Red Hat
OpenShift Service on AWS.

6.2.2. Base image options

The base image you choose to build your application on contains a set of software that resembles a
Linux system to your application. When you build your own image, your software is placed into that file
system and sees that file system as though it were looking at its operating system. Choosing this base
image has major impact on how secure, efficient and upgradeable your container is in the future.

Red Hat provides a new set of base images referred to as Red Hat Universal Base Images (UBI). These
images are based on Red Hat Enterprise Linux and are similar to base images that Red Hat has offered
in the past, with one major difference: they are freely redistributable without a Red Hat subscription. As
a result, you can build your application on UBI images without having to worry about how they are shared
or the need to create different images for different environments.

These UBI images have standard, init, and minimal versions. You can also use the Red Hat Software
Collections images as a foundation for applications that rely on specific runtime environments such as
Node.js, Perl, or Python. Special versions of some of these runtime base images are referred to as
Source-to-Image (S2I) images. With S2l images, you can insert your code into a base image
environment that is ready to run that code.

S2limages are available for you to use directly from the Red Hat OpenShift Service on AWS web Ul. In

the Developer perspective, navigate to the +Add view and in the Developer Catalog tile, view all of the
available services in the Developer Catalog.

36

https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://cri-o.io/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/index

CHAPTER 6. UNDERSTANDING RED HAT OPENSHIFT SERVICE ON AWS DEVELOPMENT

Figure 6.2. Choose S2I base images for apps that need specific runtimes

Project: myproject =
<> Developer

+Add Developer Catalog
Add shared applications, services, event sources, or source-to-image builders to your Project from the developer catalog. Cluster administrators can customize the content made
available in the catalog.

| Allitems Allitems

Ceard cycon)
Search Q Filter by keyword AZ 149 items

Builds

Helm

Project

ConfigMaps

Secrets

Databases
Languages
Middleware

Other

Type @

Builder Images (12)
Devfiles (6)

Helm Charts (79)
Operator Backed (11}

Templates (41)

Builder Images
NET

.NET
Provided by Red Hat

Build and run .NET 7 applications
on UBI 8. For more information
about using this builder image,...

& Operator Backed
2O)

AlertmanagerConfig
Provided by Red Hat

AlertmanagerConfig configures
the Prometheus Alertmanager,

snacifuina haw alarts shonld ha

Helm Charts
NET

.NET Application
Provided by Red Hat

A Helm chart to build and deploy
.NET applications

’ Templates

Apache HTTP Server
Provided by Red Hat, Inc.

An example Apache HTTP Server
(httpd) application that serves

static contant Farmars

m u Helm Charts

alonetworks-alOtke @

A Helm chart for A0 Thunder
Kubernetes Connector

Vi Builder Images

Apache HTTP Server (httpd)

Build and serve static content via
Apache HTTP Server (httpd) 2.4
on RHEL 7. For more informatio...

6.2.3. Registry options

Container registries are where you store container images so you can share them with others and make
them available to the platform where they ultimately run. You can select large, public container registries
that offer free accounts or a premium version that offer more storage and special features. You can also
install your own registry that can be exclusive to your organization or selectively shared with others.

To get Red Hat images and certified partner images, you can draw from the Red Hat Registry. The Red
Hat Registry is represented by two locations: registry.access.redhat.com, which is unauthenticated
and deprecated, and registry.redhat.io, which requires authentication. You can learn about the Red Hat
and partner images in the Red Hat Registry from the Container images section of the Red Hat
Ecosystem Catalog. Besides listing Red Hat container images, it also shows extensive information about
the contents and quality of those images, including health scores that are based on applied security
updates.

Large, public registries include Docker Hub and Quay.io. The Quay.io registry is owned and managed by
Red Hat. Many of the components used in Red Hat OpenShift Service on AWS are stored in Quay.io,
including container images and the Operators that are used to deploy Red Hat OpenShift Service on
AWS itself. Quay.io also offers the means of storing other types of content, including Helm charts.

If you want your own, private container registry, Red Hat OpenShift Service on AWS itself includes a
private container registry that is installed with Red Hat OpenShift Service on AWS and runs on its
cluster. Red Hat also offers a private version of the Quay.io registry called Red Hat Quay. Red Hat Quay
includes geo replication, Git build triggers, Clair image scanning, and many other features.

All of the registries mentioned here can require credentials to download images from those registries.

Some of those credentials are presented on a cluster-wide basis from Red Hat OpenShift Service on
AWS, while other credentials can be assigned to individuals.

6.3. CREATING A KUBERNETES MANIFEST FOR RED HAT OPENSHIFT
SERVICE ON AWS

37

https://catalog.redhat.com/software/containers/explore
https://hub.docker.com/
https://quay.io/
https://access.redhat.com/products/red-hat-quay

Red Hat OpenShift Service on AWS 4 Architecture

While the container image is the basic building block for a containerized application, more information is
required to manage and deploy that application in a Kubernetes environment such as Red Hat
OpenShift Service on AWS. The typical next steps after you create an image are to:

® Understand the different resources you work with in Kubernetes manifests
® Make some decisions about what kind of an application you are running
® Gather supporting components

® Create a manifest and store that manifest in a Git repository so you can store it in a source
versioning system, audit it, track it, promote and deploy it to the next environment, roll it back to
earlier versions, if necessary, and share it with others

6.3.1. About Kubernetes pods and services

While the container image is the basic unit with docker, the basic units that Kubernetes works with are
called pods. Pods represent the next step in building out an application. A pod can contain one or more
than one container. The key is that the pod is the single unit that you deploy, scale, and manage.

Scalability and namespaces are probably the main items to consider when determining what goesin a
pod. For ease of deployment, you might want to deploy a container in a pod and include its own logging
and monitoring container in the pod. Later, when you run the pod and need to scale up an additional
instance, those other containers are scaled up with it. For namespaces, containers in a pod share the
same network interfaces, shared storage volumes, and resource limitations, such as memory and CPU,
which makes it easier to manage the contents of the pod as a single unit. Containers in a pod can also
communicate with each other by using standard inter-process communications, such as System V
semaphores or POSIX shared memory.

While individual pods represent a scalable unit in Kubernetes, a service provides a means of grouping
together a set of pods to create a complete, stable application that can complete tasks such as load
balancing. A service is also more permanent than a pod because the service remains available from the
same IP address until you delete it. When the service is in use, it is requested by name and the Red Hat
OpenShift Service on AWS cluster resolves that name into the IP addresses and ports where you can
reach the pods that compose the service.

By their nature, containerized applications are separated from the operating systems where they run
and, by extension, their users. Part of your Kubernetes manifest describes how to expose the application
to internal and external networks by defining network policies that allow fine-grained control over
communication with your containerized applications. To connect incoming requests for HTTP, HTTPS,
and other services from outside your cluster to services inside your cluster, you can use an Ingress
resource.

If your container requires on-disk storage instead of database storage, which might be provided through
a service, you can add volumes to your manifests to make that storage available to your pods. You can
configure the manifests to create persistent volumes (PVs) or dynamically create volumes that are
added to your Pod definitions.

After you define a group of pods that compose your application, you can define those pods in
Deployment and DeploymentConfig objects.

6.3.2. Application types

Next, consider how your application type influences how to run it.

38

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

CHAPTER 6. UNDERSTANDING RED HAT OPENSHIFT SERVICE ON AWS DEVELOPMENT

Kubernetes defines different types of workloads that are appropriate for different kinds of applications.
To determine the appropriate workload for your application, consider if the application is:

Meant to run to completion and be done. An example is an application that starts up to produce
a report and exits when the report is complete. The application might not run again then for a
month. Suitable Red Hat OpenShift Service on AWS objects for these types of applications
include Job and CrondJob objects.

Expected to run continuously. For long-running applications, you can write a deployment.

Required to be highly available. If your application requires high availability, then you want to size
your deployment to have more than one instance. A Deployment or DeploymentConfig object
can incorporate a replica set for that type of application. With replica sets, pods run across
multiple nodes to make sure the application is always available, even if a worker goes down.

Need to run on every node. Some types of Kubernetes applications are intended to runin the
cluster itself on every master or worker node. DNS and monitoring applications are examples of
applications that need to run continuously on every node. You can run this type of application as
a daemon set. You can also run a daemon set on a subset of nodes, based on node labels.

Require life-cycle management. When you want to hand off your application so that others can
use it, consider creating an Operator. Operators let you build in intelligence, so it can handle
things like backups and upgrades automatically. Coupled with the Operator Lifecycle Manager
(OLM), cluster managers can expose Operators to selected namespaces so that users in the
cluster can run them.

Have identity or numbering requirements. An application might have identity requirements or
numbering requirements. For example, you might be required to run exactly three instances of
the application and to name the instances 0, 1, and 2. A stateful set is suitable for this
application. Stateful sets are most useful for applications that require independent storage, such
as databases and zookeeper clusters.

6.3.3. Available supporting components

The application you write might need supporting components, like a database or a logging component.
To fulfill that need, you might be able to obtain the required component from the following Catalogs
that are available in the Red Hat OpenShift Service on AWS web console:

OperatorHub, which is available in each Red Hat OpenShift Service on AWS 4 cluster. The
OperatorHub makes Operators available from Red Hat, certified Red Hat partners, and
community members to the cluster operator. The cluster operator can make those Operators
available in all or selected namespaces in the cluster, so developers can launch them and
configure them with their applications.

Templates, which are useful for a one-off type of application, where the lifecycle of a
component is not important after it is installed. A template provides an easy way to get started
developing a Kubernetes application with minimal overhead. A template can be a list of resource
definitions, which could be Deployment, Service, Route, or other objects. If you want to change
names or resources, you can set these values as parameters in the template.

You can configure the supporting Operators and templates to the specific needs of your development
team and then make them available in the namespaces in which your developers work. Many people add
shared templates to the openshift namespace because it is accessible from all other namespaces.

6.3.4. Applying the manifest

39

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.openshift.com/learn/topics/operators
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Red Hat OpenShift Service on AWS 4 Architecture

Kubernetes manifests let you create a more complete picture of the components that make up your
Kubernetes applications. You write these manifests as YAML files and deploy them by applying them to
the cluster, for example, by running the oc apply command.

6.3.5. Next steps

At this point, consider ways to automate your container development process. Ideally, you have some
sort of Cl pipeline that builds the images and pushes them to a registry. In particular, a GitOps pipeline
integrates your container development with the Git repositories that you use to store the software that
is required to build your applications.

The workflow to this point might look like:

® Day 1: You write some YAML. You then run the oc apply command to apply that YAML to the
cluster and test that it works.

® Day 2: You put your YAML container configuration file into your own Git repository. From there,
people who want to install that app, or help you improve it, can pull down the YAML and apply it
to their cluster to run the app.

® Day 3: Consider writing an Operator for your application.

6.4. DEVELOP FOR OPERATORS

Packaging and deploying your application as an Operator might be preferred if you make your
application available for others to run. As noted earlier, Operators add a lifecycle component to your
application that acknowledges that the job of running an application is not complete as soon as it is
installed.

When you create an application as an Operator, you can build in your own knowledge of how to run and
maintain the application. You can build in features for upgrading the application, backing it up, scaling it,
or keeping track of its state. If you configure the application correctly, maintenance tasks, like updating
the Operator, can happen automatically and invisibly to the Operator’s users.

An example of a useful Operator is one that is set up to automatically back up data at particular times.
Having an Operator manage an application’s backup at set times can save a system administrator from

remembering to do it.

Any application maintenance that has traditionally been completed manually, like backing up data or
rotating certificates, can be completed automatically with an Operator.

40

CHAPTER 7. ADMISSION PLUGINS

CHAPTER 7. ADMISSION PLUGINS

Admission plugins are used to help regulate how Red Hat OpenShift Service on AWS functions.

7.1. ABOUT ADMISSION PLUGINS

Admission plugins intercept requests to the master API to validate resource requests. After a request is
authenticated and authorized, the admission plugins ensure that any associated policies are followed.
For example, they are commonly used to enforce security policy, resource limitations or configuration
requirements.

Admission plugins run in sequence as an admission chain. If any admission plugin in the sequence rejects
a request, the whole chain is aborted and an error is returned.

Red Hat OpenShift Service on AWS has a default set of admission plugins enabled for each resource
type. These are required for proper functioning of the cluster. Admission plugins ignore resources that
they are not responsible for.

In addition to the defaults, the admission chain can be extended dynamically through webhook
admission plugins that call out to custom webhook servers. There are two types of webhook admission
plugins: a mutating admission plugin and a validating admission plugin. The mutating admission plugin
runs first and can both modify resources and validate requests. The validating admission plugin validates
requests and runs after the mutating admission plugin so that modifications triggered by the mutating
admission plugin can also be validated.

Calling webhook servers through a mutating admission plugin can produce side effects on resources
related to the target object. In such situations, you must take steps to validate that the end result is as
expected.

' WARNING
A Dynamic admission should be used cautiously because it impacts cluster control

plane operations. When calling webhook servers through webhook admission
plugins in Red Hat OpenShift Service on AWS 4, ensure that you have read the
documentation fully and tested for side effects of mutations. Include steps to
restore resources back to their original state prior to mutation, in the event that a
request does not pass through the entire admission chain.

7.2. DEFAULT ADMISSION PLUGINS

Default validating and admission plugins are enabled in Red Hat OpenShift Service on AWS 4. These
default plugins contribute to fundamental control plane functionality, such as ingress policy, cluster
resource limit override and quota policy.

41

Red Hat OpenShift Service on AWS 4 Architecture

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

The following lists contain the default admission plugins:

42

Example 7.1. Validating admission plugins

LimitRanger

ServiceAccount

PodNodeSelector

Priority

PodTolerationRestriction
OwnerReferencesPermissionEnforcement
PersistentVolumeClaimResize

RuntimeClass

CertificateApproval

CertificateSigning

CertificateSubjectRestriction
autoscaling.openshift.io/ManagementCPUsOverride
authorization.openshift.io/RestrictSubjectBindings
scheduling.openshift.io/OriginPodNodeEnvironment
network.openshift.io/ExternallPRanger
network.openshift.io/RestrictedEndpointsAdmission
image.openshift.io/lmagePolicy
security.openshift.io/SecurityContextConstraint
security.openshift.io/SCCExecRestrictions
route.openshift.io/lngressAdmission

config.openshift.io/Validate APIServer

CHAPTER 7. ADMISSION PLUGINS

e config.openshift.io/ValidateAuthentication

e config.openshift.io/ValidateFeatureGate

e config.openshift.io/ValidateConsole

e operator.openshift.io/ValidateDNS

e config.openshift.io/Validatelmage

e config.openshift.io/ValidateOAuth

e config.openshift.io/ValidateProject

e config.openshift.io/DenyDeleteClusterConfiguration

e config.openshift.io/ValidateScheduler

e quota.openshift.io/ValidateClusterResourceQuota

e security.openshift.io/ValidateSecurityContextConstraints
e authorization.openshift.io/ValidateRoleBindingRestriction
e config.openshift.io/ValidateNetwork

e operator.openshift.io/ValidateKubeControllerManager

e ValidatingAdmissionWebhook

® ResourceQuota

e quota.openshift.io/ClusterResourceQuota

Example 7.2. Mutating admission plugins

o NamespaceLifecycle

e LimitRanger

® ServiceAccount

® NodeRestriction

o TaintNodesByCondition
e PodNodeSelector

® Priority

e DefaultTolerationSeconds
® PodTolerationRestriction
e DefaultStorageClass

e StorageObjectinUseProtection

43

Red Hat OpenShift Service on AWS 4 Architecture

® RuntimeClass

e DefaultingressClass

® autoscaling.openshift.io/ManagementCPUsOverride

e scheduling.openshift.io/OriginPodNodeEnvironment

e image.openshift.io/lmagePolicy

e security.openshift.io/SecurityContextConstraint

e security.openshift.io/DefaultSecurityContextConstraints

o MutatingAdmissionWebhook

7.3. WEBHOOK ADMISSION PLUGINS

In addition to Red Hat OpenShift Service on AWS default admission plugins, dynamic admission can be
implemented through webhook admission plugins that call webhook servers, to extend the functionality
of the admission chain. Webhook servers are called over HTTP at defined endpoints.

There are two types of webhook admission plugins in Red Hat OpenShift Service on AWS:

During the admission process, the mutating admission plugin can perform tasks, such as injecting
affinity labels.

At the end of the admission process, the validating admission plugin can be used to make sure an
object is configured properly, for example ensuring affinity labels are as expected. If the
validation passes, Red Hat OpenShift Service on AWS schedules the object as configured.

When an APl request comes in, mutating or validating admission plugins use the list of external
webhooks in the configuration and call them in parallel:

If all of the webhooks approve the request, the admission chain continues.

If any of the webhooks deny the request, the admission request is denied and the reason for
doing so is based on the first denial.

If more than one webhook denies the admission request, only the first denial reason is returned
to the user.

If an error is encountered when calling a webhook, the request is either denied or the webhook is
ignored depending on the error policy set. If the error policy is set to Ignore, the request is
unconditionally accepted in the event of a failure. If the policy is set to Fail, failed requests are
denied. Using Ignore can result in unpredictable behavior for all clients.

The following diagram illustrates the sequential admission chain process within which multiple webhook
servers are called.

44

CHAPTER 7. ADMISSION PLUGINS

Figure 7.1. APl admission chain with mutating and validating admission plugins

User

APl request
APIHTTP Authentication Mutating Object schema Validating Persisted
handler » authorization » admission » validation » admission g to eted
Webhook Webhook Webhook

An example webhook admission plugin use case is where all pods must have a common set of labels. In
this example, the mutating admission plugin can inject labels and the validating admission plugin can
check that labels are as expected. Red Hat OpenShift Service on AWS would subsequently schedule
pods that include required labels and reject those that do not.

Some common webhook admission plugin use cases include:
® Namespace reservation.
® Limiting custom network resources managed by the SR-IOV network device plugin.

® Pod priority class validation.

NOTE

The maximum default webhook timeout value in Red Hat OpenShift Service on AWS is 13
seconds, and it cannot be changed.

7.4. TYPES OF WEBHOOK ADMISSION PLUGINS

Cluster administrators can call out to webhook servers through the mutating admission plugin or the
validating admission plugin in the API server admission chain.

7.4.1. Mutating admission plugin

The mutating admission plugin is invoked during the mutation phase of the admission process, which
allows modification of resource content before it is persisted. One example webhook that can be called
through the mutating admission plugin is the Pod Node Selector feature, which uses an annotation on a
namespace to find a label selector and add it to the pod specification.

Sample mutating admission plugin configuration

apiVersion: admissionregistration.k8s.io/vibetai
kind: MutatingWebhookConfiguration ﬂ
metadata:

name: <webhook name> 9
webhooks:

45

Red Hat OpenShift Service on AWS 4 Architecture

O 00 O 999006 OO

46

- name: <webhook_name> e
clientConfig: ﬂ
service:
namespace: default 9
name: kubernetes
path: <webhook_url> ﬂ
caBundle: <ca_signing_certificate> 6

rules: Q

- operations: @
- <operation>
apiGroups:

apiVersions:

nkn

resources:

- <resource>
failurePolicy: <policy> ()
sideEffects: None

Specifies a mutating admission plugin configuration.

The name for the MutatingWebhookConfiguration object. Replace <webhook_names with the
appropriate value.

The name of the webhook to call. Replace <webhook_name> with the appropriate value.
Information about how to connect to, trust, and send data to the webhook server.

The namespace where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests. Replace <webhook_url> with the appropriate
value.

A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server.
Replace <ca_signing_certificate> with the appropriate certificate in base64 format.

Rules that define when the API server should use this webhook admission plugin.

One or more operations that trigger the APl server to call this webhook admission plugin. Possible
values are create, update, delete or connect. Replace <operation> and <resource> with the
appropriate values.

Specifies how the policy should proceed if the webhook server is unavailable. Replace <policy>
with either Ignore (to unconditionally accept the request in the event of a failure) or Fail (to deny
the failed request). Using Ignore can result in unpredictable behavior for all clients.

IMPORTANT

In Red Hat OpenShift Service on AWS 4, objects created by users or control loops
through a mutating admission plugin might return unexpected results, especially if values
set in an initial request are overwritten, which is not recommended.

CHAPTER 7. ADMISSION PLUGINS

7.4.2. Validating admission plugin

A validating admission plugin is invoked during the validation phase of the admission process. This phase
allows the enforcement of invariants on particular API resources to ensure that the resource does not
change again. The Pod Node Selector is also an example of a webhook which is called by the validating
admission plugin, to ensure that all nodeSelector fields are constrained by the node selector
restrictions on the namespace.

Sample validating admission plugin configuration

apiVersion: admissionregistration.k8s.io/vibetai
kind: ValidatingWebhookConfiguration ﬂ
metadata:
name: <webhook name> g
webhooks:
- name: <webhook_name> 6
clientConfig: ﬂ
service:
namespace: default 9
name: kubernetes G
path: <webhook_url> ﬂ
caBundle: <ca_signing_certificate> 6

rules: Q

- operations: @
- <operation>
apiGroups:

apiVersions:

nkn

resources:

- <resource>
failurePolicy: <policy> ()
sideEffects: Unknown

Specifies a validating admission plugin configuration.

The name for the ValidatingWebhookConfiguration object. Replace <webhook _name> with the
appropriate value.

The name of the webhook to call. Replace <webhook_name> with the appropriate value.
Information about how to connect to, trust, and send data to the webhook server.

The namespace where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests. Replace <webhook_url> with the appropriate
value.

A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server.
Replace <ca_signing_certificate> with the appropriate certificate in base64 format.

Rules that define when the API server should use this webhook admission plugin.

O @ 9996006 09O

47

Red Hat OpenShift Service on AWS 4 Architecture

@ One or more operations that trigger the APl server to call this webhook admission plugin. Possible
values are create, update, delete or connect. Replace <operation> and <resource> with the

m Specifies how the policy should proceed if the webhook server is unavailable. Replace <policy>

with either Ignore (to unconditionally accept the request in the event of a failure) or Fail (to deny
the failed request). Using Ignore can result in unpredictable behavior for all clients.

7.5. ADDITIONAL RESOURCES
® Controlling pod placement using node taints

® Pod priority names

48

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/nodes/#nodes-scheduler-taints-tolerations_dedicating_nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/nodes/#admin-guide-priority-preemption-names_nodes-pods-priority

	Table of Contents
	CHAPTER 1. ARCHITECTURE OVERVIEW
	1.1. GLOSSARY OF COMMON TERMS FOR RED HAT OPENSHIFT SERVICE ON AWS ARCHITECTURE
	1.2. UNDERSTANDING HOW RED HAT OPENSHIFT SERVICE ON AWS DIFFERS FROM OPENSHIFT CONTAINER PLATFORM
	1.3. ABOUT THE CONTROL PLANE
	1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS
	1.5. ABOUT ADMISSION PLUGINS

	CHAPTER 2. RED HAT OPENSHIFT SERVICE ON AWS ARCHITECTURE
	2.1. INTRODUCTION TO RED HAT OPENSHIFT SERVICE ON AWS
	2.1.1. About Kubernetes
	2.1.2. The benefits of containerized applications
	2.1.2.1. Operating system benefits
	2.1.2.2. Deployment and scaling benefits

	2.1.3. Red Hat OpenShift Service on AWS overview
	2.1.3.1. Custom operating system
	2.1.3.2. Simplified update process
	2.1.3.3. Other key features

	CHAPTER 3. ARCHITECTURE MODELS
	3.1. COMPARING ROSA WITH HCP AND ROSA CLASSIC
	3.2. ROSA WITH HCP ARCHITECTURE
	3.2.1. ROSA with HCP architecture on public and private networks

	3.3. ROSA CLASSIC ARCHITECTURE
	3.3.1. ROSA Classic architecture on public and private networks
	3.3.2. AWS PrivateLink architecture
	3.3.2.1. AWS reference architectures

	3.3.3. ROSA architecture with Local Zones

	CHAPTER 4. CONTROL PLANE ARCHITECTURE
	4.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG POOLS
	4.2. MACHINE ROLES IN RED HAT OPENSHIFT SERVICE ON AWS
	4.2.1. Cluster workers
	4.2.2. Cluster control planes

	4.3. OPERATORS IN RED HAT OPENSHIFT SERVICE ON AWS
	4.3.1. Add-on Operators

	4.4. ABOUT THE MACHINE CONFIG OPERATOR
	4.5. OVERVIEW OF ETCD
	4.5.1. Benefits of using etcd
	4.5.2. How etcd works

	CHAPTER 5. NVIDIA GPU ARCHITECTURE OVERVIEW
	5.1. NVIDIA GPU PREREQUISITES
	5.2. GPUS AND ROSA
	5.3. GPU SHARING METHODS
	5.3.1. CUDA streams
	5.3.2. Time-slicing
	5.3.3. CUDA Multi-Process Service
	5.3.4. Multi-instance GPU
	5.3.5. Virtualization with vGPU

	5.4. NVIDIA GPU FEATURES FOR RED HAT OPENSHIFT SERVICE ON AWS

	CHAPTER 6. UNDERSTANDING RED HAT OPENSHIFT SERVICE ON AWS DEVELOPMENT
	6.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
	6.2. BUILDING A SIMPLE CONTAINER
	6.2.1. Container build tool options
	6.2.2. Base image options
	6.2.3. Registry options

	6.3. CREATING A KUBERNETES MANIFEST FOR RED HAT OPENSHIFT SERVICE ON AWS
	6.3.1. About Kubernetes pods and services
	6.3.2. Application types
	6.3.3. Available supporting components
	6.3.4. Applying the manifest
	6.3.5. Next steps

	6.4. DEVELOP FOR OPERATORS

	CHAPTER 7. ADMISSION PLUGINS
	7.1. ABOUT ADMISSION PLUGINS
	7.2. DEFAULT ADMISSION PLUGINS
	7.3. WEBHOOK ADMISSION PLUGINS
	7.4. TYPES OF WEBHOOK ADMISSION PLUGINS
	7.4.1. Mutating admission plugin
	7.4.2. Validating admission plugin

	7.5. ADDITIONAL RESOURCES

